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Precision thermodynamics of the strongly interacting Fermi gas
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Precision Thermodynamics of the strongly interacting Fermi gas



Introduction

Consider a two-component (spin up/down) fermionic atoms interacting with a 
short-range interaction                 characterized by a scattering length      .a

Of particular interest is the limit of strongest interaction              or                	a→∞

			V0δ(r− r')

• A crossover from BCS for  
to BEC for  		 (kFa)

−1 ∼ −∞

		 (kFa)
−1 ∼ +∞

Randeria and Taylor, 2014

		(kFa)
−1 =0

• Phase transition to a superfluid below
a critical temperature  

-- The unitary Fermi gas (UFG)

	Tc

Three spatial dimensions (3D)
• A two-particle bound state for 		a>0
• The scattering amplitude at low momentum k is

		
f (k)= 1

−1/a− ik

Of interest for high-Tc superconductivity, nuclear matter, and other strongly
interacting Fermi systems



Two spatial dimensions (2D) 

• There is a bound two-particle state for arbitrarily weak interaction strength

• The scattering amplitude at low momentum k is given by

• A crossover from BEC to BCS 
as a function of 		ln(kFa)

• The phase transition to superfluidity is 
of the Berezinskii-Kosterlitz-Thouless 
type 

offsets in the spectrum caused by the mean-field
interaction energy with no influence on the bind-
ing energy between fermions. The position of
the RF absorption peak alone (Fig. 1D) does not
serve as a reliable observable by which to dis-
tinguish between these two effects because it
lacks a suitable reference energy that already in-
corporates Hartree shifts (21). One way to obtain
this reference scale is to measure the RF transi-
tions from both bound and free branches to the
third unoccupied state (21). However, we found
that in the temperature regime (T/TF < 1.5) ex-
plored in our experiments, the thermal occupa-
tion of the free (unpaired) branch is too low to
be observed.
In order to achieve a sufficient population

of the unpaired branch, we applied the quasi-
particle spectroscopy method pioneered in (27)
for the measurement of the superfluid gap of
a 3D Fermi gas. Although our system is in the
normal phase, the same technique can be used
to determine the pairing gap. The key idea of
this method lies in creating a slightly spin-
imbalanced mixture so that the excess majority
atoms necessarily remain unpaired owing to the
density mismatch. These unpaired atoms (or
dressed quasi-particles) contribute a second ab-
sorption maximum in the RF response function
in addition to the one from pairs. We refer to
the energy difference between the two branches
in the spectrum as the pairing energy DE. In our
experiments, we created a slight spin-imbalance
P = ðnjbi"njaiÞ=ðnjbi+ njaiÞ≲ 0:15 using a se-
quence of Landau-Zener sweeps (21), where
njbi andnjai are densities in hyperfine states jai
and jbi, respectively. We show typical density
profiles of majority and minority components
in Fig. 2A.
The pairing energy DE allows us to distin-

guish between two different pairing scenarios.
If DE coincides with the energy EB of the dimer
state, we are in the two-body regime. By con-
trast, we associate the situation of a density
(EF)–dependent DE, exceeding EB, with many-
body pairing, in which the relative pair wave
function is strongly altered by the presence of
the surrounding medium of interacting fermions.
In Fig. 2, B and C, we illustrate these two sce-
narios using ideal single-particle dispersion
relations in the BEC and BCS limits at zero
temperature; both limits have free and bound
branches. The RF photons drive transitions from
these branches to the continuum. The transi-
tion of bound pairs occurs with a sharp onset
at a threshold RF frequency at which the disso-
ciated fragments have no relative momenta.
Higher-frequency RF photons provide relative
momenta to the transferred particles, which leads
to a slowly decaying tail in the spectrum (21).
This leads to the highly asymmetric feature seen
in the spectrum in Fig. 2, D and E. On the other
hand, the transition of unpaired particles leads
to a symmetric peak because it does not involve
a dissociation process.
The crucial difference between the BEC and

BCS regimes arises from the fact that the energy
minimum of the free branch occurs at k ~ 0 on
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Fig. 1. Exploring fermion pairing in a strongly interacting 2D Fermi gas. (A) Schematic phase
diagram of the BEC-BCS crossover. In this work, we investigated the nature of pairing in the normal
phase of the crossover regime between the weakly interacting Bose and Fermi liquids. (B) Illustration
of RF spectroscopy of a 2D two-component Fermi gas. Pairing and many-body effects shift the
atomic transition frequencies between the hyperfine states jbi" jci, which results in observable
signatures in the RF response of the system. (C) Absorption images of the cloud [taken at
ln(kFa2D) ≈ 1.5 and T/TF ~ 0.3] without RF (reference) and with RF at a particular frequency, and the
difference between the two images. The ring feature in dn(r) reveals the density dependence of
the RF response. (D) Spatially resolved spectral response function reconstructed from absorption
images taken at different RF frequencies. At low temperatures in the spin-balanced sample, the
occupation of the free-particle branch is too low to be observable, which makes it difficult to
distinguish between mean-field shifts and pairing effects.

Fig. 2. Quasi-particle spectroscopy in the BEC and BCS limits. (A) We created a slightly
imbalanced mixture of hyperfine states so as to artificially populate the free-particle branch. The
density distributions of the majority and minority spins are shown, as well as the corresponding local
imbalance (inset). (B and C) Schematic illustration of single-particle dispersion relations in the BEC
and BCS limits at zero temperature. Paired atoms reside in the lowest branch (Bound) and are
transferred to the continuum of unoccupied states. The excess majority atoms are unpaired and
occupy the upper quasi-particle (Free) branch in the spectrum preferentially at k ~ 0 (BEC) and k ~ kF
(BCS). The energy difference between the free-particle dispersion in a noninteracting system (blue
dashed line) and the continuum (blue solid line) is the bare hyperfine transition energy and serves as
the reference for (D) and (E). (D and E) The transition of paired atoms into the continuum yields an
asymmetric response with a sharp threshold in the RF spectral function. The quasi-particle transition
contributes another peak, which appears at wRF = 0 on the BEC side and wRF = –D on the BCS side,
where D is the BCS gap parameter. Their relative difference yields the pairing energy DE, which reveals
the distinction between two-body (DE ~ EB) and many-body pairing (DE > EB) in the two limits.
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Murthy et al, Science 2018• Strong coupling regime: 		 ln(kFa)∼1

		
f (k)= 2π

[ln(2/kaeγ )+ iπ /2]



Quantum Monte Carlo methods:

Lattice diagrammatic Monte Carlo (LDMC)

Bold diagrammatic Monte Carlo (BDMC)

Auxiliary-field quantum Monte Carlo (AFMC)

...

Many theoretical methods have been used to study the thermodynamics
of the strongly coupled Fermi gas:

Strong-coupling theories: 

Early theories: Leggett (1980), Nozieres and Schmidt-Rink (1985)

T-matrix approaches

Self-consistent Luttinger-Ward theory

…



The contact C

A fundamental thermodynamic property of quantum many-body systems
with short-range interactions

• The contact C describes the short-range pair correlation at distance 

		
〈n↑(r)n↓(0)〉~

C
4πr2

• Characterizes the tail of the momentum distribution
		
nσ (k)~

C
k4

• Can be expressed as the adiabatic derivative of the energy with respect to
the inverse scattering length (3D) or         (2D) 

		 
C = 4πm

!2
∂E

∂(−1/a)

• Characterizes the high-frequency tail of the shear viscosity spectral function 

The measurement and theoretical calculation of the temperature 
dependence of the contact has been a major challenge in the last decade

		
〈n↑(r)n↓(0)〉~

C
(2π )2 ln

2r3D: 2D:

		lna

		 
C = 4πm

!2
∂E
∂lna3D: 2D:

		r→0



The results of the two recent 
precision experiments 
(Swinburne and MIT, 2019) 
differ substantially from the 
those of the original JILA 
experiment (2012).

Theoretical calculations 
differ widely, even on a 
qualitative level.

Experiment (UFG)

Theory (UFG)

Many of the strong coupling theories are based on uncontrolled approximations 
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Canonical ensemble auxiliary-field Monte Carlo (AFMC) method

  
e−βH = D[σ ]∫  GσUσ

is a Gaussian weight and      is a propagator of non-interacting 
particles moving in external auxiliary fields  

AFMC is based on the Hubbard-Stratonovich transformation, which 
describes the Gibbs ensemble          at inverse temperature              as a 
path integral over time-dependent auxiliary fields �(⌧)

		β =1/T e−βH

	Gσ
�(⌧)	Uσ

The high-dimensional integration over      is evaluated by importance sampling.σ

Recent review of AFMC: Y. Alhassid, in Emergent Phenomena in Atomic 
Nuclei from Large-Scale Modeling, ed. K.D. Launey (World Scientific 2017)

• The integrand reduces to matrix algebra in the single-particle space.

We implemented the canonical ensemble by exact particle-number projection.



Lattice formulation

We use a discrete spatial lattice with spacing     

			 
H = !2k2

2m akσ
† akσ +

V0
2(δ x)3kσ∑ ψ xiσ

† ψ xiσ '
† ψ xiσ '

ψ xiσxiσ
∑

is a single-particle state with momentum     and spin
is a creation operator at site     and spin    .  

		k ,σ 	k σ
			ψ xiσ

†
		x i σ

	δ x

• The interaction constant      is normalized to reproduce the two-particle 
scattering length    on the lattice.	a

S. Jensen, C.N. Gilbreth, and Y. Alhassid, Phys. Rev. Lett. 124 (2020)

Lattice Hamiltonian:

• Two important limits must be taken:

(i) Continuum limit or filling factor            at a fixed particle number         

(ii) Thermodynamic limit of large particle number

	ν→0		δ x→0

	N→∞

	N

		V0



Continuum limit

The continuum limit (filling factor         ) is major challenge requiring AFMC 
calculation on large lattices.
We introduced a novel method that ignores the (almost) unoccupied single-
particle states, enabling large lattice calculations (Comp. Phys. Comm. 2021)

The contact is sensitive to the 
filling factor, and the extrapolation 
is crucial

In 3D, the extrapolation is linear in            	ν1/3

	ν→0
S. Jensen, C.N. Gilbreth, and Y. Alhassid, Phys. Rev. Lett. 125 (2020)
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• A rapid increase below      for all couplings	Tc

• Magnitude becomes smaller towards the 
BCS side

Contact in 2D Fermi gas

↵

↵	Tc

		T *

S. Ramachandran, S. Jensen, Y. Alhassid, PRL 133, 143405 (2024) 

Continuum extrapolations:



Single-particle momentum distribution

		
n(k)= C

k4
For large k:



		ΔF = [2F(N↑ ,N↓ −1)−F(N↑ ,N↓)−F(N↑ −1,N↓ −1)]/2
Free energy gap 

Spin susceptibility

Pairing correlations suppress the spin susceptibility 

Pseudogap regime

Are there signatures of a pseudogap regime above the critical temperature 
in which pairing correlations survive?

		χ ∝β〈(N↑ −N↓)2〉

-- requires the canonical ensemble 
		ΔE = [2E(N↑ ,N↓ −1)−E(N↑ ,N↓)−E(N↑ −1,N↓ −1)]/2

Model-independent pairing gap 

-- Calculated from ratios of canonical partition functions – most accurate



Calculated from the largest eigenvalue
of the pair correlation matrix

using 			〈ak1σ1
† ak2σ2

† ak4σ4ak3σ3 〉 		n= λmax /(N /2)

Condensate fraction n 

Model-independent pairing gap 

Pseudogap regime in the continuum limit: (i) unitary Fermi gas

Spin susceptibility
Pair correlations suppress the spin susceptibility 

• The pairing gap vanishes above 

• Spin susceptibility is suppressed below 

Pseudogap regime below
-- much narrower than previously estimated 

		0.2TF

		0.2TF

		 T
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	λmax

	Tc↵

0

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4

Ku et al (exp) [50]
He et al [124]

Kwon et al [125]
Astrakharchik et al [123]

AFMC, N=114
AFMC, N=66
AFMC, N=54
AFMC, N=40

C
on
de
ns
at
e
Fr
ac
tio
n
n

T/TF

0

0.2

0.4

0.1 0.2 0.3 0.4

(b)

Su
sc
ep
tib
ili
ty
χ s
/χ
0

T/TF

0

0.2

0.4

0.6 (a)

Carlson and Reddy [57]
Hoinka et al [136]

Schirotzek et al [135]
AFMC, N=114
AFMC, N=66
AFMC, N=40

Δ E
/ε
F	ΔE
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Spin susceptibility (top) and free energy gap (bottom) vs. temperature

The regime                in which the spin susceptibility is suppressed (spin gap) is 
substantial for                     and becomes narrower on the BCS side 		Tc<T <T *

		ln(kFa)=1

BECç BCSè

The free energy gap increases as T decreases towards      in the spin gap regime 

	Tc↵
		T *

↵

	Tc

(ii) Strongly coupled 2D Fermi gas
S. Ramachandran, S. Jensen, Y/Alhassid, PRL 133, 143405 (2024) 



Conclusion

Precision thermodynamics of the interacting Fermi gas has been a major

challenge to both experimentalists and theorists.    

• Our calculations for the contact of the unitary Fermi gas (UFG) provide the

best quantitative agreement with recent precision experiments

• Carry out precision experiments in a uniform trap (3D and 2D)

Outlook

• We performed accurate auxiliary-field Monte Carlo (AFMC) calculations on

the lattice, eliminating systematic errors associate with finite lattice spacing

• Most theoretical methods use uncontrolled approximations and lead to 

widely different results

• Calculate dynamical observables in AFMC: spectral weight, shear viscosity,... 

• We determined the UFG pseudogap regime in the continuum limit

(long debated) 

• We find a significant pseudogap regime for the 2D Fermi gas at       

that becomes narrower towards the BCS side 
		ln(kFa)~1


