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seven states of matter?

Solid The outer kilometer of the star freezes to form an elastic crust.
L1qu1d The star’s core remains fluid & accreted matter forms an ocean.
(3as There is a dilute atmosphere.

Plasma The star’s exterior is dominated by an electron-positron plasma.
Quark— gluon plasma Neutrons and protons disintegrate.
Superﬂuid The star’s core is cold enough for neutrons to be superfluid.
Superconductor At high densities, protons form a superconductor.
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equation of state

The macroscopic diagnostic of microscopic many-body interactions is a
pressure-density-temperature relation for matter in chemical and
thermodynamical equilibrium — colloauiallv: the equation of state.
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First principles calculations for many-body QCD systems are
“problematic” at high densities (sign problem).



Have to (at some level) resort to “phenomenology” — parameterise the
ignorance!

Z QCD

X
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observations

Need experiments and observations to test theory and drive progress!
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chiral EFT

Progress in chiral effective field theory provides important low-
density constraint.

Key feature is that the calculations come with “error bars”.
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Choice of “parameterisations” at high densities, e.g. speed of sound,
polytropes...
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Different models predict distinct mass-radius relations.
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IMass

Masses deduced from binary
dynamics tend to lie in a
relatively narrow range, about
1.1-1.6 M 5. Do not constrain
nuclear physics (much).

Example: PSR J0348-0432 with
a WD companion and a mass just
over 2M .

Observation of "Spiders” suggest
even more massive NS?

Tricky systematics...



Pdot (s/s)

spin
The most precisely determined

parameters are the spin and the
spin-down rate.

le-10

Different classes of neutron stars
populate different parts of the P-
P-dot diagram.

le-15 Infer the star’s magnetic field

(or the star’s “age”)
B® ~ PP

Sanity check provided by the
S e braking index”. However,
ol nonton st braking indices are not exactly 3,
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Why do we not see neutron stars spinning close to the break-up limit?



radius

The radius is “difficult” to infer from radio data (moment of inertia?), but
progress has been made using observed x-ray observations.

Construct “empirical” equation of state (from Bayesian analysis) based
on a combination of systems exhibiting type-I x-ray bursts with
photospheric radius expansion and transient low-mass x-ray binaries.
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Double NS Systems

1 10-14 km.

The data is beginning to
impact on the nuclear
physics...

... but, again, the
| systematics are tricky.
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NICER has been taking data since June 2017.

NICER

Aim to measure accurate pulse profiles associated with non-uniform
thermal surface emission of rotation-powered pulsars.

Comparison to theory models yields the stellar compactness, and —
assuming the mass is known — the star’s radius.
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temperature

A neutron star cools rapidly (due to Urca reactions) after birth.

Mature systems are “cold” (108K<< Tge,i=10'2K) so they should be
either solid or superfluid.

A core inner crust outer crust
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Neutron star superfluidity anticipated since late 1950’s; nuclear

physics calculations indicate “BCS-like” pairing gaps for neutrons and
protons.
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Observational evidence for superfluidity from;

- cooling (the “curious case” of the Cas A remnant)

- thermal “recovery” in accreting transients

- pulsar timing variability (glitches, explained at “cartoon” level)
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For regular glitchers one can estimate the superfluid inertia.

Need to involve up to 2% of the total moment of inertia.

The crust superfluid model accords with observations as long as we do not
worry about the entrainment.
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Arrival time residual (ms)

Vortex mutual friction is key to modelling glitch dynamics as it
dictates the timescales involved.

Example: The “resolved” Vela glitch
| i from 2016.
The fast glitch rise (< 40s) and
subsequent relaxation, provide an
01 . .
opportunity to contrast different
models for the mutual friction.
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A neutron star has a rich spectrum of
oscillation modes.

Different classes of waves depend
(sometimes quite sensitively) on distinct
pieces of physics, making
“asteroseismology” a promising strategy
for probing the composition and state of
matter in the star’s core.

In order to lead to observable effects, the
modes must be excited to large amplitude:
transients/instabilities/tides...

seismology
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From the GW perspective we need global modes which involve
significant density variations.

f-mode: Fundamental oscillation of the star; scales with the

average density, w,/(2m) ~ (;—13\4 ~ 1 — 2kHz

p-modes: Restored by the pressure of the fluid (speed of sound);
higher frequencies

g-modes: Restored by buoyancy associated with
temperature/composition gradients (frozen composition); lower
frequencies, w, /(2m) ~ 100Hz.

inertial modes (including the r-mode): Restored by rotation;
may be driven unstable by GW emission; w,, ~ ().

i-modes: Associated with (for example) the core-crust interface;
may induce crust fractures during binary inspiral and trigger short
gamma-ray bursts; w, /(2m) ~ 100Hz.



magnetar flares

Observed quasi-periodic oscillations in x-ray tail from
magnetar giant flares provide a proof of principle.

If the oscillations are associated with the neutron star
crust then the observed spectrum constrains the equation
of state.

However...

- magnetic field couples the crust
to the core (=tricky...)

- the presence of a superfluid
component affects the

oscillations:
.y X
0 >0 =—~w’
X
10 14 where y encodes the effective

12
Radius (km) mass of the free neutrons.



binary inspiral
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Gravitational-wave astronomy provides new opportunities.

Finite size effects (=tides) become important during the late stages of
binary inspiral.



GW signal from binary neutron stars differs from that of black holes
due to tidal deformability.
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Small effect: Difficult to alter GW phasing (e.g. 104® erg at 100 Hz
leads to shift of 1073 radians).
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Dynamical tide is represented by resonances with individual
oscillation modes.

0\ 3 Again, need “global modes"
10?F : model I', =2.05 which involve significant
o ® 5,=0l E density variations.
105F " 0,=00 Fundamental f-mode induces
i significant enhancement of
Eclo-m 1 tide near merger.
1072F i - Newtonian overlap integral
' R
10F : Io = [, 6pa(r)rt*2dr
16F ) E .
01 leads to an "effective" Love
107 7 number:
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Individual low-frequency resonances encode composition etc.



binary mergers

Post-merger dynamics expected to be within reach of next-generation
detectors (Cosmic Explorer+Einstein Telescope).

Requires nonlinear simulations with a reliable physics
implementation.

Main observable likely to be peak oscillation frequency of hot remnant.
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“beyond the EoS”

Merger physics involve non-equilibrium aspects, e.g. transport
coefficients associated with reaction rates (bulk viscosity) etc.

<L

phenom

transport

K, n,¢ ...

thermodynamics

p(n, )




Starting from a 3-parameter model p = p(n, &, Y, = n./ny) and
stepping up the complexity, we may

« assume that reactions are fast enough that matter remains in
equilibrium, or

« slow enough that the composition is frozen, and/or

« add whatever other physics we may be interested in (neutrinos,
MHD, ...)
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next-gen GW

Looking ahead to Cosmic Explorer
and the Einstein Telescope,
observations may be limited by
theory/simulations.

Will bring added
obstacles/opportunities:

« What if gravity is not GR?

« Additional fields/dark matter?
Is there a “smoking gun” signature
of extra physics or are we just

dealing with “nuisance
parameters”?



