A bottom-up approach to nucleon decay RGEs, correlations and connection to UV

Arnau Bas i Beneito.14th of January, 2025 Baryon Number Violation: From Nuclear Matrix Elements to BSM physics

Based on work in collaboration with J. Gargalionis, J. Herrero-García, M. A. Schmidt. A. Santamaria [2312.13361] (published in JHEP)

Proton decay within the SM

$$\mathscr{L}_{SM}$$

$$SU(3)_{C} \times SU2)_{L} \times U(1)_{Y}$$
+
$$H, Q_{L}^{i}, u_{R}^{i}, d_{R}^{i}, L_{L}^{i}, e_{R}^{i}, i = 1, 2, 3$$
Individual Flavour Symmetries
$$\int Yukawa \text{ couplings}$$

$$U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \times U(1)_{B}$$

$$\int v \text{ oscillations}$$

$$[Super-K 1999, KamLAND 2003...]$$

$$U(1)_{L} \times U(1)_{R}$$

B and L accidentally conserved

(B + L violated in 3 units by sphaleron transitions)

Proton decay within the SM

B and L accidentally conserved

(B + L violated in 3 units by sphaleron transitions)

Experimental perspectives

Experimental perspectives

BNV nucleon decay could be the next big discovery

Theoretical arguments

· There is no fundamental reason to have B and L conserved (Leptoquarks, Seesaw particles, SUSY, GUTs...) \rightarrow B and L conservation arise accidentally in the SM

 \cdot Experimental probes of BNV and LNV would constitute one of the strongest evidence for physics beyond SM (BSM) \rightarrow Proton Decay will be searched in future experiments (HK, DUNE...)

BNV within the SMEFT

Parametrization of new physics through Effective operators (d > 4) SM Effective Field Theory (SMEFT)

Bounds on SMEFT WCs serve as a bridge to specific UV models

BNV within the SMEFT

Parametrization of new physics through Effective operators (d > 4) SM Effective Field Theory (SMEFT)

Bounds on SMEFT WCs serve as a bridge to specific UV models

Indistinguishable final states in detectors

BNV within the SMEFT

SMEFT

 $d = 6 \rightarrow 4$ operators $\rightarrow 273$ independent components

[L. F. Abbott et al. 1980, B. Grzadkowski et al. 2010]

$$\begin{aligned} \mathcal{O}_{qqql,pqrs} &= (Q_p^i Q_q^j) (Q_r^l L_s^k) \epsilon_{ik} \epsilon_{jl} , \quad \mathcal{O}_{qque,pqrs} = (Q_p^i Q_q^j) (\bar{u}_r^{\dagger} \bar{e}_s^{\dagger}) \epsilon_{ij} , \\ \mathcal{O}_{duue,pqrs} &= (\bar{d}_p^{\dagger} \bar{u}_q^{\dagger}) (\bar{u}_r^{\dagger} \bar{e}_s^{\dagger}) , \qquad \mathcal{O}_{duql,pqrs} = (\bar{d}_p^{\dagger} \bar{u}_q^{\dagger}) (Q_r^i L_s^j) \epsilon_{ij} , \end{aligned}$$

 $d = 7 \rightarrow 6$ operators $\rightarrow 297$ independent components

[L. Lehman 2014, Yi Liao et al. 2016]

$$\begin{split} \mathcal{O}_{\bar{l}dddH,pqrs} &= (L_p^{\dagger} \bar{d}_q^{\dagger}) (\bar{d}_r^{\dagger} \bar{d}_s^{\dagger}) H , \qquad \mathcal{O}_{\bar{l}dqq\tilde{H},pqrs} = (L_p^{\dagger} \bar{d}_q^{\dagger}) (Q_r Q_s^{i}) \tilde{H}^{j} \epsilon_{ij} , \\ \mathcal{O}_{\bar{e}qdd\tilde{H},pqrs} &= (\bar{e}_p Q_q^{i}) (\bar{d}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H}^{j} \epsilon_{ij} , \qquad \mathcal{O}_{\bar{l}dud\tilde{H},pqrs} = (L_p^{\dagger} \bar{d}_q^{\dagger}) (\bar{u}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H} , \\ \mathcal{O}_{\bar{l}qdDd,pqrs} &= (L_p^{\dagger} \bar{\sigma}^{\mu} Q_q) (\bar{d}_r^{\dagger} i \overleftrightarrow{D}_{\mu} \bar{d}_s^{\dagger}) , \qquad \mathcal{O}_{\bar{e}dddD,pqrs} = (\bar{e}_p \sigma^{\mu} \bar{d}_q^{\dagger}) (\bar{d}_r^{\dagger} i \overleftrightarrow{D}_{\mu} \bar{d}_s^{\dagger}) , \end{split}$$

SMEFT

 $d = 6 \rightarrow 4$ operators $\rightarrow 273$ independent components

[L. F. Abbott et al. 1980, B. Grzadkowski et al. 2010]

$$\begin{aligned} \mathcal{O}_{qqql,pqrs} &= (Q_p^i Q_q^j) (Q_r^l L_s^k) \epsilon_{ik} \epsilon_{jl} , \quad \mathcal{O}_{qque,pqrs} = (Q_p^i Q_q^j) (\bar{u}_r^{\dagger} \bar{e}_s^{\dagger}) \epsilon_{ij} , \\ \mathcal{O}_{duue,pqrs} &= (\bar{d}_p^{\dagger} \bar{u}_q^{\dagger}) (\bar{u}_r^{\dagger} \bar{e}_s^{\dagger}) , \qquad \mathcal{O}_{duql,pqrs} = (\bar{d}_p^{\dagger} \bar{u}_q^{\dagger}) (Q_r^i L_s^j) \epsilon_{ij} , \end{aligned}$$

 $d = 7 \rightarrow 6$ operators $\rightarrow 297$ independent components

[L. Lehman 2014, Yi Liao et al. 2016]

$$\begin{aligned} \mathcal{O}_{\bar{l}dddH,pqrs} &= (L_p^{\dagger} \bar{d}_q^{\dagger}) (\bar{d}_r^{\dagger} \bar{d}_s^{\dagger}) H , \qquad \mathcal{O}_{\bar{l}dqq\tilde{H},pqrs} = (L_p^{\dagger} \bar{d}_q^{\dagger}) (Q_r Q_s^i) \tilde{H}^j \epsilon_{ij} , \\ \mathcal{O}_{\bar{e}qdd\tilde{H},pqrs} &= (\bar{e}_p Q_q^i) (\bar{d}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H}^j \epsilon_{ij} , \qquad \mathcal{O}_{\bar{l}dud\tilde{H},pqrs} = (L_p^{\dagger} \bar{d}_q^{\dagger}) (\bar{u}_r^{\dagger} \bar{d}_s^{\dagger}) \tilde{H} , \\ \mathcal{O}_{\bar{l}qdDd,pqrs} &= (L_p^{\dagger} \bar{\sigma}^{\mu} Q_q) (\bar{d}_r^{\dagger} i \overleftrightarrow{D}_{\mu} \bar{d}_s^{\dagger}) , \qquad \mathcal{O}_{eadaD,pqrs} = (\bar{e}_p \sigma^{\mu} \bar{d}_q^{\dagger}) (\bar{d}_r^{\dagger} i \overleftrightarrow{D}_{\mu} \bar{d}_s^{\dagger}) , \end{aligned}$$

Not Higgs-vev enhanced Match onto d-7 LEFT ops.

Bounds in some components in [J. Gargalionis et al. 2024]

$$c^{d=6}(m_W) \sim (2-4) \ c^{d=6}(10^{15} \text{ GeV})$$

 $c^{d=7}(m_W) \sim (1-2) \ c^{d=7}(10^{11} \text{ GeV})$

From gauge interactions and y_t (Operator mixing subdominant)

• RGEs for d = 6 SMEFT [A. Manohar et al. 2014]
• RGEs for d = 7 SMEFT [Yi Liao et al. 2016]

LEFT

 $6 \ \Delta(B-L) = 0 \text{ operators} \rightarrow 288 \text{ independent components} \rightarrow 14 \text{ components} \\ \nu_{\alpha} \equiv \nu \quad L_{\alpha} \equiv e_{L}$

5 $|\Delta(B-L)| = 2$ operators $\rightarrow 228$ independent operators $\rightarrow 9$ components $\nu_{\alpha} \equiv \nu \quad L_{\alpha} \equiv e_{L}$ LEFT components involved in nucleon decay at tree level

Name [52]	SMEFT matching	Name [52] ([12])	Operator	Flavour	Name	Operator	Flavour
		$[\mathcal{O}^{S,LL}_{udd}]_{111r} \ (O^{\nu}_{LL})$	$(ud)(d u_r)$	(8 , 1)	$[\mathcal{O}^{S,LL}_{ddd}]_{[12]r1}$	$(ds)(ar{e}_r d)$	(8 , 1)
$[\mathcal{O}^{S,LL}_{udd}]_{pqrs}$	$V_{q'q}V_{r'r}(C_{qqql,r'q'ps} - C_{qqql,q'r'ps} + C_{qqql,q'pr's})$	$\begin{bmatrix} \mathcal{O}_{udd}^{S,LL} \end{bmatrix}_{121r} (\tilde{O}_{LL1}^{\nu})$	$(us)(d\nu_r)$	(8, 1)	$[\mathcal{O}_{udd}^{S,LR}]_{11r1}$	$(ud)(u_r^\dagger ar d^\dagger)$	$(ar{3},3)$
$[\mathcal{O}^{S,LL}_{duu}]_{pqrs}$	$V_{p'p}(C_{qqql,rqp's} - C_{qqql,qrp's} + C_{qqql,qp'rs})$	$[\mathcal{O}_{udd}^{S,LL}]_{112r} (\mathcal{O}_{LL2}^{\nu})$	$(ud)(s u_r)$	$({\bf 8},{f 1})$	$[\mathcal{O}_{udd}^{\widetilde{S},\widetilde{L}R}]_{12r1}$	$(us)(u_r^\dagger ar d^\dagger)$	$(ar{3},3)$
$[\mathcal{O}^{S,LR}_{duu}]_{pqrs}$	$-V_{p'p}(C_{qque,p'qrs}+C_{qque,qp'rs})$	$\begin{bmatrix} \mathcal{O}_{duu}^{S,LL} \end{bmatrix}_{111r} (\mathcal{O}_{LL}^e)$	$(du)(ue_r)$	$({f 8},{f 1})$	$[\mathcal{O}^{S,LR}_{udd}]_{11r2}$	$(ud)(u_r^\daggerar{s}^\dagger)$	$(ar{3},3)$
$[\mathcal{O}_{duu}^{S,RL}]_{pqrs}$	$C_{dugl,pqrs}$	$[\mathcal{O}_{duu}^{S,LL}]_{211r} (O_{LL}^e)$	$(su)(ue_r)$	$({f 8},{f 1})$	$[\mathcal{O}^{S,LR}_{ddu}]_{[12]r1}$	$(ds)(u_r^\dagger ar u^\dagger)$	$(ar{3},3)$
$[\mathcal{O}_{dud}^{S,RL}]_{pars}$	$-V_{r'r}C_{dual,par's}$	$\begin{bmatrix} \mathcal{O}_{duu}^{S,LR} \end{bmatrix}_{111r} \begin{pmatrix} O_{LR}^e \end{pmatrix}$	$(du)(ar{u}^\daggerar{e}_r^\dagger)$	$(\bar{3},3)$	$[\mathcal{O}^{S,LR}_{ddd}]_{[12]r1}$	$(ds)(e_r^\dagger ar d^\dagger)$	$(ar{3},3)$
$[\mathcal{O}_{dum}^{S,RR}]_{pars}$	$C_{duue \ pars}$	$[\mathcal{O}_{duu}^{S,LR}]_{211r} (O_{LR}^e)$	$(su)(ar{u}^{\scriptscriptstyle \dagger}ar{e}_r^{\scriptscriptstyle \dagger})$	(3, 3)	$\frac{[\mathcal{O}_{III}^{S,RL}]_{[12]r1}}{[\mathcal{O}_{III}^{S,RL}]_{[12]r1}}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(\bar{e}_{r}d)$	$(3, \bar{3})$
	<i>auac</i> ,pq, 5	$\begin{bmatrix} \mathcal{O}_{duu}^{S,RL} \end{bmatrix}_{111r} \begin{pmatrix} O_{RL}^e \end{pmatrix}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$(3, \bar{3})$	$\frac{\left[\mathcal{O}^{S,RR}\right]}{\left[\mathcal{O}^{S,RR}\right]}$	$(\overline{u}^{\dagger}\overline{d}^{\dagger})(\overline{u}^{\dagger}\overline{d}^{\dagger})$	(1.8)
$[\mathcal{O}_{udd}^{S,LR}]_{pqrs}$	$-V_{q'q}C_{\overline{l}dqq\tilde{H},rspq'}rac{v}{\sqrt{2}\Lambda}$	$[\mathcal{O}_{duu}^{S,RL}]_{211r} (\mathcal{O}_{RL}^{e})$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(ue_r)$	(3, 3)	$[\mathcal{O}_{udd}^{S,RR}]_{12r1}$	$(\bar{u}^{\dagger}\bar{a}^{\dagger})(\nu_{r}a^{\dagger})$ $(\bar{u}^{\dagger}\bar{s}^{\dagger})(\nu_{r}^{\dagger}\bar{d}^{\dagger})$	(1, 8) (1, 8)
$[\mathcal{O}_{ddd}^{S,LR}]_{pars}$	$V_{p'p}V_{q'q}(C_{\bar{l}dqq\tilde{H}}_{rsq'p'}-C_{\bar{l}dqq\tilde{H}}_{rsp'q'})\frac{v}{2\sqrt{2}\lambda}$	$\begin{bmatrix} \mathcal{O}_{dud}^{S,RL} \end{bmatrix}_{111r} \begin{pmatrix} \mathcal{O}_{RL}^{\nu} \end{pmatrix}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(d u_r)$	$(3, \mathbf{\bar{3}})$	$[\mathcal{O}_{udd}^{S,RR}]_{11r2}$	$(\bar{u}^{\dagger}\bar{d}^{\dagger})(u_r^{\dagger}\bar{s}^{\dagger})$	(1, 8)
$[\mathcal{O}^{S,RL}]$	$V_{1} \left(C - \frac{1}{2\sqrt{2}} - C - \frac{1}{2\sqrt{2}} \right) \frac{v}{v}$	$[\mathcal{O}_{dud}^{S,RL}]_{211r} (\mathcal{O}_{RL1}^{\nu})$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(d\nu_r)$	(3,3)	$[\mathcal{O}^{S,RR}]_{[12]=1}$	$(\bar{d}^{\dagger}\bar{s}^{\dagger})(e_{r}^{\dagger}\bar{d}^{\dagger})$	(1.8)
$[\mathcal{O}_{ddd}] pqrs$	$V_{s's} (\bigcirc_{\bar{e}qddH,rs'qp} = \bigcirc_{\bar{e}qddH,rs'pq} \bigvee_{\sqrt{2}\Lambda}$	$\begin{bmatrix} O_{dud} \end{bmatrix}_{112r} (O_{RL2})$	$(a^{\dagger}u^{\dagger})(s\nu_r)$	(3,3)		(0,0)	(1,0)
$[\mathcal{O}_{udd}^{\circ}]_{pqrs}$	$C_{ar{l}dud ilde{H},rspq}rac{\partial}{\sqrt{2}\Lambda}$	$[\mathcal{O}_{ddu}^{S,RL}]_{[12]1r}$	$(d^{\dagger} ar{s}^{\dagger})(u u_r)$	$(3, \mathbf{ar{3}})$			
$[\mathcal{O}_{ddd}^{S,RR}]_{pqrs}$	$C_{\bar{l}dddH,rspq} \frac{v}{\sqrt{2}\Lambda}$	$[\mathcal{O}^{S,RR}_{duu}]_{111r} \ (O^e_{RR})$	$(ar{d}^\daggerar{u}^\dagger)(ar{u}^\daggerar{e}_r^\dagger)$	(1 , 8)			
	V - V 2/1	$[\mathcal{O}^{S,RR}_{duu}]_{211r}~(ilde{O}^e_{RR})$	$(ar{s}^\daggerar{u}^\dagger)(ar{u}^\daggerar{e}_r^\dagger)$	(1 , 8)			

LEFT

 $6 \ \Delta(B-L) = 0 \text{ operators} \rightarrow 288 \text{ independent components} \rightarrow 14 \text{ components} \\ \nu_{\alpha} \equiv \nu \quad L_{\alpha} \equiv e_{L}$

5 $|\Delta(B-L)| = 2$ operators $\rightarrow 228$ independent operators $\rightarrow 9$ components $\nu_{\alpha} \equiv \nu \quad L_{\alpha} \equiv e_{L}$ LEFT components involved in nucleon decay at tree level

			<u> </u>			<u> </u>	
Name [52]	SMEFT matching	Name [52] ([12])	Operator	Flavour	Name	Operator	Flavour
		$[\mathcal{O}^{S,LL}_{udd}]_{111r}~(O^{ u}_{LL})$	$(ud)(d u_r)$	(8 , 1)	$\{\mathcal{O}_{ddd}^{S,LL}\}_{[12]T}$	$(\frac{l}{\omega})(\overline{c}, \overline{c})$	(2,1)
$[\mathcal{O}^{S,LL}_{udd}]_{pqrs}$	$V_{q'q}V_{r'r}(C_{qqql,r'q'ps} - C_{qqql,q'r'ps} + C_{qqql,q'pr's})$	$[\mathcal{O}^{S,LL}_{udd}]_{121r}~(ilde{O}^{ u}_{LL1})$	$(us)(d u_r)$	(8 , 1)	$[\mathcal{O}^{S,LR}]_{11=1}$	$(ud)(u^{\dagger}d^{\dagger})$	$(\bar{3} \ 3)$
$[\mathcal{O}_{duu}^{S,LL}]_{pars}$	$V_{p'p}(C_{agal rap's} - C_{agal arp's} + C_{agal ap'rs})$	$[\mathcal{O}^{S,LL}_{udd}]_{112r}~(ilde{O}^{ u}_{LL2})$	$(ud)(s u_r)$	(8 , 1)	$[\mathcal{O}_{udd}^{S,LR}]_{12=1}$	$(us)(\nu_{r}^{\dagger}\bar{d}^{\dagger})$	$(\bar{3}, \bar{3})$
$[\mathcal{O}^{S,LR}]$	$-V \cdot (C + C + C)$	$[\mathcal{O}_{1}^{S,LL}]_{111\pi}$ (\mathcal{O}_{1}^{e})	$(du)(ue_n)$	(8.1)	$[\mathcal{O}_{udd}^{S,LR}]_{11r2}$	$(ud)(\nu_{\tau}^{\dagger}\bar{s}^{\dagger})$	$(\bar{3}, \bar{3})$
$[\mathcal{O}_{duu}]_{pqrs}$	$-v_{p'p}(\bigcirc_{qque,p'qrs} + \bigcirc_{qque,qp'rs})$	$[\mathcal{O}_{duu}^{S,LL}]_{011}$ (\tilde{O}_{LL}^{e})	$(su)(ue_r)$	(0, 1)	$\begin{bmatrix} \upsilon_{udd} \end{bmatrix}^{11r2}$	(44)(275)	(0,0)
$[\mathcal{O}^{S, RL}_{duu}]_{pqrs}$	$C_{duql,pqrs}$	$[\mathcal{O}_{duu}]_{211r}$ (\mathcal{O}_{LL})	$(3u)(uc_r)$	(0,1)	$\begin{bmatrix} \mathcal{O}^{5, L\mathbf{R}} \\ \mathbf{a} du \end{bmatrix}_{\begin{bmatrix} 12 \end{bmatrix}^{112}}$	(ds)(a)(ī])	(3,3)
$[\mathcal{O}_{dud}^{S,RL}]_{pars}$	$-V_{r'r}C_{dual\ par's}$	$[\mathcal{O}^{S,LR}_{duu}]_{111r}$ (O^e_{LR})	$(du)(ar{u}^\daggerar{e}_r^\dagger)$	(3, 3)	$[\mathcal{O}_{ddd}^{S,LR}]_{[12]r1}$	$(ds)(e_r^\dagger ar d^\dagger)$	$(\bar{3}, 3)$
$[\mathcal{O}^{S,RR}]$	C_{1}	$[\mathcal{O}_{duu}^{5,LR}]_{211r}~(O_{LR}^{e})$	$(su)(ar{u}^\daggerar{e}_r^{\scriptscriptstyle \dag})$	(3 , 3)	$\frac{1}{[OS,RL]}$	$(\overline{J}^{\dagger} = 1)(\overline{z} = J)$	(9.9)
$[\mathcal{O}_{duu}]_{pqrs}$	$O_{duue,pqrs}$	$[\mathcal{O}_{duu}^{S,RL}]_{111r}$ (O_{BI}^e)	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$(3, \mathbf{\bar{3}})$	$[\mathcal{O}_{ddd}]_{[12]r1}$	$(a^{\dagger}s^{\dagger})(e_{r}a)$	(3 , 3)
$[\mathcal{O}^{S,LR_1}]$	$V \cdot C = v$	$[\mathcal{O}_{duu}^{S,RL}]_{211r}$ (\tilde{O}_{RL}^{e})	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$(3, \mathbf{\overline{3}})$	$[\mathcal{O}^{S,RR}_{udd}]_{11r1}$	$(ar{u}^\daggerar{d}^\dagger)(u_r^\daggerar{d}^\dagger)$	(1 , 8)
$[\mathcal{O}_{udd}]_{pqrs}$	$-V_{q'q} O_{\overline{l}dqq} \tilde{H}, rspq' \sqrt{2\Lambda}$	$(\circ RL)$	$(\overline{1}+-1)(1)$	(0, 0)	$[\mathcal{O}^{S,RR}_{udd}]_{12r1}$	$(ar{u}^\daggerar{s}^\dagger)(u_r^\daggerar{d}^\dagger)$	(1 , 8)
$[\mathcal{O}_{ddd}^{S,LR}]_{pqrs}$	$V_{p'p}V_{q'q}(C_{\bar{l}daa\tilde{H},rsa'p'}-C_{\bar{l}daa\tilde{H},rsp'a'})\frac{v}{2\sqrt{2}\lambda}$	$\begin{bmatrix} \mathcal{O}_{dud}^{S,RL} \end{bmatrix}_{111r} (\mathcal{O}_{RL}^{\nu})$	$(d^{+}u^{+})(d\nu_{r})$	(3 , 3)	$[\mathcal{O}^{S,RR}_{udd}]_{11r2}$	$(ar{u}^\daggerar{d}^\dagger)(u_r^\daggerar{s}^\dagger)$	(1 , 8)
$[\mathcal{O}^{S,RL}]$	$V = (C = c = c)^{v}$	$[\mathcal{O}_{dud}^{S,RL}]_{211r} (\mathcal{O}_{RL1}^{\nu})$	$(\bar{s}^{\dagger}\bar{u}^{\dagger})(d\nu_r)$	(3, 3)	$[\mathcal{O}^{S,RR}]_{rest}$	$(\overline{d}^{\dagger}\overline{e}^{\dagger})(e^{\dagger}\overline{d}^{\dagger})$	(1.8)
$[\mathcal{O}_{ddd}]_{pqrs}$	$V_{s's}(C_{\bar{e}qdd\tilde{H},rs'qp} - C_{\bar{e}qdd\tilde{H},rs'pq}) \sqrt{2\Lambda}$	$[\mathcal{O}_{dud}^{S,RL}]_{112r} \ (O_{RL2}^{\nu})$	$(d^{\dagger}ar{u}^{\dagger})(s u_r)$	$({\bf 3},{\bf 3})$	$[\mathcal{O}_{ddd}]$][12]r1	$(u^*s^*)(e_ru^*)$	(1,8)
$[\mathcal{O}_{udd}^{S,RR}]_{pqrs}$	$C_{\bar{l}dud\tilde{H},rspa}\frac{v}{\sqrt{2}\lambda}$	$[\mathcal{O}^{S,RL}_{dau}]_{12}$	$(\bar{d}^{\dagger}\bar{a}^{\dagger})(aay)$	$(3,\bar{2})$			
$[\mathcal{O}^{S,RR}]$	$C = \frac{v}{v}$	$[\mathcal{O}^{S,RR}]_{iii}$ (\mathcal{O}^e)	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(\bar{u}^{\dagger}\bar{z}^{\dagger})$	(1.8)			
$[U_{ddd}] pqrs$	$\cup_{ldddH,rspq} \sqrt{2\Lambda}$	$[\mathcal{O}_{duu}]^{111r}$ (\mathcal{O}_{RR}) $[\mathcal{O}^{S,RR}]$ $(\tilde{\mathcal{O}}^{e})$	$(a^{\dagger}a^{\dagger})(a^{\dagger}e_r)$	(1, 0)			
	1997년 1997년 1997년 1997년 1997년 1991년 1992년 1992년 1997년 19	$[U_{duu}]_{211r}$ (U_{RR})	$(s'u')(u'e'_r)$	(1 , 8)			

Not generated at tree level by d = 6, 7 SMEFT ops.

 \cdot RGEs for d = 6 LEFT [A. Manohar et al. 2018]

 $c(2 \text{ GeV}) \sim 1.26 \text{ c}(\text{m}_{\text{W}}) \langle \text{See L. Naterop's talk on 2-loops effects Tuesday 14} \rangle$

- RG effects universal in the LEFT

ΒχΡΤ

(First-time computation of $|\Delta(B - L)| = 2$ two-body decays in the B χ PT formalism)

D = 6 limits

D = 6 limits

D = 7 limits

D = 7 limits

D = 6 pairs of WCs

- · Different search channels provide complementary constraints
- \cdot No flat directions

D = 7 pairs of WCs

- · Different search channels provide complementary constraints
- \cdot No flat directions

Correlations

Correlations

Phenomenological matrices

Numerical κ -matrices available online

Phenomenological matrices

Numerical *κ*-matrices available online

Example UV model

SM enhanced by a scalar LQ ω_2 and a VLF Q_1 $\omega_2 \sim (3, 1, 2/3), Q_1 + \bar{Q}_1^{\dagger} \sim (3, 2, 1/6)$ $\mathscr{L}_{int} = y_{1,ij}\omega_2 \bar{d}^{\dagger i} \bar{d}^{\dagger j} + y_{2,k} H^{\dagger} Q_1 \bar{d}^k + y_{3,k} Q_1 \epsilon H \bar{u}^k + y_{4,l} \omega_2 \bar{Q}_1 L^l + h.c.$

Example UV model

Example UV model

κ-matrices for the 3 processes above, compute Γ and compare with Γ^{exp}

→ $(p \rightarrow K^+ \nu$ the most constraining

 \cdot Model-independent analysis on nucleon decay

· RG effects important: limits enhanced by 30% - 130% (d=6), and 20 - 30% (d=7)

 \cdot Complementary analysis \rightarrow Correlations and flat directions

- · κ -matrices: SMEFT WC at $\Lambda \leftrightarrow$ observables at m_p
- · Positive signals in 2-3 channels \rightarrow SMEFT operators \rightarrow GUT/ UV models

 \cdot Model-independent analysis on nucleon decay

· RG effects important: limits enhanced by 30% - 130% (d=6), and 20 - 30% (d=7)

 \cdot Complementary analysis \rightarrow Correlations and flat directions

· κ -matrices: SMEFT WC at $\Lambda \leftrightarrow$ observables at m_p

· Positive signals in 2-3 channels \rightarrow SMEFT operators \rightarrow GUT/UV models)

Exotic SM channels, Proton decay into BSM particles, BNV through third generation, inclusive searches... \rightarrow The experiments will have the last word

Thank you!

Backup slides

RGEs

$$\begin{split} \dot{C}_{duue,prst} &= \left(-4g_3^2 - 2g_1^2\right) C_{duue,prst} - \frac{20}{3}g_1^2 C_{duue,psrt} + \dots \\ \dot{C}_{duq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{11}{6}g_1^2\right) C_{duq\ell,prst} + \dots \\ \dot{C}_{qque,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{23}{6}g_1^2\right) C_{qque,prst} + \dots \\ \dot{C}_{qqq\ell,prst} &= \left(-4g_3^2 - \frac{9}{2}g_2^2 - \frac{23}{6}g_1^2\right) C_{qqq\ell,prst} + \dots \\ \dot{C}_{qqq\ell,prst} &= \left(-4g_3^2 - 3g_2^2 - \frac{1}{3}g_1^2\right) C_{qqq\ell,prst} - 4g_2^2 \left(C_{qqq\ell,rpst} + C_{qqq\ell,srpt} + C_{qqq\ell,psrt}\right) + \dots \end{split}$$

$$\begin{split} \dot{C}_{\bar{l}dud\tilde{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{12}g_1^2 + y_t^2\right)C_{\bar{l}dud\tilde{H},prst} - \frac{10}{3}g_1^2 C_{\bar{l}dud\tilde{H},ptsr} \,, \\ \dot{C}_{\bar{l}dddH,prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{13}{12}g_1^2 + y_t^2\right)C_{\bar{l}dddH,prst} \,, \\ \dot{C}_{\bar{e}qdd\tilde{H},prst} &= \left(-4g_3^2 - \frac{9}{4}g_2^2 + \frac{11}{12}g_1^2 + y_t^2\right)C_{\bar{e}qdd\tilde{H},prst} \,, \\ \dot{C}_{\bar{l}dqq\tilde{H},prst} &= \left(-4g_3^2 - \frac{15}{4}g_2^2 - \frac{19}{12}g_1^2 + y_t^2\right)C_{\bar{l}dqq\tilde{H},prst} - 3g_2^2 C_{\bar{l}dqq\tilde{H},prts} \,. \end{split}$$

Direct and Indirect method

Direct and Indirect method

$$\Gamma(N \to M + \ell) = \frac{m_N}{32\pi} \left(1 - \frac{m_M^2}{m_N^2} \right)^2 \left| \sum_I C_I W_0^I(N \to M) \right|^2$$

 $W_0^I(N \to M)$

computed in the lattice

(Several parameters)

$$\Gamma\left(p \to \pi^+ \nu_r\right) = (32\pi f_\pi^2 m_p^3)^{-1} (m_p^2 - m_\pi^2)^2 \left| \alpha \left[L_{udd}^{S,LR} \right]_{11r1} + \beta \left[L_{udd}^{S,RR} \right]_{11r1} \right|^2 (1 + D + F)^2$$

$$\begin{split} \Gamma\left(n \to K^{+}e_{r}^{-}\right) &= (32\pi f_{\pi}^{2}m_{n}^{3})^{-1}(m_{n}^{2} - m_{K}^{2})^{2} \times \\ \left\{ \left| \beta \left[L_{ddd}^{S,LL} \right]_{12r1} - \alpha \left[L_{ddd}^{S,RL} \right]_{12r1} + \frac{m_{n}}{m_{\Sigma}} \left(\alpha \left[L_{ddd}^{S,RL} \right]_{12r1} + \beta \left[L_{ddd}^{S,LL} \right]_{12r1} \right) (D - F) \right|^{2} \right. \\ \left. + \left| \beta \left[L_{ddd}^{S,RR} \right]_{12r1} - \alpha \left[L_{ddd}^{S,LR} \right]_{12r1} + \frac{m_{n}}{m_{\Sigma}} \left(\alpha \left[L_{ddd}^{S,LR} \right]_{12r1} + \beta \left[L_{ddd}^{S,RR} \right]_{12r1} \right) (D - F) \right|^{2} \right\} \end{split}$$

 D, F, f_{π} low-energy B χ PT constants

computed in the lattice

$$\left| -\alpha \left[L_{udd}^{S,LR} \right]_{12r1} + \beta \left[L_{udd}^{S,RR} \right]_{12r1} + \alpha \left[L_{udd}^{S,LR} \right]_{11r2} + \beta \left[L_{udd}^{S,RR} \right]_{11r2} \right. \\ \left. - \frac{m_n}{2m_{\Sigma}} \left(\alpha \left[L_{udd}^{S,LR} \right]_{12r1} + \beta \left[L_{udd}^{S,RR} \right]_{12r1} \right) (D-F) \right. \\ \left. + \frac{m_n}{6m_{\Lambda}} \left(\alpha \left[L_{udd}^{S,LR} \right]_{12r1} + \beta \left[L_{udd}^{S,RR} \right]_{12r1} + 2\alpha \left[L_{udd}^{S,LR} \right]_{11r2} + 2\beta \left[L_{udd}^{S,RR} \right]_{11r2} \right) (D+3F) \right|^2$$

 $\Gamma(n \to K^0 \nu_r) = (32\pi f_\pi^2 m_n^3)^{-1} (m_n^2 - m_K^2)^2 \times$

к-matrices

$$\begin{split} \mathcal{L}_{0} \supset & \left(\frac{D-F}{f_{\pi}} \, \overline{\Sigma^{+}} \gamma^{\mu} \gamma_{5} p - \frac{D+3F}{\sqrt{6} f_{\pi}} \, \overline{\Lambda^{0}} \gamma^{\mu} \gamma_{5} n - \frac{D-F}{\sqrt{2} f_{\pi}} \, \overline{\Sigma^{0}} \gamma^{\mu} \gamma_{5} n \right) \, \partial_{\mu} \bar{K}^{0} \\ & + \left(\frac{D-F}{\sqrt{2} f_{\pi}} \, \overline{\Sigma^{0}} \gamma^{\mu} \gamma_{5} p - \frac{D+3F}{\sqrt{6} f_{\pi}} \, \overline{\Lambda^{0}} \gamma^{\mu} \gamma_{5} p + \frac{D-F}{f_{\pi}} \, \overline{\Sigma^{-}} \gamma^{\mu} \gamma_{5} n \right) \, \partial_{\mu} K^{-} \\ & + \frac{3F-D}{2\sqrt{6} f_{\pi}} \, \left(\bar{p} \gamma^{\mu} \gamma_{5} p + \, \bar{n} \gamma^{\mu} \gamma_{5} n \, \right) \partial_{\mu} \eta \\ & + \frac{D+F}{f_{\pi}} \, \bar{p} \gamma^{\mu} \gamma_{5} n \, \partial_{\mu} \pi^{+} \\ & + \frac{D+F}{2\sqrt{2} f_{\pi}} \, \left(\bar{p} \gamma^{\mu} \gamma_{5} p - \, \bar{n} \gamma^{\mu} \gamma_{5} n \, \right) \partial_{\mu} \pi^{0} + \text{h.c.} \, . \end{split}$$

$\xi B \xi \to L \xi B \xi R^{\dagger}$	$\xi^{\dagger}B\xi^{\dagger} \rightarrow R\xi^{\dagger}B\xi^{\dagger}L^{\dagger}$
$\xi B \xi^\dagger \to L \xi B \xi^\dagger L^\dagger$	$\xi^{\dagger}B\xi ightarrow R\xi^{\dagger}B\xi R^{\dagger}$

 $\xi B \xi \sim (\mathbf{3}, \mathbf{\bar{3}}), \ \xi^{\dagger} B \xi^{\dagger} \sim (\mathbf{\bar{3}}, \mathbf{3}), \ \xi B \xi^{\dagger} \sim (\mathbf{8}, \mathbf{1}), \ \xi^{\dagger} B \xi \sim (\mathbf{1}, \mathbf{8})$

$$\alpha \cdot \nu \operatorname{tr}(\xi B \xi^{\dagger} P_{32}) = -(du)(d\nu) = [\mathcal{O}_{udd}]_{1111}^{S,LL}$$

$$\langle 0|\epsilon^{abc}(\bar{u}_a^{\dagger}\bar{d}_b^{\dagger})u_c|p^{(s)}\rangle = \alpha P_L u_p^{(s)}$$
$$\langle 0|\epsilon^{abc}(u_a d_b)u_c|p^{(s)}\rangle = \beta P_L u_p^{(s)}$$

Name	LEFT	$ m Flavour/B\chi PT$
$[\mathcal{O}_{udd}^{S,LL}]_{rstu}$	$(u_r d_s)(d_t u_u)$	(8 , 1)
$[\mathcal{O}_{udd}^{S,LL}]_{111r}$	$(ud)(d u_r)$	$-\beta\overline{\nu_{Lr}^c}\operatorname{tr}(\xi B\xi^{\dagger}P_{32}) \supset -\beta\overline{\nu_{Lr}^c}n - \frac{i\beta}{f_{\pi}}\overline{\nu_{Lr}^c}\left(\sqrt{\frac{3}{2}}n\eta - \frac{1}{\sqrt{2}}n\pi^0 + p\pi^-\right)$
$[\mathcal{O}_{udd}^{S,LL}]_{121r}$	$(us)(d u_r)$	$-eta\overline{ u_{Lr}^c}\mathrm{tr}(\xi B\xi^\dagger ilde{P}_{22}) \supset -eta\overline{ u_{Lr}^c}\left(-rac{\Lambda^0}{\sqrt{6}}+rac{\Sigma^0}{\sqrt{2}} ight) -rac{ieta}{f_\pi}\overline{ u_{Lr}^c}nar{K}^0$
$[\mathcal{O}_{udd}^{S,LL}]_{112r}$	$(ud)(s u_r)$	$-eta\overline{ u_{Lr}^c} ext{tr}(\xi B\xi^\dagger P_{33})\supseteta\sqrt{rac{2}{3}}\overline{ u_{Lr}^c}\Lambda^0-rac{ieta}{f_\pi}\overline{ u_{Lr}^c}\left(nar{K}^0+pK^- ight)$
$[\mathcal{O}_{duu}^{S,LL}]_{rstu}$	$(d_r u_s)(u_t e_u)$	(8 , 1)
$[\mathcal{O}_{duu}^{S,LL}]_{111r}$	$(du)(ue_r)$	$-\beta \overline{e_{Lr}^c} \operatorname{tr}(\xi B \xi^{\dagger} \tilde{P}_{31}) \supset \beta \overline{e_{Lr}^c} p + \frac{i\beta}{f_{\pi}} \overline{e_{Lr}^c} \left(\sqrt{\frac{3}{2}} p\eta + \frac{1}{\sqrt{2}} p\pi^0 + n\pi^+ \right)$
$[\mathcal{O}^{S,LL}_{duu}]_{211r}$	$(su)(ue_r)$	$-eta \overline{e_{Lr}^c} \mathrm{tr}(\xi B \xi^\dagger P_{21}) \supset -eta \overline{e_{Lr}^c} \Sigma^+ + rac{ieta}{f_\pi} \overline{e_{Lr}^c} p ar{K}^0$
$[\mathcal{O}^{S,LR}_{uud}]_{[rs]tu}$	$(u_r u_s) (ar{d}_t^\dagger ar{e}_u^\dagger)$	—
$[\mathcal{O}_{duu}^{S,LR}]_{rstu}$	$(d_r u_s)(ar{u}_t^\dagger ar{e}_u^\dagger)$	$(ar{f 3},{f 3})$
$[\mathcal{O}_{duu}^{S,LR}]_{111r}$	$(du)(ar{u}^\daggerar{e}_r^\dagger)$	$\alpha \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi^{\dagger} \tilde{P}_{31}) \supset -\alpha \overline{e_{Rr}^c} p + \frac{i\alpha}{f_{\pi}} \overline{e_{Rr}^c} \left(-\frac{1}{\sqrt{6}} p\eta + \frac{1}{\sqrt{2}} p\pi^0 + n\pi^+ \right)$
$[\mathcal{O}_{duu}^{S,LR}]_{211r}$	$(su)(ar{u}^\daggerar{e}_r^\dagger)$	$\alpha \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi^{\dagger} P_{21}) \supset \alpha \overline{e_{Rr}^c} \Sigma^+ - \frac{i\alpha}{f_{\pi}} \overline{e_{Rr}^c} p \bar{K}^0$
$[\mathcal{O}^{S,RL}_{uud}]_{[rs]tu}$	$(\bar{u}_r^\dagger \bar{u}_s^\dagger)(d_t e_u)$	—
$[\mathcal{O}_{duu}^{S,RL}]_{rstu}$	$(\bar{d}_r^\dagger \bar{u}_s^\dagger)(u_t e_u)$	$(3, \mathbf{ar{3}})$
$[\mathcal{O}_{duu}^{S,RL}]_{111r}$	$(ar{d}^\daggerar{u}^\dagger)(ue_r)$	$-\alpha \overline{e_{Lr}^c} \operatorname{tr}(\xi B \xi \tilde{P}_{31}) \supset \alpha \overline{e_{Lr}^c} p + \frac{i\alpha}{f_\pi} \overline{e_{Lr}^c} \left(-\frac{1}{\sqrt{6}} p\eta + \frac{1}{\sqrt{2}} p\pi^0 + n\pi^+ \right)$
$[\mathcal{O}_{duu}^{S,RL}]_{211r}$	$(ar{s}^\daggerar{u}^\dagger)(ue_r)$	$-lpha \overline{e_{Lr}^c} \mathrm{tr}(\xi B \xi P_{21}) \supset -lpha \overline{e_{Lr}^c} \Sigma^+ - rac{ilpha}{f_\pi} \overline{e_{Lr}^c} p ar{K}^0$
$[\mathcal{O}^{S,RL}_{dud}]_{rstu}$	$(ar{d}_r^\daggerar{u}_s^\dagger)(d_t u_u)$	$(3, ar{3})$
$[\mathcal{O}_{dud}^{S,RL}]_{111r}$	$(ar{d}^\daggerar{u}^\dagger)(d u_r)$	$\alpha \overline{\nu_{Lr}^c} \text{tr}(\xi B \xi \tilde{P}_{32}) \supset -\alpha \overline{\nu_{Lr}^c} n + \frac{i\alpha}{f_\pi} \overline{\nu_{Lr}^c} \left(\frac{1}{\sqrt{6}} n\eta + \frac{1}{\sqrt{2}} n\pi^0 - p\pi^- \right)$
$[\mathcal{O}^{S,RL}_{dud}]_{211r}$	$(ar{s}^\daggerar{u}^\dagger)(d u_r)$	$lpha \overline{ u_{Lr}^c} ext{tr}(\xi B \xi P_{22}) \supset lpha \overline{ u_{Lr}^c} \left(rac{\Lambda^0}{\sqrt{6}} - rac{\Sigma^0}{\sqrt{2}} ight) + rac{i lpha}{f_\pi} \overline{ u_{Lr}^c} n ar{K}^0$
$[\mathcal{O}^{S,RL}_{dud}]_{112r}$	$(ar{d}^\daggerar{u}^\dagger)(s u_r)$	$\alpha \overline{\nu_{Lr}^c} \mathrm{tr}(\xi B \xi \tilde{P}_{33}) \supset \alpha \overline{\nu_{Lr}^c} \sqrt{\frac{2}{3}} \Lambda^0 - \frac{i \alpha}{f_\pi} \overline{\nu_{Lr}^c} \left(n \bar{K}^0 + p K^- \right)$
$[\mathcal{O}^{S,RL}_{dud}]_{212r}$	$(ar{s}^\daggerar{u}^\dagger)(s u_r)$	$lpha \overline{ u_{Lr}^c} \mathrm{tr}(\xi B \xi P_{23}) \supset lpha \overline{ u_{Lr}^c} \Xi^0$
$[\mathcal{O}_{ddu}^{S,RL}]_{[rs]tu}$	$(ar{d}_r^\dagger ar{d}_s^\dagger)(u_t u_u)$	$(3, ar{3})$
$[\mathcal{O}_{ddu}^{S,RL}]_{[12]1r}$	$(ar{d}^\daggerar{s}^\dagger)(u u_r)$	$-\alpha \overline{\nu_{Lr}^c} \operatorname{tr}(\xi B \xi P_{11}) \supset \alpha \overline{\nu_{Lr}^c} \left(\frac{\Lambda^0}{\sqrt{6}} + \frac{\Sigma^0}{\sqrt{2}} \right) - \frac{i\alpha}{f_{\pi}} \overline{\nu_{Lr}^c} p K^-$
$[\mathcal{O}^{S,RR}_{duu}]_{rstu}$	$(\bar{d}_r^\dagger \bar{u}_s^\dagger) (\bar{u}_t^\dagger \bar{e}_u^\dagger)$	(1 , 8)
$[\mathcal{O}_{duu}^{S,RR}]_{111r}$	$(\bar{d}^\dagger \bar{u}^\dagger) (\bar{u}^\dagger \bar{e}_r^\dagger)$	$\beta \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi \tilde{P}_{31}) \supset -\beta \overline{e_{Rr}^c} p + \frac{i\beta}{f_{\pi}} \overline{e_{Rr}^c} \left(\sqrt{\frac{3}{2}} p \eta + \frac{1}{\sqrt{2}} p \pi^0 + n \pi^+ \right)$
$[\mathcal{O}^{S,RR}_{duu}]_{211r}$	$(ar{s}^\daggerar{u}^\dagger)(ar{u}^\daggerar{e}_r^\dagger)$	$eta \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi P_{21}) \supset eta \overline{e_{Rr}^c} \Sigma^+ + rac{ieta}{f_{\pi}} \overline{e_{Rr}^c} p \bar{K}^0$

Name	LEFT	${ m Flavour}/{ m B}\chi{ m PT}$
$[\mathcal{O}_{udd}^{S,LL}]_{rstu}$	$(u_r d_s)(d_t u_u)$	(8 , 1)
$[\mathcal{O}_{udd}^{S,LL}]_{111r}$	$(ud)(d u_r)$	$-\beta\overline{\nu_{Lr}^c}\mathrm{tr}(\xi B\xi^{\dagger}P_{32}) \supset -\beta\overline{\nu_{Lr}^c}n - \frac{i\beta}{f_{\pi}}\overline{\nu_{Lr}^c}\left(\sqrt{\frac{3}{2}}n\eta - \frac{1}{\sqrt{2}}n\pi^0 + p\pi^-\right)$
$[\mathcal{O}_{udd}^{S,LL}]_{121r}$	$(us)(d u_r)$	$-\beta \overline{\nu_{Lr}^c} \text{tr}(\xi B \xi^{\dagger} \tilde{P}_{22}) \supset -\beta \overline{\nu_{Lr}^c} \left(-\frac{\Lambda^0}{\sqrt{6}} + \frac{\Sigma^0}{\sqrt{2}} \right) - \frac{i\beta}{f_{\pi}} \overline{\nu_{Lr}^c} n \bar{K}^0$
$[\mathcal{O}_{udd}^{S,LL}]_{112r}$	$(ud)(s u_r)$	$-\beta \overline{\nu_{Lr}^c} \operatorname{tr}(\xi B \xi^{\dagger} P_{33}) \supset \beta \sqrt{\frac{2}{3}} \overline{\nu_{Lr}^c} \Lambda^0 - \frac{i\beta}{f_{\pi}} \overline{\nu_{Lr}^c} \left(n \overline{K}^0 + p K^- \right)$
$[\mathcal{O}_{duu}^{S,LL}]_{rstu}$	$(d_r u_s)(u_t e_u)$	(8 , 1)
$[\mathcal{O}_{duu}^{S,LL}]_{111r}$	$(du)(ue_r)$	$-\beta \overline{e_{Lr}^c} \operatorname{tr}(\xi B \xi^{\dagger} \tilde{P}_{31}) \supset \beta \overline{e_{Lr}^c} p + \frac{i\beta}{f_{\pi}} \overline{e_{Lr}^c} \left(\sqrt{\frac{3}{2}} p\eta + \frac{1}{\sqrt{2}} p\pi^0 + n\pi^+ \right)$
$[\mathcal{O}^{S,LL}_{duu}]_{211r}$	$(su)(ue_r)$	$-\beta \overline{e_{Lr}^c} \operatorname{tr}(\xi B \xi^{\dagger} P_{21}) \supset -\beta \overline{e_{Lr}^c} \Sigma^+ + \frac{i\beta}{f_{\pi}} \overline{e_{Lr}^c} p \overline{K}^0$
$[\mathcal{O}^{S,LR}_{uud}]_{[rs]tu}$	$(u_r u_s)(ar{d}_t^\dagger ar{e}_u^\dagger)$	
$[\mathcal{O}^{S,LR}_{duu}]_{rstu}$	$(d_r u_s)(ar{u}_t^\dagger ar{e}_u^\dagger)$	$(ar{f 3},{f 3})$
$[\mathcal{O}^{S,LR}_{duu}]_{111r}$	$(du)(ar{u}^\daggerar{e}_r^\dagger)$	$\alpha \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi^{\dagger} \tilde{P}_{31}) \supset -\alpha \overline{e_{Rr}^c} p + \frac{i\alpha}{f_{\pi}} \overline{e_{Rr}^c} \left(-\frac{1}{\sqrt{6}} p \eta + \frac{1}{\sqrt{2}} p \pi^0 + n \pi^+ \right)$
$[\mathcal{O}^{S,LR}_{duu}]_{211r}$	$(su)(ar{u}^\daggerar{e}_r^\dagger)$	$\alpha \overline{e_{Rr}^c} \operatorname{tr}(\xi^{\dagger} B \xi^{\dagger} P_{21}) \supset \alpha \overline{e_{Rr}^c} \Sigma^+ - \frac{i\alpha}{f_{\pi}} \overline{e_{Rr}^c} p \bar{K}^0$
$[\mathcal{O}^{S,RL}_{uud}]_{[rs]tu}$	$(ar{u}_r^\daggerar{u}_s^\dagger)(d_te_u)$	
$[\mathcal{O}^{S,RL}_{duu}]_{rstu}$	$(ar{d}_r^\daggerar{u}_s^\dagger)(u_te_u)$	$({f 3},ar{f 3})$
$[\mathcal{O}^{S,RL}_{duu}]_{111r}$	$(\bar{d}^{\dagger}\bar{u}^{\dagger})(ue_r)$	$-\alpha \overline{e_{Lr}^c} \operatorname{tr}(\xi B \xi \tilde{P}_{31}) \supset \alpha \overline{e_{Lr}^c} p + \frac{i\alpha}{f_\pi} \overline{e_{Lr}^c} \left(-\frac{1}{\sqrt{6}} p\eta + \frac{1}{\sqrt{2}} p\pi^0 + n\pi^+ \right)$
$[\mathcal{O}^{S,RL}_{duu}]_{211r}$	$(ar{s}^\daggerar{u}^\dagger)(ue_r)$	$-\alpha \overline{e_{Lr}^c} \operatorname{tr}(\xi B \xi P_{21}) \supset -\alpha \overline{e_{Lr}^c} \Sigma^+ - \frac{i\alpha}{f_\pi} \overline{e_{Lr}^c} p \overline{K}^0$

Nucleon decay channels

$$\Gamma(N \to M \mathscr{C}_{\alpha}) = 0 \qquad \begin{pmatrix} n \to \eta^{0} \nu \\ n \to \pi^{0} \nu \\ p \to \pi^{+} \nu \\ n \to \pi^{-} e^{+} \\ p \to \eta^{0} e^{+} \\ p \to \pi^{0} e^{+} \\ p \to \kappa^{0} e^{+} \\ n \to K^{0} \nu \\ p \to K^{0} \nu \\ p \to K^{+} \nu \end{pmatrix} \qquad \Gamma(N \to M \mathscr{C}_{\alpha}) \qquad \begin{pmatrix} n \to \eta^{0} \nu \\ n \to \pi^{0} \nu \\ p \to \pi^{+} \nu \\ n \to K^{0} \nu \\ n \to K^{+} \nu \\ n \to K^{+} e^{-} \end{pmatrix}$$

• All 2-body PS decays except for $p \to \overline{K}^0 e^+$ $n \to \overline{K}^0 \nu$ $n \to K^- e^+$ $n \to \pi^+ e^-$ • No B χ PT formalism developed for PD into vector mesons, e.g. $p \to \rho^0 e^+$ and $p \to \omega^0 e^+$

Phenomenological matrices

