

Exploring Golden Channel Proton Decay in DUNE

INT Workshop on Baryon Number Violation From Nuclear Matrix Elements to BSM Physics

by J. L. Barrow *The University of Minnesota* with key inputs from <u>T. Stokes</u> *Louisiana State University* ⇒ *Yale University*

On Behalf of the DUNE Collaboration

January 13th, 2025

The DUNE Collaboration DUNE NEUTRINO EXPERIMENT

- 1400+ collaborators
- 200+ institutions across 30+ countries
- 30+ peer-reviewed publications
 - Many more in preparation!

Design of DUNE

- Broad-band neutrino beam at Fermilab
- 1.2 MW—upgradeable to > 2.0 MW
- 1300 km baseline
- Near detectors: suite of technologies, off-axis capabilities
- Far detectors: Liquid Argon Time Projection Chambers
 - Total mass: 4 × 17,000 tons

What is DUNE?

0.2

0.15

0.1

0.05

Р

Pue (DUNE)

Pue (NOvA)

2

3

E (GeV)

Ghosh et al. Eur. Phys. J. C (2016)76

DUNE flux

 $\delta_{CP} = 180^{\circ}$

NOvA flux $\delta_{CP} = -90^{\circ}$

= 0° --= 90° --

5

Goals of DUNE

- Extract v oscillation parameters: δ_{CP} & mass ordering
 - <u>First</u> measurements will be rendered using atmospheric vs
- Search for BSM physics (baryon number violation)

Implications of DUNE

• Precision U_{PMNS} , lepton universality, τ production, BSM/NSI constraints, calibrations, cross sections (ND)

Features and Challenges

- v_{beam} : timing, broadband (~1-5GeV) energy, known direction
- v_{atm} : no timing, even broader energies, ~unknown direction
 - **Backgrounds** for rare processes: $p \to K^+ \overline{\nu}$ and $n \to \overline{n}$

100% complete!

Far Detectors located on 4910' level at SURF

- Excellent shielding to cosmogenic events—quiet!
 - ~1000 cosmics/day in single FD module
 - Compare to ~1000 cosmics/s in MicroBooNE!

Atmospheric vs: first \gtrsim 2 yrs DUNE v data!

Liquid Argon Time Projection Chambers

Cathode

Plane

- γ/e discrimination
 - Tracks and gaps
- Low KE hadron thresholds
 - Directly reconstruct K^{\pm}
- DUNE's technology
 - ICARUS, MicroBooNE, SBND
 - ProtoDUNE operational!
 - ~1kt prototype at CERN
 - First HE K⁺ cross section
- ⁴⁰Ar as nuclear target and detector medium
- Ionization of LAr for track and shower reconstruction
 - Charge drifts via high \vec{E} field
 - mm-scale resolution
 - $dQ/dx \sim dE/dx$ for calorimetry

Anode wire planes:

Liquid Argon Time Projection Chambers

- γ/e discrimination
 - Tracks and gaps
- Low KE hadron thresholds
 - **Directly reconstruct** K^{\pm} 5000
- DUNE's technology
 - ICARUS, MicroBooNE, SBND 4500
 - ProtoDUNE operational!
 - $\sim 1 \text{kt}$ prototype at CERN
 - First HE K⁺ cross section

- Ionization of LAr for track and shower reconstruction
 - Charge drifts via high \vec{E} field
 - mm-scale resolution
 - $dQ/dx \sim dE/dx$ for calorimetry

DUNE: ProtoDUNE-SP Run 5779 Event 12360

Liquid Argon Time Projection Chambers

 e^+

- γ/e discrimination
 - Tracks and gaps
- Low KE hadron thresholds
 - Directly reconstruct K^{\pm}
- DUNE's technology
 - ICARUS, MicroBooNE, SBND
 - **ProtoDUNE operational!**
 - ~1kt prototype at CERN
 - First HE K⁺ cross section
- ⁴⁰Ar as nuclear target and detector medium
- Ionization of LAr for track and shower reconstruction
 - Charge drifts via high \vec{E} field
 - mm-scale resolution
 - $dQ/dx \sim dE/dx$ for calorimetry

G. Santucci Thesis

"Golden Channel"

Supersymmetric Particles Can Lower Mass Scales for Observable PDK

Adapted from T. Stokes

DUNE TDR-Volume II-DUNE Physics

Considered $p \rightarrow K^+ \overline{\nu}$ Event Topologies

Opens Doors to Deep Learning Techniques

Considered $p \rightarrow K^+ \overline{\nu}$ Event Topologies

Opens Doors to Deep Learning Techniques

Considered $p \rightarrow K^+ \overline{\nu}$ Event Topologies

Opens Doors to Deep Learning Techniques

PDK Event Displays

Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment

Atmospheric Neutrinos Analysis Progress

A Most Brief Overview

Figures adapted from M. Oliveira-Ismerio, physics scale visualization adapted from P. Granger

A Most Brief Overview

Figures adapted from M. Oliveira-Ismerio, physics scale visualization adapted from P. Granger

A Most Brief Overview

Figures adapted from M. Oliveira-Ismerio, physics scale visualization adapted from P. Granger

Atmospheric v **Oscillation Promise**

- Primary Rare Processes' background
- Valuable ν oscillation physics signal
 - Many baselines, many energies
 - DUNE capable in < 1GeV reconstruction
- v_{atm} sample adds to v_{beam} sample
 - Increases overall DUNE sensitivities
 - Different systematic uncertainties
 - Improvements to angle resolution very important at low energies
 - Difficult due to Fermi motion
 - New ML methods in development by DUNE A&EWG members
 - Could improve v_{atm} and even v_{beam} reconstruction

Accessing low energy v_{atm} events with hadron-rich final states gives more importance to low energy v_{atm} flux predictions ⇒ Large systematic uncertainties

Sub-GeV Atmospheric Neutrinos and CP Violation in DUNE

Improving angular resolution is a must for sub-GeV oscillation sensitivity

Figure from M. Oliveira-Ismerio, physics scale visualization adapted from P. Granger

Atmospheric Spectra at Homestake

Expected v_{atm} **Count** Rates via Integration a Key Input for BNV Backgrounds

Improvements from past analysis

- Interpolation scheme
- Move to NuFitv5.2 w/OscProb
- CC $v_{\tau}/\overline{v_{\tau}}$ expectations

Ongoing work directly targets systematic uncertainties

- Cross section dependencies
- Solar minimum/maximum
- PREM layering constraints
- Normal/Inverted ordering
- Production height accounting
- Will serve as key inputs to forthcoming MaCh3
 <u>oscillation analysis</u>

Rates already being used in current BNV studies

 $\phi(E) = 10^{\log_{10}\phi(E_1) + \frac{\log_{10}\phi(E_2) - \log_{10}\phi(E_1)}{\log_{10}E_2 - \log_{10}E_1}} (\log_{10}E - \log_{10}E_1)$

	Totals per 10 kt · yr											
	Solar Maximum, NuFIT 4.1 (NO), Local Fermi Gas											
	Sub-GeV			Multi-GeV			High-GeV			Total		
	$[0.1-1.0]{ m GeV}$		$[1.0-10.0]{\rm GeV}$			$[10.0 - 100.0]{ m GeV}$			$[0.1 - 100.0]{ m GeV}$			
	CC	NC	Total	CC	NC	Total	CC	NC	Total	CC	NC	Total
$ u_e$	387.5	144.4	532.0	219.5	69.6	289.1	13.63	4.3	17.9	620.7	218.3	839.0
$ u_{\mu}$	393.5	173.2	566.7	318.3	103.4	421.7	41.35	13.0	54.4	753.2	289.6	1042.8
$ u_{ au}$	0.0	95.4	95.4	2.4	36.7	39.1	4.23	3.3	7.5	6.6	135.4	142.0
$ar{ u}_e$	60.9	46.5	107.4	57.3	24.1	81.4	4.46	1.7	6.2	122.7	72.3	194.9
$ar{ u}_{\mu}$	74.3	67.1	141.4	102.5	44.1	146.6	14.93	5.7	20.7	191.7	116.9	308.7
$\bar{ u}_{ au}$	0.0	39.2	39.2	0.9	16.0	16.9	1.54	1.4	3.0	2.4	56.7	59.1
Total	916.2	565.9	1482.1	700.9	293.8	994.8	80.1	29.4	109.58	1697.3	889.2	2586.5

v_{τ} are also of interest to our group: B. Yaeggy <u>APS April 2024</u>

Atmospheric Angular Reconstruction

Improved Resolution Driven by LArTPCs' Hadronic Reconstruction Capabilities

- Final part of atmospheric production complete (15M)
 - Lead by <u>P. Granger</u> (CERN) and S. Farrell (Rice) et al.
- Reconstruction techniques across energies—under review!
 - Lead by APC & CERN groups (kinematics), Rice (process identification)
 - Optimizing tools will inform first publication's energy range and analysis target
 - Improved angular reconstruction < 1 GeV can greatly empower δ_{CP} sensitivity
 - Near future: ML-powered energy and angle estimation for oscillations
- <u>MaCh3</u> atmospheric v oscillation framework ready to go (Oxford, Imperial, APC)
 - Lead by <u>D. Barrow</u> (Oxford) *et al.*
 - Systematics inputs under development for full analysis—cross section systematics needed!
 - Updated FLUKA (P. Sala et al.) simulation in process!

P. Granger, H. Souza, C. Sironneau, C. Mironov

Understanding **Nuclear Modeling Systematics** Īn **Rare Processes**

Nuclear Model Configuration Comparative Flows

Signal & Background Sample Comparisons to Better Determine Modeling Systematics

S:B	hA_BR	hA_LFG	hA_ESF	hN_BR	hN_LFG	hN_ESF
hA_BR	$\tau_{n\bar{n}}$					
hA_LFG	:	N.				
hA_ESF						
hN_BR						
hN_LFG						
hN_ESF						

B:B	hA_BR	hA_LFG	hA_E SF	hN_BR	hN_LFG	hN_ESF
hA_BR		Kinematic Distributions (BDT inputs)				
hA_LFG	Kinematic Distributions (BDT inputs)		Ν.			
hA_ESF	:	N				
hN_BR						
hN_LFG						
hN_ESF						

Mixing signal and background models to understand ranges of expected background rates and signal efficiencies

Mixing of available nuclear models and final state interaction models

Effectively a "universe" style approach

A good way to conservatively understand modeling systematics for an unknown process is to iterate!

Final State Interactions

Initial Nucleon Momentum Distributions

Initial State Preparation for Atmospherics and $p \rightarrow K^+ \overline{v}$ **in** GENIEv3.0.6

T. Stokes

Initial Nucleon Momentum Distributions $p \rightarrow K^+ \overline{\nu}$ **Initial State in GENIEv3.0.6**

Momentum of Decaying Nucleon vs. Position of Decaying Nucleon

Momentum of Decaying Nucleon vs. Position of Decaying Nucleon

T. Stokes

Nuclear Modeling Effects on Kaon Energy

- K^+ generated directly from decaying p in nucleus
 - Initial momentum from Fermi motion and rest mass
 - FSI effects of hA or hN Intranuke 2018 show differences
 - hA has distinct shift toward lower energies upon exiting envelope

Nuclear Modeling Effects on Kaon Energy

- K^+ generated directly from decaying p in nucleus
 - Initial momentum from Fermi motion and rest mass
 - FSI effects of hA or hN Intranuke 2018 show differences
 - hA has distinct shift toward lower energies upon exiting envelope

Kaon Kinetic Energy (GeV)

Nuclear Modeling Effects on Kaon Energy

- K^+ generated directly from decaying p in nucleus
 - Initial momentum from Fermi motion and rest mass
 - FSI effects of hA or hN Intranuke 2018 show differences
 - hA has distinct shift toward lower energies upon exiting envelope

Counts 6000 Lower final **Final State** state K⁺ 5000 **Initial State** momentum can 4000 adversely hN Intranuke 2018 affect signal 3000 **Effective Spectral** efficiencies **Function** Nonlocal nonrelativistic 2000 Fermi Gas Must understand 1000 modeling systematics! 0.05 0.2 0.25 0.1 0.15 0.3 Kinetic Energy (GeV)

Kaon Kinetic Energy (GeV)

T. Stokes

30

Current $p \rightarrow K^+ \overline{\nu}$ Analysis

Preselection Cuts Before BDT Input Improving PDK Signal Quality and Reducing Backgrounds

- 1. Minimum of two tracks per event
- 2. A common vertex between tracks, each within 5cm
- 3. Short track kinetic energy requirement, improves purity
- 4. Long track length of requirement, reduces backgrounds
- 5. Short track must contain min. numb. hits, improve dE/dx

T. Stokes

Boosted Decision Tree Implementation

Strategy:

- 1. Select a nominal nuclear model configuration (hA LFG)
 - Note that hA predicts markedly lower K⁺ FS kinetic energy—conservative
- 2. Tune BDT parameters to this base model
- 3. Obtain a classification
 - Use base nuclear model configuration BDT parameters, run over all others
- What you get:
- A spread of signal efficiencies and background rates
 - Expected due to different responses to FSs from each configuration
- Representation of how changing model affects classification
 - Can be used to conservatively estimate nuclear modeling uncertainties
 - Large component of the systematics will come from this source

Good signal and background discrimination capabilities!

BDT ROC Curves from Testing Samples Signal Efficiency vs. Expected Background Count hA LFG BDT Parameter Optimized

Graphical Neural Network Methods for Baryon Number Violation

Analysis Flow Using Automated Learning Techniques For Event-Level Classification

NuGraph Capabilities Semantic Labeling Performance in Example v_{μ} **Interaction**

- NuGraph can semantically label detector hits well
 - Particle identification & topology is critical
 - Central in separating $p \to K^+ \bar{\nu}$ signal from atmospheric ν background
- NuGraph can operate after training to yield binary classifier
 - Direct access to signal-like or background-like discriminator _
 - Can semantically label K⁺ classes in signal and background

Predicted semantic labels

- Plan: Utilize this binary classification as an input into the BDT analysis

True semantic labels

True semantic labels for signal-like true $p \rightarrow K^+ \bar{\nu}$ signal

True Positive

DUNE Simulation dunesimv09_42_03 GENIEv3.0.6 G18_10x Base Tune DUNE:FD HD 1x2x6 Reduced Geometry NuGraph Training on hA LFG Sig:Bckgr 40k:40k

Predicted semantic labels for signal-like true $p \rightarrow K^+ \bar{\nu}$ signal

Corroboration between planes increases hit-by-hit PID and binary classification capabilities—<u>Nexus nodes!</u>

NuGraph Event Classification Training on 40k:40k Signal:Background Events

NuGraph Event Classification: <u>Larger Dataset</u> Training on <u>400k:400k</u> Signal:Background Events

NuGraph Event Classification: <u>Larger Dataset</u> Training on <u>400k:400k</u> Signal:Background Events

NuGraph Event Classification: <u>Larger Dataset</u> Training on <u>400k:400k</u> Signal:Background Events

NuGraph Performance: Larger Dataset Training 400k hA_LFG PDK & 400k hA_LFG Atmospheric Neutrinos

Preselection Requirement: > 20 hits in event

Variable score cut to produce ROC curve

NuGraph Performance: Larger Dataset Training 400k hA_LFG PDK & 400k hA_LFG Atmospheric Neutrinos Trained Model Applied to Other Nuclear Model Configurations

All the real action is here...

Studying low background regions for nuclear model configuration robustness tests **Preselection Requirement:** > 20 hits in event

Variable score cut to produce ROC curve

Summary & Conclusions

- DUNE's first neutrino physics results will come from atmospheric neutrino oscillation measurements
 - A&EWG taking lead here, working toward first publication
 - Rate predictions, flux uncertainties, ang. reco. improvements ongoing
 - Exploiting LArTPC powers for hadronic info critical to improvements
 - <u>MaCh3</u> oscillation framework ready for analyses
 - Large first reconstruction techniques study near complete
 - Will eventually be a key input for precision BNV background studies
- BNV analyses ongoing: public PDK sensitivities soon
 - Understanding nuclear mod. syst. uncertainties critical
 - Iteration over nonreweightable nuc. mod. configs. as conservative estimator of selection effects in automated methods (BDT, NuGraph)
 - Will directly assess signal eff. & background rate uncertainties
 - Current BDT framework shows good performance
 - Need improvements in reconstruction to increase efficiency
 - NuGraph performance incredibly encouraging
 - Powers of semantic classification and binary classifier!
 - **BDT(GNN) combined analysis underway**—similar to <u>MicroBooNE $n \rightarrow \overline{n}$ </u>
 - Will <u>include pionic *K*⁺ decay modes</u> soon—step towards inclusive BNV search?
 - New $n \rightarrow \overline{n}$ analysis in development, new BRs now in GENIE