MC-EKRT: A 3-d Monte Carlo implementation of the EKRT initial state

Jussi Auvinen

University of Jyväskylä

in collaboration with Mikko Kuha, Kari J. Eskola, Henry Hirvonen, Yuuka Kanakubo, and Harri Niemi

arXiv:2406.17592 and arXiv:2407.01338

INT, Seattle July 29, 2024

J. Auvinen (JYU)

Motivation

<u>Goal</u>: Perform relativistic hydrodynamics simulations of A + A heavy ion collisions to determine QCD matter properties by comparing to LHC & RHIC data

 \Rightarrow Need a realistic description of the initial state

We would like to extract such description from perturbative QCD

EKRT framework

- *E_T* production in *p* + *p* can be explained as a production of multiple independent few-GeV partons (aka minijets); diverges at *p_T* → 0, need a cutoff *p_T* ≥ *p_{T0}*
- In high-energy A + A, minijet multiplicity can be regulated dynamically
- Original EKRT idea: minijet production saturates at low p_T when higher order processes $3 \rightarrow 2$, $4 \rightarrow 2$, etc. become as important as $2 \rightarrow 2$
 - \Rightarrow cutoff p_{T0} obtained from

$$N_{AA}(p_0,\sqrt{s_{NN}},y\sim 0)rac{\pi}{p_{T0}^2}\propto \pi R_A^2 \Rightarrow p_{\mathrm{sat}}=p_{T0}(\sqrt{s_{NN}},A)$$

Why Monte Carlo?

- Extension to higher rapidities
- Energy and baryon number conservation
- Fluctuations in minijet production

Monte Carlo EKRT (MC-EKRT)

Triggering condition for A + B: for any nucleon pair $a \in A$ and $b \in B$,

$$|ar{s}_b - ar{s}_a| = |ar{b}_{ab}| \leq \sqrt{rac{\sigma_{ ext{inel}}^{NN}(s_{NN})}{\pi}}.$$

MC-EKRT

Once the nuclear collision happens, we go through all nucleon-nucleon pairs a + b. The number of minijet pairs (dijets) produced in a + b is sampled from the Poissonian probability

$$P_n^{ab}(\bar{b}_{ab}) = \frac{1}{n!} \left(T_{NN}(\bar{b}_{ab}) \sigma_{\text{jet}}^{ab} \right)^n e^{-T_{NN}(\bar{b}_{ab}) \sigma_{\text{jet}}^{ab}}$$

where σ_{jet}^{ab} is the inclusive minijet production cross section and $T_{NN}(\bar{b})$ is the convolution of the two Gaussian nucleon thickness functions $T_N(\bar{s})$ and thus also a Gaussian:

$$T_{NN}(\bar{b}_{ab}) = rac{1}{4\pi\sigma_N^2}\exp\left(-rac{|ar{b}_{ab}|^2}{4\sigma_N^2}
ight),$$

where the nucleon width parameter $\sigma_N(s_{NN})$ is extracted from the HERA J/Ψ photo-production cross sections. The production point \bar{s} for each minijet candidate is then sampled from $T_N(\bar{s} - \bar{s}_a)T_N(\bar{s} - \bar{s}_b)$

The differential hard parton production cross section in leading order is

$$\frac{\mathrm{d}\sigma_{\mathrm{jet}}^{ab}}{\mathrm{d}p_T^2\,\mathrm{d}y_1\,\mathrm{d}y_2} = \frac{\kappa}{\sum_{ijkl}} x_1 f_i^{a/A}(\{\bar{s}_a\}, x_1, Q^2) x_2 f_j^{b/B}(\{\bar{s}_b\}, x_2, Q^2) \frac{\mathrm{d}\hat{\sigma}^{ij \to kl}}{\mathrm{d}\hat{t}}$$

with the spatially dependent nPDF of the proton a in nucleus A defined as

$$f_i^{a/A}(\{\bar{s}_a\}, x, Q^2) \equiv r_i^{a/A}(\{\bar{s}_a\}, x, Q^2) f_i^p(x, Q^2) r_i^{a/A}(\{\bar{s}_a\}, x, Q^2) = \theta(c_A) \left[1 + \log(1 + c_A \hat{T}_A^a) \right] + \frac{\theta(-c_A)}{1 - c_A \hat{T}_A^a}$$

Here θ is the step function, $\hat{T}^a_A(\{\bar{s}_a\}) = \sum_{a'\neq a}^A T_{NN}(\bar{b}_{aa'})$ is the average overlap of nucleon a and nucleus A and $c_A(x, Q^2)$ is chosen so that the average over many nucleus configurations $\{A\}$ returns the global averaged nuclear modification:

$$R_i^A(x,Q^2) = \left\langle \frac{1}{A} \sum_{a} r_i^{a/A}(\{\bar{s}_a\},x,Q^2) \right\rangle_{\{A\}}$$

J. Auvinen (JYU)

Nuclear density effect on the snPDF gluon modification

Nuclear density effect on the dijet production probability

Minijet filtering

We define the minijet formation time as $\tau = \frac{1}{p_T}$, so the dijets with highest p_T are created first and the factorization is preserved; the later forming candidate dijets will be compared against the ones accepted earlier

The first filter to be applied is <u>saturation</u>: The candidate cannot be formed in the neighborhood of any earlier accepted dijet

$$|\bar{s}^{\text{cand}} - \bar{s}^{\text{acc}}| \leq \frac{1}{\kappa_{\text{sat}}} \left(\frac{1}{p_T^{\text{acc}}} + \frac{1}{p_T^{\text{cand}}}\right)$$

Minijet filtering

Nucleon-level filters (applied simultaneously, after the saturation filter):

• <u>Momentum conservation</u>: The parent nucleons must have enough momentum left for the production of the candidate

$$x_1 \leq 1 - \sum_{i=1}^n x_a^{(i)} ext{ and } x_2 \leq 1 - \sum_{j=1}^m x_b^{(j)}$$

where $x_a^{(i)}$ and $x_b^{(j)}$ represent the earlier subtracted momentum fractions from nucleons *a* and *b*, respectively

• Valence quark conservation: If the candidate minijet process involves a valence quark of a specific flavor from either of the parent nucleons, the nucleon must still have valence quarks of that flavor remaining

 $x \, [\mathrm{fm}]$

Dominant QCD mechanism: pQCD minijets + saturation

In all cases, the filter effects start at $p_{\mathcal{T}}>3$ GeV – well before the cutoff value $p_{\mathcal{T}0}=1$ GeV

J. Auvinen (JYU)

Energy density profile from minijets

Different minijets are formed at different times $\tau = \frac{1}{p_T}$, but we would like to start our hydro simulation at a constant proper time τ_{init}

⇒ Free stream all minijets to a common time $\tau_{\text{init}} \ge \tau_0 = \frac{1}{p_{T0}}$, (since minijet $p_T \ge p_{T0}$). In this study we use $\tau_{\text{init}} = \tau_0 = 0.2$ fm

For simplicity we set the longitudinal starting coordinate $z_0 = 0$ fm at t = 0 fm, so for any minijet *i* the rapidity coincides with the spacetime rapidity, $y_i = \eta_{s,i}$.

In hyperbolic coordinates the momentum 4-vector for minijet i at location (τ,η_{s}) is

$$p_i^{\mu} = \left(p_{\mathcal{T},i} \cosh(y_i - \eta_s), \bar{p}_{\mathcal{T},i}, \tau^{-1} p_{\mathcal{T},i} \sinh(y_i - \eta_s)\right)$$

and the energy-momentum tensor component $\mathcal{T}^{lphaeta}$ given by the minijets is

$$T^{\alpha\beta}(\tau, \bar{x}_{\perp}, \eta_{s}) = \sum_{i} \int d^{2}\bar{p}_{T} dy \frac{p^{\alpha}p^{\beta}}{p^{\tau}} \frac{1}{\tau} \cosh(y - \eta_{s})$$
$$\cdot \delta^{(2)}(\bar{x}_{\perp} - \bar{x}_{\perp,i}) \delta(\eta_{s} - \eta_{s,i}) \delta^{(2)}(\bar{p}_{T} - \bar{p}_{T,i}) \delta(y - \eta_{s})$$

where $\delta(y - \eta_s)$ enforces the longitudinal scaling flow $y = \eta_s$.

J. Auvinen (JYU)

Hydrodynamic simulations are run on a 3-d grid. However, simply depositing the energy of each minijet into a single cell would create too spiky initial profile, so we need a scheme to distribute the energy of a minijet over multiple cells

Similar to nucleons, here we represent each minijet i with a 3-d Gaussian distribution

$$g_i(\bar{x}_{\perp},\eta_s;\boldsymbol{\sigma}_{\perp},\boldsymbol{\sigma}_{\parallel}) = \frac{1}{N} \exp\left(-\frac{1}{2} \frac{(\bar{x}_{\perp} - \bar{x}_{\perp,i})^2}{\boldsymbol{\sigma}_{\perp}^2}\right) \exp\left(-\frac{1}{2} \frac{(\eta_s - \eta_{s,i})^2}{\boldsymbol{\sigma}_{\parallel}^2}\right)$$

where the normalization factor N is the sum of the weights g_i over the hydro cells.

We can now replace the spatial delta functions $\delta^{(2)}(\bar{x}_{\perp} - \bar{x}_{\perp,i})\delta(\eta_s - \eta_{s,i})$ with $g_i(\bar{x}_{\perp}, \eta_s; \sigma_{\perp}, \sigma_{\parallel})$ in the expression for $T^{\alpha\beta}$.

J. Auvinen (JYU)

In these first proof-of-principle studies, we use an event-averaged initial state and hence keep only the $T^{\tau\tau}$ component of the energy-momentum tensor:

Single Pb+Pb 5 TeV event, $\sigma_{\perp}=$ 0.15 fm, $\sigma_{\parallel}=$ 0.15

Single Pb+Pb 5 TeV event, $\sigma_{\perp}=0.40$ fm, $\sigma_{\parallel}=0.15$

Event-averaged initial profile

We run the full (3+1)-d hydrodynamics simulations for one average profile per centrality class. The averaging procedure is as follows:

- Calculate energy density *e* for each event as described before
- For each event, convert energy density to entropy density using the equation of state
- Average over the e-by-e entropy densities
- Convert the average entropy density back to energy density

This procedure preserves the centrality dependence of e-by-e simulations as closely as possible

(3+1)-d hydrodynamics

E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, PRC 90, 044904 (2014)

$$\partial_\mu T^{\mu
u} = 0$$

 $T^{\mu
u} = e u^\mu u^
u - P(g^{\mu
u} - u^\mu u^
u) + \pi^{\mu
u}$

- Initial e from minijets, no initial transverse velocity or shear viscosity
- During the hydro evolution, the shear viscosity coefficient over entropy density is either constant $\eta/s = 0.16$ or 0.20, or temperature dependent (param1 from arxiv:1505.02677)
- No bulk viscosity
- Equation of state: s95p-PCE-v1: partial chemical equilibrium with chemical freeze-out at T_{chem} = 150 MeV
 P. Huovinen and P. Petreczky, NPA 837, 26 (2010)
- Kinetic freezeout at $T_{\rm kin}=130$ MeV

J. Auvinen (JYU)

Charged particle multiplicity vs pseudorapidity

ALICE $N_{\rm ch}$ pseudorapidity data at 5 TeV from arxiv:1612.08966 ALICE $N_{\rm ch}$ $|\eta| < 0.5$ data at 5 TeV from arxiv:1512.06104

J. Auvinen (JYU)

Charged particle multiplicity vs pseudorapidity

ALICE $N_{\rm ch}$ pseudorapidity data at 2.76 TeV from arxiv:1304.0347 and arxiv:1509.07299 ALICE $N_{\rm ch}$ $|\eta| < 0.5$ data at 2.76 TeV from arxiv:1012.1657

J. Auvinen (JYU)

Charged particle multiplicity vs pseudorapidity

PHOBOS $N_{\rm ch}$ pseudorapidity data at 200 GeV from arxiv:nucl-ex/0210015

J. Auvinen (JYU)

Effect of nucleon-level conservation laws

Effect of nucleon-level conservation laws

Charged particle v_2 vs pseudorapidity

ALICE data from arXiv:1605.02035 PHOBOS data from arxiv:nucl-ex/0407012

J. Auvinen (JYU)

E-by-E simulations with nucleon substructure

Nucleon thickness function with N_h hotspots (we'll use $N_h = 3$):

$$T_N(\bar{s}) = \frac{1}{N_h} \sum_{i=1}^{N_h} \frac{1}{2\pi\sigma_h^2} \exp\left(-\frac{|\bar{s} - \bar{s}_i^h|^2}{2\sigma_h^2}\right)$$

where the hotspot locations \bar{s}^h are sampled from a 2-d Gaussian with a width $\sigma_s \Rightarrow$ total nucleon width $\sigma_N^2 = \sigma_s^2 + \sigma_h^2$

The triggering condition for A + B collision is now based on minimum distance d_{\min}^{HS} between a hotspot in A and a hotspot in B:

$$d_{\min}^{\mathrm{HS}} < \sqrt{rac{\sigma_{\mathrm{HS}}}{\pi}}$$

where the effective hotspot cross section $\sigma_{\rm HS}$ is tuned to reproduce the same nucleus-nucleus cross section as the hotspot-less case with $\sigma_{\rm inel}^{NN}$.

J. Auvinen (JYU)

E-by-E simulations with nucleon substructure

The final observables are obtained using neural networks ${}_{[arXiv:2303.04517]}$ trained on a (2+1)-d fluid dynamics model ${}_{[arXiv:2206.15207]}$

- Boost-invariant \Rightarrow Initialize with midrapidity minijets $\delta(\eta_s \eta_{s,i}) \rightarrow \theta(\Delta y/2 |\eta_{s,i}|)/\Delta y$; here $\Delta y = 1.0$
- Dynamical freezeout conditions $\tau_{\pi}\theta = C_{\mathrm{Kn}}$ and $\gamma\tau_{\pi}/R = C_{R}$, where system size $R = \sqrt{\frac{A}{\pi}}$ is defined by the area A in which $\mathrm{Kn} < C_{\mathrm{Kn}}$
- Equation of state s95p-PCE-v1 with $T_{\rm chem}=155$ MeV
- Temperature-dependent shear and bulk viscous coefficients (η/s)(T) and (ζ/s)(T)

J. Auvinen (JYU)

v_n {2} at 5 TeV Pb+Pb collisions

ALICE data from arXiv:1804.02944

J. Auvinen (JYU)

 $N_{\rm ch}$ distribution at 2.76 TeV Pb+Pb collisions

ALICE data from arXiv:1301.4361

J. Auvinen (JYU)

Summary: The novel event generator MC-EKRT

- pQCD minijet production + saturation, with corrections from nucleon-level momentum and valence quark conservation
- Extends the EKRT model to longitudinal dimension
- Novel EbyE-fluctuating snPDFs developed
- Main control parameters: pQCD K-factor ($\sqrt{s_{NN}}$ -dependent) and saturation strength κ_{sat} ($\sqrt{s_{NN}}$ -independent)
- Gaussian smearing and nucleon substructure introduce additional parameters: σ_{\perp} , σ_{\parallel} , σ_h , and σ_N
- The earlier good agreement of EKRT with data extends to larger rapidities
- Nucleon substructure improves the v_3/v_2 ratio, as well as the EbyE multiplicity distribution in the most central collisions

Backup slides

Spacetime rapidity dependence of eccentricity

From 3d-hydro runs before event-averaging

EbyE mean and standard deviation

Correlation to midrapidity