Many-Body Aspects of Collective Neutrino Oscillations

A.B. Balantekin

INT 2023

Neutrinos from core-collapse supernovae 1987A

$$
\begin{gathered}
\cdot M_{\text {prog }} \geq 8 M_{\text {sun }} \Rightarrow \Delta E \approx 10^{53} \text { ergs } \approx \\
10^{59} \mathrm{MeV}
\end{gathered}
$$

-99\% of the energy is carried away by neutrinos and antineutrinos with $10 \leq E_{v} \leq 30 \mathrm{MeV} \Rightarrow 10^{58}$ neutrinos

The origin of elements

Neutrinos not only play a crucial role in the dynamics of these sites, but they also control the value of the electron fraction, the parameter determining the yields of the r process nucleosynthesis.

Possible sites for the r-process

Understanding a core-collapse supernova requires answers to a variety of questions some of which need to be answered, both theoretically and experimentally.

Balantekin and Fuller, Prog. Part. Nucl. Phys. 71162 (2013)

Energy released in a core-collapse $S N: \Delta E \approx 10^{53}$ ergs $\approx 10^{59} \mathrm{MeV}$ 99% of this energy is carried away by neutrinos and antineutrinos!
~ 10^{58} Neutrinos!
This necessitates including the effects of $v v$ interactions!

The second term makes the physics of a neutrino gas in a core-collapse supernova a very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

Many neutrino system

This is the only many-body system driven by the weak interactions:

Table: Many-body systems

Nuclei	Strong	at most ~ 250 particles
Condensed matter	E\&M	at most N_{A} particles
ν 's in SN	Weak	$\sim 10^{58}$ particles

Astrophysical extremes allow us to test physics that cannot be tested elsewhere!

MSW oscillations

 (low neutrino density)Collective oscillations (high neutrino density)

Neutrinos forward scatter from each other

Neutrinos forward scatter from background particles

$$
\frac{\partial \rho}{\partial t}=-i[H, \rho]+C(\rho)
$$

$H=$ neutrino mixing

+ forward scattering of neutrinos off other background particles (MSW) + forward scattering of neutrinos off each other
$C=$ collisions

Neutrino flavor isospin

$$
\begin{gathered}
\hat{J}_{+}=a_{e}^{\dagger} a_{\mu} \quad \hat{J}_{-}=a_{\mu}^{\dagger} a_{e} \\
\hat{J}_{0}=\frac{1}{2}\left(a_{e}^{\dagger} a_{e}-a_{\mu}^{\dagger} a_{\mu}\right)
\end{gathered}
$$

These operators can be written in either mass or flavor basis

Free neutrinos (only mixing)

$$
\begin{aligned}
\hat{H} & =\frac{m_{1}^{2}}{2 E} a_{1}^{\dagger} a_{1}+\frac{m_{2}^{2}}{2 E} a_{2}^{\dagger} a_{2}+(\cdot \cdot) \hat{1} \\
& =\frac{\delta m^{2}}{4 E} \cos 2 \theta\left(-2 \hat{J}_{0}\right)+\frac{\delta m^{2}}{4 E} \sin 2 \theta\left(\hat{J}_{+}+\hat{J}_{-}\right)+(\cdot)^{\prime} \hat{1}
\end{aligned}
$$

Interacting with background electrons

$$
\hat{H}=\left[\frac{\delta m^{2}}{4 E} \cos 2 \theta-\frac{1}{\sqrt{2}} G_{F} N_{e}\right]\left(-2 \hat{J}_{0}\right)+\frac{\delta m^{2}}{4 E} \sin 2 \theta\left(\hat{J}_{+}+\hat{J}_{-}\right)+(\cdot \cdot)^{\prime \prime} \hat{\imath}
$$

Note that

$$
\begin{gathered}
J_{o}=\frac{1}{2}\left(a_{e}^{\dagger} a_{e}-a_{\mu}^{\dagger} a_{\mu}\right) \\
N=\left(a_{e}^{\dagger} a_{e}+a_{\mu}^{\dagger} a_{\mu}\right)=\mathrm{constant}
\end{gathered}
$$

Hence $P_{0} \equiv \operatorname{Tr}\left(\rho J_{0}\right)$ is an observable giving numbers of neutrinos of each flavor

Neutrino-Neutrino Interactions

Smirnov, Fuller, Qian, Pantaleone, Sawyer, McKellar, Friedland, Lunardini, Raffelt, Duan, Balantekin, Volpe, Kajino, Pehlivan

$$
\hat{H}_{v v}=\frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right) \overrightarrow{\mathbf{J}}_{p} \cdot \overrightarrow{\mathbf{J}}_{q}
$$

This term makes the physics of a neutrino gas in a core-collapse supernova a genuine many-body problem

$$
\begin{aligned}
& \hat{H}=\int d p\left(\frac{\delta m^{2}}{2 E} \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{J}}_{p}-\sqrt{2} G_{F} N_{e} \mathbf{J}_{p}^{0}\right)+\frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right) \overrightarrow{\mathbf{J}}_{p} \cdot \overrightarrow{\mathbf{J}}_{q} \\
& \overrightarrow{\mathbf{B}}=(\sin 2 \theta, 0,-\cos 2 \theta)
\end{aligned}
$$

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

This Many-Body Hamiltonian follows from the Standard Model and it was re-derived by multiple authors.

I will next discuss a few aspects of it.

$$
\begin{aligned}
& H_{\nu v} \\
& =\frac{G_{F}}{\sqrt{2} V} \int d^{3} p d^{3} q\left(1-\cos \theta_{\vec{p} \cdot \vec{q}}\right)\left[a_{e}^{\dagger}(p) a_{e}(p) a_{e}^{\dagger}(q) a_{e}(q)\right. \\
& \left.+a_{x}^{\dagger}(p) a_{x}(p) a_{x}^{\dagger}(q) a_{x}(q)+a_{x}^{\dagger}(p) a_{e}(p) a_{e}^{\dagger}(q) a_{x}(q)+a_{e}^{\dagger}(p) a_{x}(p) a_{x}^{\dagger}(q) a_{e}(q)\right]
\end{aligned} \quad \begin{aligned}
& J_{+}(p)=a_{x}^{\dagger}(p) a_{e}(p), J_{-}(p)=a_{e}^{\dagger}(p) a_{x}(p), J_{0}(p)=\frac{1}{2}\left(a_{x}^{\dagger}(p) a_{x}(p)-a_{e}^{\dagger}(q) a_{e}(q)\right)
\end{aligned}
$$

$$
\begin{aligned}
& H_{v v}=()\left[N^{2}-\left(\int d^{3} p \frac{\vec{p}}{|\vec{p}|} N(p)\right) \cdot\left(\int d^{3} p \frac{\vec{p}}{|\vec{p}|} N(p)\right)\right]+ \\
& \frac{\sqrt{2} G_{F}}{V} \int d^{3} p d^{3} q\left(1-\cos \theta_{\vec{p} \cdot \vec{q}) \vec{J}(p) \cdot \vec{J}(\mathrm{q})}\right.
\end{aligned}
$$

$$
H_{v v}=()\left[N^{2}-\left(\int d^{3} p \frac{\vec{p}}{|\vec{p}|} N(p)\right) \cdot\left(\int d^{3} p \frac{\vec{p}}{|\overrightarrow{\mid \vec{p}}|} N(p)\right)\right]+\frac{\sqrt{2} G_{F}}{V} \int d^{3} p d^{3} q\left(1-\cos \theta_{\vec{p} \cdot \vec{q}}\right) \vec{J}(p) \cdot \vec{J}(\mathrm{q})
$$

Concerns were raised recently about the terms proportional to $N(p)$. However, these terms do not contribute to the quantum evolution since

$$
\begin{gathered}
{\left[N, H_{\nu}\right]=0=[N, \vec{J}(p) \cdot \vec{J}(\mathrm{q})]} \\
\widehat{U}=e^{-i(\quad) t N-i N^{2} \int d t \mu} \widehat{V}
\end{gathered}
$$

V includes terms independent of N. Hence

$$
\rho=\widehat{U} \rho_{i} \widehat{U}^{\dagger}=\hat{V} \rho_{i} \hat{V}^{\dagger}
$$

$$
H_{\nu v}=\frac{\sqrt{2} G_{F}}{V} \int d^{3} p d^{3} q\left(1-\cos \theta_{\vec{p} \cdot \vec{q}}\right) \vec{J}(p) \cdot \vec{J}(\mathrm{q})
$$

How do we get the mean-field from this many-body Hamiltonian? Procedure was already given by Balantekin and Pehlivan, J. Phys. G 34, 47 (2007). Introduce SU(2) coherent states (for two-flavors):

$$
|z(t)\rangle=\exp \left(-\frac{1}{2} \int d^{3} p \log \left(1+|z(p, t)|^{2}\right)\right) \exp \left(\int d^{3} p z(p, t) J_{+}(p)\right) \Pi a_{e}^{\dagger}|0\rangle
$$

Then write the evolution operator in the basis of SU(2) coherent states

$$
\begin{gathered}
\left\langle z\left(t_{f}\right)\right| \widehat{U}\left|z\left(t_{i}\right)\right\rangle=\int \mathcal{D}\left[z, z^{*}\right] e^{-i \delta\left[z, z^{*}\right]} \\
\mathcal{S}\left[z, z^{*}\right]=\int_{t_{i}}^{t_{f}} d t\left\langle i \frac{\partial}{\partial t}-H_{v}-H_{v v}\right\rangle-i \log \left\langle z\left(t_{f}\right) \mid z\left(t_{f}\right)\right\rangle
\end{gathered}
$$

$$
\mathcal{S}\left[z, z^{*}\right]=\int_{t_{i}}^{t_{f}} d t \underbrace{\left\langle i \frac{\partial}{\partial t}-H_{v}-H_{v v}\right.}_{\mathcal{L}}\rangle-i \log \left\langle z\left(t_{f}\right) \mid z\left(t_{f}\right)\right\rangle
$$

We then follow the standard procedure to find the stationary points of this action to obtain the Euler-Lagrange equations:

$$
\left(\frac{d}{d t} \frac{\partial}{\partial \dot{z}}-\frac{\partial}{\partial z}\right) \mathcal{L}\left(z, z^{*}\right)=0, \quad\left(\frac{d}{d t} \frac{\partial}{\partial \dot{z}^{*}}-\frac{\partial}{\partial z^{*}}\right) \mathcal{L}\left(z, z^{*}\right)=0
$$

Solving Euler-Lagrange eqs. gives us the mean-field eqs. with $z=\frac{\psi_{x}}{\psi_{e}}$ subject to $\left|\psi_{e}\right|^{2}+\left|\psi_{x}\right|^{2}=1$

How do you find many-body corrections to the mean-field? Expand the action around the stationary phase (mean-field) solution:

$$
\begin{aligned}
\mathcal{S}\left[z, z^{*}\right]= & \mathcal{S}\left[z_{s p}, z_{s p}^{*}\right]+\frac{1}{2}\left(z-z_{s p}\right)^{T}\left(\frac{\delta^{2} \mathcal{S}}{\delta z \delta z}\right)_{s p}\left(z-z_{s p}\right)+\left(z-z_{s p}\right)^{T}\left(\frac{\delta^{2} \mathcal{S}}{\delta z \delta z^{*}}\right)_{s p}\left(z^{*}-z_{s p}^{*}\right) \\
& +\frac{1}{2}\left(z^{*}-z_{s p}^{*}\right)^{T}\left(\frac{\delta^{2} \mathcal{S}}{\delta z^{*} \delta z^{*}}\right)_{s p}\left(z^{*}-z_{s p}^{*}\right)+\mathcal{O}\left(z^{3}\right)
\end{aligned}
$$

The Gaussian integral is then straightforward to calculate:

$$
\left\langle z\left(t_{f}\right)\right| \widehat{U}\left|z\left(t_{i}\right)\right\rangle=\int \mathcal{D}\left[z, z^{*}\right] e^{-i \delta\left[z, z^{*}\right]} \propto \frac{e^{-i \delta\left[z_{s p}, z_{s p}^{*}\right]}}{\sqrt{\operatorname{det}\left(K M-L^{T} K^{-1} L\right)}}
$$

$$
K=\frac{1}{2}\left(\frac{\delta^{2} \delta}{\delta x \delta x}\right)_{s p} \quad M=\frac{1}{2}\left(\frac{\delta^{2} \mathcal{S}}{\delta y \delta y}\right)_{s p} \quad L=\frac{1}{2}\left(\frac{\delta^{2} \mathcal{S}}{\delta x \delta y}\right)_{s p} \quad z=x+i y
$$

The "pre-exponential" determinant has not been calculated in the most general case. Its calculation in the general case would be the only rigorous way to assess how much many-body case deviates from the mean-field results.

Including antineutrinos

$$
H=H_{\nu}+H_{\bar{\nu}}+H_{\nu \nu}+H_{\bar{\nu} \bar{\nu}}+H_{\nu \bar{\nu}}
$$

Requires introduction of a second set of $\mathrm{SU}(2)$ algebras!

Including three flavors

Requires introduction of $\operatorname{SU}(3)$ algebras.
Both extensions are straightforward, but tedious! Balantekin and Pehlivan, J. Phys. G 34, 1783 (2007).

This problem is "exactly solvable" in the single-angle approximation

$$
\begin{gathered}
H=\sum_{p} \frac{\delta m^{2}}{2 p} \hat{B} \cdot \vec{J}_{p}+\frac{\sqrt{2} G_{F}}{V} \sum_{\mathbf{p}, \mathbf{q}}\left(1-\cos \vartheta_{\mathbf{p q}}\right) \overrightarrow{J_{\mathbf{p}}} \cdot \vec{J}_{\mathbf{q}} \\
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{\jmath} \cdot \vec{\jmath}
\end{gathered}
$$

Note that this Hamiltonian commutes with $\vec{B} \cdot \sum_{p} J_{p}$.
Hence $\operatorname{Tr}\left(\rho \vec{B} \cdot \sum_{p} J_{p}\right)$ is a constant of motion.
In the mass basis this is equal to $\operatorname{Tr}\left(\rho J_{3}\right)$.

BETHE ANSATZ

Single-angle approximation Hamiltonian:

$$
H=\sum_{p} \frac{\delta m^{2}}{2 p} J_{p}^{0}+2 \mu \sum_{\substack{p, q \\ p \neq q}} \mathbf{J}_{p} \cdot \mathbf{J}_{q}
$$

$$
\mu=\frac{G_{F}}{\sqrt{2} V}\langle 1-\cos \Theta\rangle
$$

Eigenstates:

$$
\begin{aligned}
& \left|x_{i}\right\rangle=\prod_{i=1}^{N} \sum_{k} \frac{J_{k}^{\dagger}}{\left(\delta m^{2} / 2 k\right)-x_{i}}|0\rangle \\
& -\frac{1}{2 \mu}-\sum_{k} \frac{j_{k}}{\left(\delta m^{2} / 2 k\right)-x_{i}}=\sum_{j \neq i} \frac{1}{x_{i}-x_{j}}
\end{aligned}
$$

Invariants:

$$
h_{p}=J_{p}^{0}+2 \mu \sum_{\substack{p, q \\ p \neq q}} \frac{\mathbf{J}_{p} \cdot \mathbf{J}_{q}}{\delta m^{2}\left(\frac{1}{p}-\frac{1}{q}\right)}
$$

Pehlivan, ABB, Kajino, \& Yoshida Phys. Rev. D 84, 065008 (2011)

Two of the adiabatic eigenstates of this equation are easy to find in the single-angle approximation:

$$
\begin{gathered}
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{J} \cdot \vec{\jmath} \\
|j,+j\rangle=|N / 2, N / 2\rangle=\left|\nu_{1}, \ldots, \nu_{1}\right\rangle \\
|j,-j\rangle=|N / 2,-N / 2\rangle=\left|\nu_{2}, \ldots, \nu_{2}\right\rangle \\
E_{ \pm N / 2}=\mp \sum_{p} \omega_{p} \frac{N_{p}}{2}+\mu \frac{N}{2}\left(\frac{N}{2}+1\right)
\end{gathered}
$$

To find the others will take a lot more work

Note that if you have N neutrinos, you do not only have total $j=N / 2$, but you have total $j=N / 2,(N / 2)-1,(N / 2)-2$, etc. You can not deduce the properties of an N neutrino system by studying $j=N / 2$!

```
Example:
N neutrinos: true size of the Hilbert Space = 2N
J=N/2: size of the Hilbert Space = 2j+1 = N+1
A severe truncation!
```

Two of the adiabatic eigenstates of this equation are easy to find in the single-angle approximation:

$$
\begin{gathered}
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{J} \cdot \vec{\jmath} \\
|j,+j\rangle=|N / 2, N / 2\rangle=\left|\nu_{1}, \ldots, \nu_{1}\right\rangle \\
|j,-j\rangle=|N / 2,-N / 2\rangle=\left|\nu_{2}, \ldots, \nu_{2}\right\rangle \\
E_{ \pm N / 2}=\mp \sum_{p} \omega_{p} \frac{N_{p}}{2}+\mu \frac{N}{2}\left(\frac{N}{2}+1\right)
\end{gathered}
$$

To find the others will take a lot more work

Away from the mean-field: Adiabatic solution of the exact many-body Hamiltonian for extremal states

Adiabatic evolution of an initial thermal distribution ($\mathrm{T}=10 \mathrm{MeV}$) of electron neutrinos. 10^{8} neutrinos distributed over 1200 energy bins with solar neutrino parameters and normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino arXiv:1805.11767
PRD98 (2018) 083002

A system of N particles each of which can occupy k states ($k=$ number of flavors)

\section*{Exact Solution \longrightarrow Mean-field approximation
 | Entangled and |
| :---: |
| unentangled states |\quad Only unentangled states}

Dimension of Hilbert
space: k^{N}
von Neumann entropy

```
S=-Tr}(\rho\operatorname{log}\rho
```

	Pure State	Mixed State
Density matrix	$\rho^{2}=\rho$	$\rho^{2} \neq \rho$
Entropy	$S=0$	$S \neq 0$

Pick one of the neutrinos and introduce the reduced density matrix for this neutrino (with label "b")

$$
\tilde{\rho}=\rho_{b}=\sum_{a, c, d, \ldots}\left\langle v_{a}, v_{c}, v_{d}, \cdots\right| \rho\left|v_{a}, v_{c}, v_{d}, \cdots\right\rangle
$$

Entanglement entropy

$$
\begin{gathered}
S=-\operatorname{Tr}(\tilde{\rho} \log \tilde{\rho}) \\
\tilde{\rho}=\frac{1}{2}(\mathbb{I}+\vec{\sigma} \cdot \vec{P}) \\
S=-\frac{1-|\vec{P}|}{2} \log \left(\frac{1-|\vec{P}|}{2}\right)-\frac{1+|\vec{P}|}{2} \log \left(\frac{1+|\vec{P}|}{2}\right)
\end{gathered}
$$

Initial state: all electron neutrinos

Note: S = 0 for meanfield approximation

Cervia, Patwardhan, Balantekin,
Coppersmith, Johnson,
arXiv:1908.03511
PRD, 100, 083001 (2019)

- Bethe ansatz method has numerical instabilities for larger values of N. However, it is very valuable since it leads to the identification of conserved quantities.
- For this reason, we also explored the use of Runge Kutta and tensor network techniques. This was both to check Bethe ansatz results for N less than 10 and to explore the case with N larger than 10.

Cervia, Patwardhan, Balantekin,
Coppersmith, Johnson,
arXiv:1908.03511
PRD 100, 083001 (2019)

Patwardhan, Cervia, Balantekin, arXiv:2109.08995 PRD 104, 123035 (2021)

Mean Field: $\rho=\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{N}$

$$
\omega_{A}=\frac{\delta m^{2}}{2 E_{A}} \quad \mathbf{P}=\operatorname{Tr}(\rho J) \quad \rho_{A}=\frac{1}{2}\left(1+\vec{\sigma} \cdot \vec{P}^{(A)}\right)
$$

Mean-field evolution

$$
\begin{aligned}
& \frac{\partial}{\partial t} \mathrm{P}^{(A)}=\left(\omega_{A} \mathcal{B}+\mu \mathrm{P}\right) \times \mathrm{P}^{(A)} \\
& \mathrm{P}=\sum_{A} \mathrm{P}^{(A)} . \\
& \frac{\partial}{\partial t} \mathrm{P}=\mathcal{B} \times\left(\sum_{A} \omega_{A} \mathrm{P}^{(A)}\right)
\end{aligned}
$$

$\mathcal{B} \cdot \mathrm{P}$ is a constant of motion.

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathrm{P}^{(A)}= & \left(\omega_{A} \mathcal{B}+\mu \mathrm{P}\right) \times \mathrm{P}^{(A)} \\
\mathrm{P} & =\sum_{A} \mathrm{P}^{(A)}
\end{aligned}
$$

Adiabatic Solution: Each $P^{(A)}$ lie mostly on the plane defined by B and P with a small component perpendicular to that plane.

$$
\begin{aligned}
\mathrm{P}^{(A)} & =\alpha_{A} \mathcal{B}+\beta_{A} \mathrm{P}+\gamma_{A}(\mathcal{B} \times \mathrm{P}) \\
\sum_{A} \alpha_{A} & =0, \quad \sum_{A} \beta_{A}=1, \quad \sum_{A} \gamma_{A}=0
\end{aligned}
$$

If initially all N neutrinos have the same flavor, then in the mass basis would be $\alpha_{0}=0, \beta_{0}=1 / N$, and $\gamma_{0}=0$.

$$
\frac{\partial}{\partial t} \mathrm{P}=\left(\sum_{A} \beta_{A} \omega_{A}\right)(\mathcal{B} \times \mathrm{P})+\left(\sum_{A} \gamma_{A} \omega_{A}\right)[(\mathcal{B} \cdot \mathrm{P}) \mathcal{B}-\mathrm{P}]
$$

Adopt for the mass basis and define $\Gamma=\left(\sum_{A} \gamma_{A} \omega_{A}\right)$. Unless Γ is positive the solutions for P_{x} and P_{y} exponentially grow.

$$
\begin{gathered}
P_{x, y}=\Pi_{x, y} \exp \left(-\int \Gamma(t) d t\right) \\
\frac{\partial}{\partial t} \Pi_{x}=\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{y}, \quad \frac{\partial}{\partial t} \Pi_{y}=-\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{x}
\end{gathered}
$$

$$
\begin{gathered}
P_{x, y}=\Pi_{x, y} \exp \left(-\int \Gamma(t) d t\right) \\
\frac{\partial}{\partial t} \Pi_{x}=\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{y}, \quad \frac{\partial}{\partial t} \Pi_{y}=-\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{x}
\end{gathered}
$$

In the mean-field approximation Π_{x} and Π_{y} precess around \mathcal{B} with a time-dependent frequency (through the time-dependence of $\beta_{A} \mathrm{~s}$). Then P_{x} and P_{y} also precess similarly while decaying due to the exponential terms. Hence asymptotically P_{x} and P_{y} tend to be very small. Then x and y components of each $P^{(A)}$ are asymptotically very small. Since $\left|P^{(A)}\right|^{2}=1$ for uncorrelated neutrinos, it then follows that

$$
\left(\mathrm{P}_{z}^{(A)}\right)^{2} \sim 1
$$

asymptotically. Consequently allowed asymptotic values of $P_{z}^{(A)}$ are $\sim \pm 1$. Since the constant of motion $\sum_{A} P_{Z}^{(A)}$ (in the mass basis) is fixed by the initial conditions, some of the final $P_{z}^{(A)}$ values will be +1 and some of them will be -1 . This is the "spectral split" phenomenon. Depending on the initial conditions, there may exist

ω one or more spectral splits.

We find that the presence of spectral splits is a good proxy for deviations from the mean-field results

Probability of observing the first mass eigenstate starting with all $v_{e}(N=16)$

$\cdots--$	Many-body
$\cdots \cdots$	Mean-field
$\cdots \cdots$	Entropy
\cdots	Initial Value

Patwardhan, Cervia, Balantekin, arXiv:2109.08995
Phys. Rev. D 104, 123035 (2021)

Patwardhan, Cervia, Balantekin, arXiv:2109.08995

What are the next steps?

- Explore the efficacy of tensor methods utilizing invariants obtained in the Bethe ansatz approach.
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, Phys. Rev. D 105, 123025 (2022), arXiv: 2202.01865

Computation times:

Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, arXiv:2202.01865

What are the next steps?

- Explore the efficacy of tensor methods utilizing invariants obtained in the Bethe ansatz approach.
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, Phys. Rev. D 105, 123025 (2022), arXiv: 2202.01865
- Explore the impact of using many-body solution instead of the meanfield solution in calculating element synthesis (especially r - and $r p-$ process).
X. Wang, Patwardhan, Cervia, Surman, Balantekin, in preparation.
- There are three flavors of neutrinos, not two: qubits \rightarrow qutrits ∇ Siwach, Suliga, Balantekin, Phys. Rev. D 107, 023019 (2023).

Time evolution for 12 neutrinos (initially six v_{e} and six v_{x}). D is the bond dimension. The largest possible value of D is $2^{6}=64$.

Entanglement in three-flavor collective oscillations

$$
\begin{gathered}
H=\sum_{p} \vec{B} \cdot \vec{Q}(p)+\sum_{p, k} \mu_{p k} \vec{Q}(p) \cdot \vec{Q}(k) \\
Q_{A}(p)=\frac{1}{2} \sum_{i, j=1}^{3} a_{i}^{\dagger}(p)\left(\lambda_{A}\right)_{i j} a_{j}(p) \\
B=\frac{1}{2 E}\left(0,0, m_{1}^{2}-m_{2}^{2}, 0,0,0,0,-\left|m_{3}^{2}-m_{1}^{2}\right|\right)
\end{gathered}
$$

Pooja Siwach, Anna Suliga, A.B. Balantekin Physical Review D 107 (2023) 2, 023019

CONCLUSIONS

- Calculations performed using the mean-field approximation have revealed a lot of interesting physics about collective behavior of neutrinos in astrophysical environments. Here we have explored possible scenarios where further interesting features can arise by going beyond this approximation.
- We found that the deviation of the adiabatic many-body results from the mean field results is largest for neutrinos with energies around the spectral split energies. In our single-angle calculations we observe a broadening of the spectral split region. This broadening does not appear in single-angle mean-field calculations and seems to be larger than that was observed in multi-angle mean-field calculations (or with BSM physics).
- This suggests hybrid calculations may be efficient: many-body calculations near the spectral split and mean-field elsewhere.
- There is a strong dependence on the initial conditions.

Thank you very much!

