Lattice QCD computations of proton decay matrix elements

Yasumichi Aoki

RIKEN Center for Computational Science

2025.1.15 @INT

Proton Decay Matrix Elements project in PACS collaboration

Members:

- Eigo Shintani (Tsukuba)
- Ryutaro Tsuji (KEK)
- Yoshinobu Kuramashi (Tsukuba)

```
• YA
```

using PACS Wilson configurations on physical-mass ud, s quarks $V=64^4$ L=5.5 fm

1/a=2.3 GeV

a = 0.08 fm

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of Al technology

陽子崩壊 - 新実験計画

陽子崩壊 - 新実験計画

- Smoking Gun of New Physics
 - expected from GUTs
 - info contained in

 $1/\tau_p \propto$ [QCD param.] * [NewPhys. param]

陽子崩壊 - 新実験計画

- Smoking Gun of New Physics
 - expected from GUTs
 - info contained in

 $1/\tau_p \propto$ [QCD param.] * [NewPhys. param]

- New experiments are under preparation
 - HyperKamiokande in Japan
 - ~ x5 V of SuperKamiokande

- DUNE (Deep Underground Neutrino Experiment) in USA
 - Liquid Argon
 - sensitivity to Kaon

relevant form factors

QCD matrix element of nucleon decay

*
$$\langle \pi^0 | (ud)_{\Gamma} u_L | p \rangle = P_L [W_0 - \frac{i q}{m_p} W_1] u_p$$
 $\Gamma = R, L$

* indirect method: LO approximation of Wo in ChPT: Claudson, Wise, Hall, 1982

$$W_0[\langle \pi^0 | (ud)_R u_L | p \rangle] \simeq \frac{\alpha}{\sqrt{2}f} (1 + D + F)$$
$$W_0[\langle \pi^0 | (ud)_L u_L | p \rangle] \simeq \frac{\beta}{\sqrt{2}f} (1 + D + F)$$

f: pion decay constant

 $\begin{array}{c} \bullet \\ \bullet \\ & \langle 0 | (ud)_{R} u_{L} | p \rangle = \alpha P_{L} u_{p} \\ & \langle 0 | (ud)_{L} u_{L} | p \rangle = \beta P_{L} u_{p} \end{array}$

 $D + F = g_A : \text{ nucleon axial charge} \qquad \langle 0 | (ud)_L u_L | p \rangle = \beta P_L u_p$ * direct method: calculates the form factor W_o of $p \rightarrow PS$ matrix elements directly

* comparison given later...

p q e⁺

р

constraining GUT

- partial width $1/\tau(p \to \pi^0 + e^+) = \frac{m_p}{32\pi} \left[1 - \left(\frac{m_\pi}{m_p}\right)^2 \right]^2 \left| \sum_i C^i W_0^i(p \to \pi^0) \right|^2$
- given GUT and $W_0i(\mu)$ from lattice, $Ci(\mu)$ is constrained using experimental lower bound of proton lifetime
- $C^{i}(\mu)$ cancels μ dependence of $W_{0}^{i}(\mu)$, function GUT parameters:
 - m_X,... for heavy boson mediated dim 6 nucleon decay
 - m_c and spectrum of sparticles for colored higgs mediated dim 5 nucleon decay

complement to LHC

constraints on Cⁱ(μ) may be transcribed into constraints of GUT parameters

constraining GUT

- partial width $1/\tau(p \to \pi^0 + e^+) = \frac{m_p}{32\pi} \left[1 - \left(\frac{m_\pi}{m_p}\right)^2 \right]^2 \left| \sum_i C^i W_0^i(p \to \pi^0) \right|^2$
- given GUT and W₀ⁱ(μ) from lattice, Cⁱ(μ) is constrained using experimental lower bound of proton lifetime
- $C^{i}(\mu)$ cancels μ dependence of $W_{0}^{i}(\mu)$, function GUT parameters:
 - m_X,... for heavy boson mediated dim 6 nucleon decay
 - m_c and spectrum of sparticles for colored higgs mediated dim 5 nucleon decay

complement to LHC

constraints on Cⁱ(µ) may be transcribed into constraints of GUT parameters

DWF calculation of proton decay matrix elements after JLQCD 2000

- RBC & RBC/UKQCD collaborations
 - $N_f=2+1$ direct with AMA (2017)

• YA, T. Izubuchi, E. Shintani, A. Soni

DWF calculation of proton decay matrix elements

- RBC & RBC/UKQCD collaborations
 - $N_f=2+1$ direct with AMA (2017)
 - YA, T. Izubuchi, E. Shintani, A. Soni

DWF calculation of proton decay matrix elements

- RBC & RBC/UKQCD collaborations
 - N_f=2+1 direct with AMA (2017)
 - YA, T. Izubuchi, E. Shintani, A. Soni
- pros
 - DWF: renormalization is simple
 - AMA: statistically improved a lot
- cons
 - lightest pion ~ 330 MeV
 - linear extrapolation may eventually fail

DWF calculation of proton decay matrix elements

- RBC & RBC/UKQCD collaborations
 - N_f=2+1 direct with AMA (2017)
 - YA, T. Izubuchi, E. Shintani, A. Soni
- pros
 - DWF: renormalization is simple
 - AMA: statistically improved a lot
- cons
 - lightest pion ~ 330 MeV
 - linear extrapolation may eventually fail

Skirm chiral bag model (Martin-Stavenga 2016)

 drastic decrease towards chiral limit due to topological stabilization of proton

 drastic decrease towards chiral limit due to topological stabilization of proton

systematic error from the chiral extrapolation:

- compare w/ polynomial w/ higher oder
- seems small w/ observed good linearity
- · dangerous if strong non-linear effect persists

 drastic decrease towards chiral limit due to topological stabilization of proton

systematic error from the chiral extrapolation:

- compare w/ polynomial w/ higher oder
- seems small w/ observed good linearity
- · dangerous if strong non-linear effect persists

drastic decrease towards chiral limit due to topological stabilization of proton

0/0 total error systematic error from the chir ation:

- gner oder compare w/ polvr
- ed good linearity
- seems small 10
 danger aiming 10 ng non-linear effect persists

drastic decrease towards chiral limit due to topological stabilization of proton

0/0 total error systematic error from the chir ation:

- compare w/ polvr gner oder
- ed good linearity
- seems small 10
 danger aiming 10 ng non-linear effect persists

No extrapolation needed if one use physical point ensembles

Let's use them

Error budget of RBC/UKQCD 2017

IMPROVED LATTICE COMPUTATION OF PROTON DECAY ...

PHYSICAL REVIEW D 96, 014506 (2017)

TABLE IV. Table of the renormalized W_0 in the physical kinematics at 2 GeV in the \overline{MS} NDR scheme. The fourth column contains the relative error of the systematic uncertainties. " χ " comes from the chiral extrapolation given from three different fitting ranges as explained in the text. The " q^4 " and " a^2 " columns are the uncertainties of the higher-order correction than $\mathcal{O}(q^2)$ and the lattice artifact at $\mathcal{O}(a^2)$, respectively. The " m_s " column is the uncertainty coming from using the unphysical strange quark mass. Δ_Z and Δ_a are the errors of the renormalization factor and lattice scale estimate, respectively.

Lattice computation

- * Lattice gauge theory: gauge theory on discrete Euclidian space-time (lattice spacing a)
- * a regularization of gauge theory with manifest gauge invariance
- * with finite volume and "a", path integral can be performed using (super) computer
- * continuum limit a→o has to be performed, or discretization error must be estimated
- * $\mathcal{L}(a) = \mathcal{L}_{QCD} + a \sum_{i} c_i^{(5)} O_i^{(5)} + a^2 \sum_{i} c_j^{(6)} O_j^{(6)} + \cdots$
- * all O⁽⁵⁾ break chiral symmetry
 - * If the lattice action has chiral symmetry, no O(a) error! \rightarrow more continuum like
- * Lattice action with chiral symmetry available
 - * Domain wall fermions (DWF) (Kaplan, Furman-Shamin, overlap fermions (Neubergen)
 - * helps preserve continuum like structure of operator mixing
- * Wilson fermion breaks chiral symmetry, but, improvement make O(a) small

Lattice computation

- * Lattice gauge theory: gauge theory on discrete Euclidian space-time (lattice spacing a)
- * a regularization of gauge theory with manifest gauge invariance
- * with finite volume and "a", path integral can be performed using (super) computer
- * continuum limit a→₀ has to be performed, or discretization error must be estimated
- * $\mathcal{L}(a) = \mathcal{L}_{QCD} + a \sum_{i} c_{i}^{(5)} O_{i}^{(5)} + a^{2} \sum_{i} c_{j}^{(6)} O_{j}^{(6)} + \cdots$
- * all O⁽⁵⁾ break chiral symmetry
 - * If the lattice action has chiral symmetry, no O(a) error! \rightarrow more continuum like
- * Lattice action with chiral symmetry available
 - * Domain wall fermions (DWF) (Kaplan, Furman-Shamin, overlap fermions (Neubergen)
 - * helps preserve continuum like structure of operator mixing
- * Wilson fermion breaks chiral symmetry, but, improvement make O(a) small

- * direct method: W_o
 - * expensive on lattice
 - * exact
 - * milder non-linearity expected if any

- * indirect method: $a \& \beta \to W_o$
 - * cheap on lattice (meas. cost ~1/10)
 - * approximation
 - * chiral non-linearity could be an issue

- * direct method: W_o
 - * expensive on lattice
 - * exact
 - * milder non-linearity expected if any

- * indirect method: $a \& \beta \to W_o$
 - * cheap on lattice (meas. cost ~1/10)
 - * approximation
 - * chiral non-linearity could be an issue

- * direct method: W_o
 - * expensive on lattice
 - * exact
 - * milder non-linearity expected if any

- * indirect method: $a \& \beta \to W_o$
 - * cheap on lattice (meas. cost ~1/10)
 - * approximation
 - * chiral non-linearity could be an issue

- * direct method: W_o
 - * expensive on lattice
 - * exact
 - * milder non-linearity expected if any

- * indirect method: $a \& \beta \to W_o$
 - * cheap on lattice (meas. cost ~1/10)
 - * approximation
 - * chiral non-linearity could be an issue

how to calculate LEC's: α and β

* $\langle 0|O_{RL}|p\rangle = \alpha u_p$ $O_{RL} = (\overline{u^c} P_R d) \cdot P_L u$ (color indices contracted with ε^{ijk} to make singlet) $J_p = (\overline{u^c}\gamma_5 d) \cdot u$:proton interpolation operator $* \sum_{\vec{x}} \langle 0|O_{RL}(\vec{x},t) \cdot \overline{J}_p(0)|0\rangle = \sum_{\vec{x}} \langle 0|O_{RL}(\vec{x},t) \cdot \sum_i |i\rangle \frac{1}{2E_i} \langle i| \cdot \overline{J}_p(0)|0\rangle$ $= \sum_{i} e^{-E_{i}t} \frac{1}{2E_{i}} \langle 0|O_{RL}(0)|i\rangle \langle i|\overline{J}_{p}(0)|0\rangle$ (large t) $\rightarrow e^{-m_p t} \frac{1}{2m_p} \langle 0|O_{RL}(0)|p\rangle \langle p|\overline{J}_p(0)|0\rangle$ $* \sum_{\vec{x}} \langle 0|J_p(\vec{x},t) \cdot \overline{J}_p(0)|0\rangle \rightarrow e^{-m_p t} \frac{1}{2m_p} \langle 0|J_p(0)|p\rangle \langle p|\overline{J}_p(0)|0\rangle$ * linear combination of products of 3 quark propagators

* quark propagators: inverse of domain-wall fermion Dirac operator

* engineering the interpolation operator necessary to have good S/N

Direct method to calculate W₀

p

$$\langle \pi^{0} | O_{RL} | p \rangle = P_{L} [W_{0} - \frac{i q}{m_{p}} W_{1}] u_{p}$$

$$O_{RL} = (\overline{u^{c}} P_{R} d) \cdot P_{L} u$$

$$J_{p} = (\overline{u^{c}} \gamma_{5} d) \cdot u \qquad \text{:proton interpolation operator}$$

$$J_{\pi}^{0} = \frac{1}{\sqrt{2}} (\overline{u} \gamma_{5} u - \overline{d} \gamma_{5} d) \qquad \text{:pion interpolation operator}$$

* three point function with momentum injection to pion in proton's rest frame

$$\begin{split} \sum_{\vec{y}} \sum_{\vec{x}} e^{i\vec{p}\cdot(\vec{y}-\vec{x})} \langle 0|J_{\pi^{0}}(\vec{y},t') \cdot O_{RL}(\vec{x},t) \cdot \overline{J}_{p}(0)|0\rangle \\ (t' \gg t \gg 0) &\to e^{-E_{\pi}(t'-t)} e^{-m_{p}t} \frac{1}{2E_{\pi}} \frac{1}{2m_{p}} \langle 0|J_{\pi^{0}}|\pi^{0}(\vec{p})\rangle \langle \pi^{0}(\vec{p})|O_{RL}(0)|p\rangle \langle p|\overline{J}_{p}(0)|0\rangle \\ &\sum_{\vec{x}} \langle 0|J_{p}(\vec{x},t) \cdot \overline{J}_{p}(0)|0\rangle \quad \to \quad e^{-m_{p}t} \frac{1}{2m_{p}} \langle 0|J_{p}(0)|p\rangle \langle p|\overline{J}_{p}(0)|0\rangle \\ &\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle 0|J_{\pi^{0}}(\vec{x},t) \cdot J_{\pi^{0}}(0)|0\rangle \quad \to \quad e^{-E_{\pi}t} \frac{1}{2E_{\pi}} \langle 0|J_{\pi^{0}}(0)|\pi^{0}(\vec{p})\rangle \langle \pi^{0}(\vec{p})|J_{\pi^{0}}(0)|0\rangle \end{split}$$

* through some projection/subtraction, W_o is obtained.

*

*

*

Operator Property

- Operator *qqql*:
 - Lorentz symmetry: $(\overline{q^c}\Gamma q)(\overline{l^c}\Gamma' q)$
 - $SU(3)_c$ singlet: $\epsilon_{ijk}q^iq^jq^kl$
 - $SU(2) \times U(1)$ symmetry determines the relative coefficients of the operators in low energy Lagrangian.
 - relevant for nucleon decay: $q = u, d, s \ (m_c > m_N)$.
 - at QCD scale, lepton is treated trivially, so we are left with

$$\mathcal{O} = \epsilon_{ijk} (u^{iT} C \Gamma d^j) \Gamma' s^k \qquad \qquad \text{Lorentz spinor}$$

(u, d, s) simply labeling different flavors, not necessarily mean real flavors

- \bigcirc $\Gamma\Gamma'$ Lorentz structure variation with fixed flavor ordering:
 - notation: S = 1, $P = \gamma_5$, $V = \gamma_\mu$, $A = \gamma_\mu \gamma_5$, $T = \sigma_{\mu\nu}$:
 - \mathcal{P}^- : SS, PP, AA, VV, TT.
 - \mathcal{P}^+ : SP, PS, AV, VA, $T\tilde{T}$.

Operator

$(\Gamma\Gamma')_{uds} = \epsilon_{ijk} (u^{iT} C \Gamma d^j) \Gamma' s^k$

- \mathcal{P}^- operators

 - $(PP)_{uds}, (PP)_{dsu}, (PP)_{sud}$
 - $\bigcirc (AA)_{uds}$
 - $\textcircled{}~(VV)_{uds}$
 - $(TT)_{uds}$
- S: switching $(u \leftrightarrow d)$: $(\Gamma \Gamma')_{dus} = \pm (\Gamma \Gamma')_{uds}$
- Any vector, tensor indices can be eliminated.
 - $\Gamma(\Gamma') = S, P \text{ or } L, R \text{ do everything:}$ common form in the low energy effective Lagrangian \rightarrow Weinberg PRL 43 (1979) 1566.
- $(SS)_{uds} + (SS)_{dsu} + (SS)_{sud} + (PP)_{uds} + (PP)_{dsu} + (PP)_{sud} = 0 \\$
- $(\Gamma\Gamma)_{uds}$ with (SS, PP, AA, VV, TT) can be used as a complete set: We use them for the operator renormalization.
- Similar property for \mathcal{P}^- .

Renormalization: mixing

$\Gamma \Gamma'$		
	\mathcal{S}^-	\mathcal{S}^+
\mathcal{P}^-	SS, PP, AA	VV, TT
\mathcal{P}^+	SP, PS, AV	VA , $T ilde{T}$

$$\begin{pmatrix} SS\\PP\\AA \end{pmatrix}_{ren} = \begin{pmatrix} Z'_{ND}{}^{ij} \\ PP\\AA \end{pmatrix}_{latt}, \begin{pmatrix} SP\\PS\\-AV \end{pmatrix}_{ren} = \begin{pmatrix} Z'_{ND}{}^{ij} \\ PS\\-AV \end{pmatrix}_{latt} \begin{pmatrix} SP\\PS\\-AV \end{pmatrix}_{latt}$$

$$\begin{pmatrix} R \cdot L \\ L \cdot L \\ A \cdot LV \end{pmatrix}_{ren} = \begin{pmatrix} Z_{ND}^{ij} \end{pmatrix} \begin{pmatrix} R \cdot L \\ L \cdot L \\ A \cdot LV \end{pmatrix}_{latt}, \begin{pmatrix} R \cdot R \\ L \cdot R \\ A \cdot RV \end{pmatrix} : \text{similar.}$$

• $(\Gamma\Gamma')_{udu} \equiv \epsilon_{ijk} (\bar{u}^{ci} \Gamma d^j) \Gamma' u^k$ is renormalized in the same way.

• Wilson fermion (Richards, Sachrajda, Scott): $(RL)_{ren} = Z(RL)_{latt} + \frac{\alpha_s}{4\pi} Z_{mix} (LL)_{latt} + \frac{\alpha_s}{4\pi} Z'_{mix} (A \cdot LV)_{latt}$ no other terms appear at any order.

RI/MOM scheme renormalization

$$G^{a}(x_{0}, x_{1}, x_{2}, x_{3}) = \langle \mathcal{O}^{a}_{uds}(x_{0})\bar{u}(x_{1})\bar{d}(x_{2})\bar{s}(x_{3})\rangle.$$

• *a* labels chiral structure type $\Gamma\Gamma'$.

$$\mathcal{O}^{a}_{uds\ ren} = Z^{ab}_{ND} O^{b}_{uds\ latt}$$

Momentum p for all three external quarks, amputate it with three quark propagators:

$$\Lambda^{a}(p^{2}) = \text{F.T. } G^{a}(0, x_{1}, x_{2}, x_{3})|_{Amp}.$$

 \bigcirc Renormalization condition reads at scale p,

$$P^{a}_{ijk \ \beta\alpha \ \delta\gamma} \cdot Z^{-3/2}_{q} Z^{bc}_{ND} \Lambda^{c}_{ijk \ \alpha\beta \ \gamma\delta} = \delta^{ab},$$

$$M^{ab} = P^a_{ijk \ \beta\alpha \ \delta\gamma} \cdot \Lambda^b_{ijk \ \alpha\beta \ \gamma\delta} \to Z^{3/2}_q (Z^{-1}_{ND})^{ab}.$$

Operator Mixing ?

 $\beta = 0.87$ DBW2 glue ($a^{-1} = 1.3$ GeV), and DWF with $L_s = 12$ and $M_5 = 1.8$: $m_{\rm res} \simeq 1.6 MeV$.

Small mass dependence.

• Off-diagonal elements negligible. \rightarrow No mixing.
Treatment of Z_q

$$M^{LL,LL} \rightarrow Z_q^{3/2}/Z_{ND}^{LL,LL}.$$

$$P_A\Lambda_A \rightarrow Z_qZ_A^{-1}.$$

$$(P_A\Lambda_A)^{3/2}/M^{LL,LL} \rightarrow Z_{ND}^{LL,LL}/Z_A^{3/2}.$$

$$Z_A = 0.7798(5) \leftarrow \frac{\langle A_{\mu}P \rangle}{\langle A_{\mu}P \rangle}$$

$$Z_A \text{ has no scale dependence (Null anomalous dimension for } A_{\mu}).$$

$$(P_A\Lambda_A)^{3/2}/M^{LL,LL} \text{ has same}$$

$$(P_A\Lambda_A)^{3/2}/M^{LL,LL} \text{ has same}$$

$$(p_a)^2$$

• $(P_A \Lambda_A)^{3/2} / M^{LL,LL}$ has same scale dependence as Z_{ND} and possible $O(a^2)$ discretization error.

Matching to \overline{MS} (NLO)

$$\mathcal{O}^{\overline{MS}}(\mu) = \underbrace{U^{\overline{MS}}(\mu; p) \frac{Z^{\overline{MS}}(p)}{Z^{RI}(p)} Z^{RI}(p)}_{Z_{total}(\mu)} \mathcal{O}^{latt}$$

- 2-loop anomalous dimension: Nihei, Arafune (94)
- 1-loop matching (finite part): This work
- NPR: This work
- The product is independent of p. Let's set $\mu = 1/a$.

$$Z_A = 0.7798(5) \longrightarrow Z_{total}^{LL,LL}(\mu = 1/a) = 0.73(1).$$

3

 $\beta = 0.87$ DBW2 glue ($a^{-1} = 1.3$ GeV), and DWF with $L_s = 12$ and $M_5 = 1.8$:

m_f→0

Recent improvement in RI/MOM renormalization

issues

- p must be large enough, to control perturbation theory
- p must be small enough, to control lattice artifact (pa)^n
- $\Lambda_{QCD} \ll p \ll 1/a$ Window problem
- solution
 - super fine lattice
 - perturbation theory: higher order
 - scheme: less contamination of low energy physics

NLO→NNLO RI/SMOM

Proton Decay Matrix Elements projects

use of **PACS** ensemble @ physical pion mass

N_f=2+1 PACS ensemble

- Iwasaki gauge β =1.82
- stout smeared Wilson fermion: $\rho=0.1$, N=6
- ud and s quarks are on physical point
- 1/a = 2.333(18) GeV
- 64⁴ is mostly used in this study: $m_{\pi}L=3.8$

statistical note • ~100 configurations • for each config • matrix elements: **AMA** • one exact and • 256 sloppy solves • NPR: • single point source

use of **PACS** ensemble @ physical pion mass

use of **PACS** ensemble @ physical pion mass

$$+\frac{\alpha_s}{4\pi}Z'_{mix}\mathcal{O}^{\text{latt}}_{\gamma_{\mu}L}(a), \qquad (48)$$

RI/MOM 3q vertex matrix: comparison with DWF

off-diagonal larger than DWF, but, $\leq 1\% \rightarrow$ treated as negligible below

- ratio of 3q, 2q vertex function $\rightarrow Z_{ND}/Z_A^{3/2}, Z_{ND}/Z_V^{3/2}$
 - input Z_V or Z_A from SF scheme $\rightarrow Z_{PD}$

• ratio of 3q, 2q vertex function $\rightarrow Z_{ND}/Z_A^{3/2}, Z_{ND}/Z_V^{3/2}$

- input Z_V or Z_A from SF scheme $\rightarrow Z_{PD}$
- DWF (RBC/UKQCD) [2006~2017]

- wave function renormalization (bilinear) uses exceptional momenta ($q_{\mu}=0$)
 - sensitive to the change of m_f and SSB \rightarrow source of systematic error

- ratio of 3q, 2q vertex function $\rightarrow Z_{ND}/Z_A^{3/2}, Z_{ND}/Z_V^{3/2}$
 - input Z_V or Z_A from SF scheme $\rightarrow Z_{PD}$
- DWF (RBC/UKQCD) [2006~2017]
 - wave function renormalization (bilinear) uses exceptional momenta ($q_{\mu}=0$)
 - sensitive to the change of m_f and SSB \rightarrow source of systematic error
 - 3 quark op uses non-exceptional momentum

- ratio of 3q, 2q vertex function $\rightarrow Z_{ND}/Z_A^{3/2}, Z_{ND}/Z_V^{3/2}$
 - input Z_V or Z_A from SF scheme $\rightarrow Z_{PD}$
- DWF (RBC/UKQCD) [2006~2017]
 - wave function renormalization (bilinear) uses exceptional momenta ($q_{\mu}=0$)
 - sensitive to the change of m_f and SSB \rightarrow source of systematic error
 - 3 quark op uses non-exceptional momentum
- utilize RI/SMOM wave function renormalization: A_{μ}, V_{μ}
 - ⇒ proton decay SMOM schemes: SMOM, SMOM_{γ_{μ}}
 - had expected effect on bilinear and 4q operators
 - MS matching w/ NLO perturbation theory
 - totally: 2x2 = 4 schemes

renormalization

- ratio of 3q, 2q vertex function $\rightarrow Z_{ND}/Z_A^{3/2}, Z_{ND}/Z_V^{3/2}$
 - input Z_V or Z_A from SF scheme $\rightarrow Z_{PD}$
- DWF (RBC/UKQCD) [2006~2017]
 - wave function renormalization (bilinear) uses exceptional momenta ($q_{\mu}=0$)
 - sensitive to the change of m_f and SSB \rightarrow source of systematic error
 - 3 quark op uses non-exceptional momentum
- utilize RI/SMOM wave function renormalization: A_{μ}, V_{μ}
 - \rightarrow proton decay **S**MOM schemes: SMOM, SMOM_{γ_{μ}}
 - had expected effect on bilinear and 4q operators
 - $\overline{\text{MS}}$ matching w/ NLO perturbation theory
 - totally: 2x2 = 4 schemes

SMOM schemes: fully utilize **non-exceptional** momenta

A test of non-exceptional mom Λ_A - Λ_V : RBC/UKQCD [PRD 2008]

* The success created a very good motivation to invest in non-exceptional momenta

MS Z(2GeV) from RI/SMOM schemes ver.1

- $Z_{LL}(MSb, 2GeV) = 0.98$ (6)
- $Z_{RL}(MSb, 2GeV) = 0.98$ (7)

MS Z(2GeV) from RI/SMOM schemes improved

- $Z_{LL}(MSb, 2GeV) = 0.98$ (6)
- $Z_{RL}(MSb, 2GeV) = 0.98$ (7)

Improvement:

[Tsuji et al Lattice 2024]

- (improved stat.)
- use of SYM3q scheme
 - ➡ NNLO available
- remove (pa)² and higher
- remove non-pert. eff.
 - fit variation
- estimate PT truncation
 - ➡ several interm. scheme

•
$$Z_{\overline{\text{MS}}}^{LL} = 1.018(6)_{\text{stat}}(37)_{\text{sys}}$$

•
$$Z_{\overline{\text{MS}}}^{RL} = 1.016(5)_{\text{stat}}(41)_{\text{sys}}$$

• note: $Z_{LL}(MSb, 2GeV) = Z_{RL}(MSb, 2GeV) \approx 1 \rightarrow bare ME \approx ren. ME$

MS Z(2GeV) from RI/SMOM schemes improved

- Z_{LL}(MSb, 2GeV) = 0.98 (6)
- Z_{RL}(MSb, 2GeV) = 0.98 (7)

[Tsuji et al Lattice 2024]

- (improved stat.)
- use of SYMp me
 reliminary
 preliminary
 and higher

- fit variation
- estimate PT truncation
 - ➡ several interm. scheme

•
$$Z_{\overline{\text{MS}}}^{LL} = 1.018(6)_{\text{stat}}(37)_{\text{sys}}$$

•
$$Z_{\overline{\text{MS}}}^{RL} = 1.016(5)_{\text{stat}}(41)_{\text{sys}}$$

• note: $Z_{LL}(MSb, 2GeV) = Z_{RL}(MSb, 2GeV) \simeq 1 \rightarrow bare ME \simeq ren. ME$

NPR schemes and matching - utilizing RI/MOM

NPR schemes and matching - utilizing RI/MOM

three quark vertex

 \cdot original:

 $p_1 = p_2 = p_3 = p, \ q = 3p, \ \mu^2 = p^2$ (non-exceptional) [RBC

[RBC 2006] NLO

• symmetric 3q:

 $\cdot p_1 + p_2 + p_3 = q = 0, p_1^2 = p_2^2 = p_3^2 = p^2 = \mu^2$ (exceptional) [Gracey 2013] NNLO

· SMOM

 $p_1^2 = p_2^2 = p_3^2 = q^2 = \mu^2$ NEW! (yet) (non-exceptional) [Kniehl, Veretin 2023] NNLO

· bilinear (q-qbar) vertex for wave function renormalization

· RI/MOM [Martinelli et al 1993, 1995]

 $\cdot p_1 = p_2, q = 0$ (exceptional)

· RI/SMOM (symmetric momentum configuration)

 $\cdot p_1^2 = p_2^2 = q^2$ (non-exceptional)

[RBC/UKQCD 2007]

. two schemes: *SMOM* and *SMOM*_{γ_{μ}} [Sturm et al 2009] NLO, [Almeida, Sturm 10] NNLO

proton decay LEC: α, β

- α consistent with earlier DWF computation w/ long chiral extrapol.
- β as well
- no big surprise happening when going down to physical ud mass

proton decay form factor W₀ for pion final state

- $|W_0| \sim 20\%$ smaller than DWF (with a long chiral extrapolation) at q²=0
- consistent with sys. error ! no big surprise found for $m_f \rightarrow m_{ud}$
- 10% total error is not a dream...

RBC/UKQCD study

Phys. Rev. D 105, 074501 (2022)

Advantage

- New renormalization scheme (subtraction point)
 - Matching available one order higher (NNLO) : Gracey (2012)
 - \rightarrow reduced systematic error ~1%
- Two lattice spacings → continuum limit
- Chiral symmetry

Disadvantage

• Coarse lattice $a=0.2, 0.14 \text{ fm} \rightarrow \text{large error after continuum extrapolation } \sim 20\%$

JUN-SIK YOO et al.

PHYS. REV. D 105, 074501 (2022)

TABLE VIII. Results for the form factors $W_{0,1}$ on the two ensembles and in the continuum limit at the two kinematic points $Q^2 = 0$ (first line) and $Q = -m_{\mu}^2$ (second line) renormalized to $\overline{\text{MS}}(2 \text{ GeV})$. The first uncertainty is statistical, the second is systematic due to excited states, and the third is the uncertainty of the continuum extrapolation.

		$W_0[{ m GeV^2}]$		
	24ID	32ID	Cont.	
$\langle \pi^+ (ud)_L d_L p \rangle$	0.1032(86)(26) 0.1050(87)(36)	0.1252(48)(50) 0.1271(49)(50)	0.151(14)(8)(26) 0.153(14)(7)(26)	
$\langle \pi^+ (ud)_L d_R p \rangle$	-0.1125(78)(41) -0.1139(78)(45)	-0.134(5)(11) -0.136(5)(12)	$\begin{array}{c} -0.159(15)(20)(25) \\ -0.161(15)(20)(26) \end{array}$	

Phys. Rev. D 105, 074501 (2022)

Blue solid symbols are the current best estimate

FIG. 14. Comparison of our results ("NEW") for the proton decay amplitudes $W_0(0)$ computed directly (filled symbols) and indirectly (open symbols) to previous determinations [38,40,42]. All results are renormalized to the $\overline{\text{MS}}(2 \text{ GeV})$ scheme.

Phys. Rev. D 105, 074501 (2022)

FIG. 14. Comparison of our results ("NEW") for the proton decay amplitudes $W_0(0)$ computed directly (filled symbols) and indirectly (open symbols) to previous determinations [38,40,42]. All results are renormalized to the $\overline{\text{MS}}(2 \text{ GeV})$ scheme.

Blue solid symbols are the current best estimate

LEC ?

Phys. Rev. D 105, 074501 (2022)

FIG. 14. Comparison of our results ("NEW") for the proton decay amplitudes $W_0(0)$ computed directly (filled symbols) and indirectly (open symbols) to previous determinations [38,40,42]. All results are renormalized to the $\overline{\text{MS}}(2 \text{ GeV})$ scheme.

Phys. Rev. D 105, 074501 (2022)

FIG. 14. Comparison of our results ("NEW") for the proton decay amplitudes $W_0(0)$ computed directly (filled symbols) and indirectly (open symbols) to previous determinations [38,40,42]. All results are renormalized to the $\overline{\text{MS}}(2 \text{ GeV})$ scheme.

No surprise happened at physical point !

Preliminary PACS results of proton decay FF W_0 (\overline{MS} , 2GeV)

- First Wilson fermion physical point (preliminary) results
- compared with DWF (RBC 2017, RBC 2022(physical point, continuum))

- (L)QCD parity invariance:
 - $W_0^{LR} = W_0^{RL}$
 - $W_0^{RR} = W_0^{LL}$
- PACS yet to do:
 - discretization error est.
 - no large error expected
- Consistent with DWF

Summary and outlook

Summary and outlook

- \cdot proton decay FFs till 2017 may suffer from chiral extrapolation error
- \cdot Now we can do computations on physical mass (no extrapolation)
 - $\cdot \operatorname{aiming}$ to remove final loose end
- Using PACS Wilson ensemble
 - RI/SMOM non-perturbative renormalization schemes applied
 - \cdot robust against SSB and mass effect

· W₀ (p $\rightarrow \pi^0$), LEC a and β consistent with DWF(2017) [preliminary] · RBC/UKQCD with domain wall fermion

- New renormalization scheme help reduce the systematic error
- · W₀ (p $\rightarrow \pi^{0}$), LEC α and β consistent with DWF(2017)

 $\cdot \rightarrow$ No chiral limit surprise! $\leftarrow \rightarrow$ Martin & Stavenga (skirm chiral bag) PACS analysis to be finalized, envisioning comparable /better accuracy plan to use PACS10c configurations w/ continuum scaling study

acknowledgements

- \cdot Thanks for various help from other PACS members esp
 - · Takeshi Yamazaki, Shoichi Sasaki, Natsuki Tsukamoto
- Used Computers
 - · K-computer,
 - · Oakforest PACS,
 - Cygnus,
 - · Supercomputer Fugaku,
 - ·Wisteria/BDEC-01
- Programs
 - Multidisciplinary Cooperative Research Program in CCS Tsukuba
 - ·HPCI: hp200062, hp200167, hp210112, hp220079, hp230199

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of AI technology

JPMXP1020230409

Thank you very much for your attention

appendix

use of RI/SMOM schemes [for PACS analysis]

- original NPR for proton decay
 - wave function renormalization from (axial) vector currents with exceptional momentum configuration
 - which is sensitive to low energy parameters like mass
 - RI/MOM defined $m \rightarrow 0$; we have only physical point $0 \simeq m_{ud} \ll m_s$
- new attempt using SMOM schemes for wave function
 - 3q vertex has not been using exceptional momenta
 - now no exceptional momenta at all
 - safer to use with physical point ensemble
- matching from SMOM schemes to MSb to NLO available
 - (wave function renormalization known to NNLO, 3q unchanged)

RI/SMOM procedure for proton decay operators

- calculate 3q vertex: same momentum p injected from all quark legs
- cancel the wave function renormalization by dividing with local vector or axialvector vertex in SMOM schemes with proper power
- this will provide: $Z_{ND}/Z_A^{3/2}$, $Z_{ND}/Z_V^{3/2}$
- take Z_A, Z_V factor away by inputting those calculated in SF scheme
- Z_{ND} (SMOM) matched to MSb and ran to 2 GeV by NLO PT
- final value and error estimate:
 - error from truncation of PT, (pa)², contamination of SSB
 - center = (max+min)/2, error = (max-min)/2
 - max, min determined in
 - (pa)² linear extrapolation: 4 vales: (A,V) x (SMOM, SMOMγμ)
 - scatter of all data in the window 2-3 GeV

Lattice setup: input and output

- * 2+1 flavor lattice QCD computation parameters:
 - * gauge coupling, mud(degenerate), ms
 - * Monte Carlo simulations are done at $m_s^{(sim)} \approx m_s^{(phys)}$, $m_{ud}^{(sim)} > m_s/5$
 - * small mass is demanding: cost ~1/m^x: X>1
 - * at a fixed gauge coupling, tune m's so that it reproduces ratios of π , K, Ω -mass.
 - * π K: quark mass dependence best known: NNLO ChPT / analytic also tested
 - * Ω (sss): no pion chiral logs at NLO: safe to apply linear chiral extrapolation
- * all other quantities are predictions, ex: [RBC/UKQCD PRD78(08)114509]
 - * $f_{r=124.1(6.9)}MeV \leftrightarrow 130.7(0.1)(0.36)[exp], f_{K}/f_{r=1.205(18)} \leftrightarrow 1.223(12)[exp]$
 - * one lattice spacing, estimate of O(a²) systematic error was added.
 - * quark masses, B_K...
 - continuum limit results available: [RBC/UKQCD PRD83(11)074508, PRD84(11)014503]

proton decay form factor W₀ for pion final state

Relevant form factor $W_0 < \pi^0 |(ud)_R u_L|_p > as an example$

- $|W_0| \sim 20\%$ smaller than DWF (with a long chiral extrapolation) at $q^2=0$
- consistent with sys. error ! no big surprise found for $m_f \rightarrow m_{ud}$
- 10% total error is not a dream...