### Simultaneously Constraining the Neutron Star **Equation of State and Mass Distribution through Multimessenger Observations and Nuclear** Benchmarks



August 30, 2024

Based on arXiv: 2408.15192 by Bhaskar Biswas & Stephan Rosswog

Bhaskar Biswas | Hamburg observatory Institute for nuclear theory, Seattle



## What we know about the EOS of neutron stars?



Low density EOS is well known; Challenges bengin near saturation saturation density

High density regime: pQCD, relative uncertainty  $\pm 24\%$  at  $\mu_B = 2.6$  GeV,  $n \approx 40n_s$ 

Tews et al., PRL, 110 (2013) Hebeler et al., ApJ 773 (2013) Drischler et al., PRL 125 (2020)

Kurkela et al., PRD 81 (2009) Gorda et al., PRL 121 (2018)



## EOS & observables





- \* Radio observables M
- \* X-ray observables M , R
- \* GW observables M,  $\Lambda$





Figure: paulo freire and vivek k. krishnan 2024

A list of 136 known pulsar (PSR) masses can be found at Fan et al., PRD 109 (2024)



## NICER M-R measurements

16



Rutherford et al., ApJL (2024)

J0030 :  $M = 1.40^{+0.13}_{-0.12} M_{\odot}$ ,  $R = 11.71^{+0.88}_{-0.83}$  km Or,  $M = 1.70^{+0.18}_{-0.19} M_{\odot}$ ,  $R = 14.44^{+0.88}_{-1.05}$  km (Vinciguerra et al. 2023 )

J0740 :  $M = 2.07 \pm 0.07 M_{\odot}$ ,  $R = 12.49^{+1.28}_{-0.88}$  km (Salmi et al. 2024)

J0437:  $M = 1.418 \pm 0.037 M_{\odot}$ ,  $R = 11.36^{+0.95}_{-0.63}$  km (Choudhury et al. 2024)





Pic credit: S. Bernouzzi

# Fundamental physics with Inspiral Phase

In inspiral phase, tidal deformation of neutron star leaves an imprint on GW waveform which can tell us about the EOS

$$Q_{ij} = -\lambda \epsilon_{ij}$$

$$\lambda = \frac{2}{3}k_2R^5$$

 $\lambda$  and  $k_2$  are the tidal deformability and tidal Love number respectively



# Tidal deformability from BNS mergers

#### GW170817, LVK PRX 2019



- \* Presence of EM counterpart
- \* Information on tidal deformation

#### GW190425, LVK ApJL 2020



- \* EM counterpart is not detected
- \* Weak measurements of tidal deformability





Hen, Science 371, 232 (2021)

#### Nucleon density in neutron-rich nuclei



## New terrestrial experiments

- \* Neutron skin thickness strongly correlates with pressure
- \* PREX-II measured the neutron skin thickness of  $^{208}Pb, R_{skin}^{208} = 0.283 \pm 0.071$
- CREX measured the neutron skin thickness of  ${}^{40}Ca, R_{\rm skin}^{40} = 0.121 \pm 0.026$

- \* Skin thicknesses are strongly correlated with slope parameter *L*,  $R_{\rm skin}^{208}$ [fm] = 0.101 + 0.00147 × *L*[MeV].  $R_{\rm skin}^{48} = 0.0416 + 0.6169 R_{\rm skin}^{208}.$





### Piekarewicz, 2024

# Bayesian approach to constrain NS EOS

### Wrong population model biases EOS inference Wysocki et al., arXiv: 2001.01747



### **Bayesian statistics to simultaneously infer NS EOS and population model**

### \* $P(\theta \mid d) \propto P(\theta) \prod_i P(d_i \mid \theta)$ , Posterior Prior Likelihood

 $\theta \in (EOS \text{ and mass population parameters})$ 

# Hybrid nuclear+PP EoS parameterization

\*



Pic credit: Hebeler et al. ApJ, 773 (2013)

- \* In outer crust Sly EOS is used
- \* Then below  $1.1\rho_0$  saturation properties of nuclear matter is used

$$e(\rho, \delta) \approx e_0(\rho) + e_{\text{sym}}(\rho)\delta^2$$

$$e_0(\rho) = e_0(\rho_0) + \frac{K_0}{2}\chi^2 \dots,$$

$$e_{\rm sym}(\rho) = e_{\rm sym}(\rho_0) + L\chi + \frac{K_{\rm sym}}{2}\chi^2 + .$$

$$\delta = (\rho_{\rm n} - \rho_{\rm p})/\rho,$$
  
$$\chi = (\rho - \rho_0)/3\rho_0$$

\* At high densities piecewise-polytrope is used with varying transition densities



### Mass distribution model

\* For simplicity we assume all NSs in the universe follow double Gaussian distribution

 $egin{aligned} P_{ ext{\tiny NN}}(M|\mu_1,\sigma_1,\mu_2)\ &[w\mathcal{N}(M|\mu_1,\sigma_2)] \end{aligned}$ 

 $U(M|M_{\min}, M_{\max}) =$ 

This assumption might not be true as GWs may follow a different distribution.
 (Landry and Read, 2021)

But too less detections, to make any conclusion

$$(\sigma_2, w, M_{\min}, M_{\max}) =$$
  
 $(\tau_1)/B + (1 - w)\mathcal{N}(M|\mu_2, \sigma_2)/C]$   
 $U(M|M_{\min}, M_{\max}),$ 

$$\begin{cases} rac{1}{M_{\max} - M_{\min}} & ext{if } M_{\min} \leq M \leq M_{\max}, \\ 0 & ext{else.} \end{cases}$$

### Priors

\* Some empirical parameters are kept fixed in our analysis  $n_0 = 0.16 \text{ fm}^{-3}$  $e_0(n_0) = -15.9 \text{ MeV}$  $K_0 = 240 \text{ MeV}$  $e_{\text{sym}} = 31.7 \text{ MeV}$ 

Uncertainty in  $n_0$  and  $e_0$  are already small.

 $K_0$  and  $e_{sym}$  have weak influence on NS  $M, R, \Lambda$ .

\* For all the parameters wide uniform priors are kept.

| Model | Parameters   | Units       | Prior                |
|-------|--------------|-------------|----------------------|
| EOS   | L            | MeV         | U(0, 150)            |
|       | $K_{ m sym}$ | MeV         | U(-600, 100)         |
|       | $n_1$        | $n_0$       | U(1.5, 8.3)          |
|       | $n_2$        | $n_0$       | $U(n_1, 8.3)$        |
|       | $\Gamma_1$   | _           | U(1, 4.5)            |
|       | $\Gamma_2$   | _           | U(0, 8.5)            |
|       | $\Gamma_3$   | -           | U(0.5, 8.5)          |
| Mass  | $\mu_1$      | $M_{\odot}$ | $U(0.9,\mu_2)$       |
|       | $\sigma_1$   | $M_{\odot}$ | $U(0.01,\sigma_2)$   |
|       | $\mu_2$      | $M_{\odot}$ | $U(0.9, M_{ m max})$ |
|       | $\sigma_2$   | $M_{\odot}$ | U(0.01, 1.0)         |
|       | w            | -           | U(0.1, 0.9)          |



### Posterior of EOS parameters





- Astrophysical Observations **Constrain Nuclear** Parameters
- \* Addition of 129 PSRs measurements have visibe impact on the EOS parameters
- Significant Impact of χEFT **Calculations on Empirical** Parameters
- \* Transition densities peaking at the higher end of the pr10r
- \*  $\Gamma_2$  and  $\Gamma_3$  are uninformative



## Mass-radius band



- Addition of PSRs mass measurements overall tightens the M-R band
   Significant impact of χ EFT
- \* No noticeable impact by pQCD, CREX, and PREX-II
- \* PSR J0437 slightly soften the posterior



### Constraints on a few key quantities



### <u>90 % CIs</u>

 $12.21 < R_{1.4} \,[\text{km}] < 12.86$ 

### $398 < \Lambda_{1.4} < 575$

 $3.63 < n_{\rm max} [n_0] < 5.87$ 

 $2.18 < M_{\rm max} [M_{\odot}] < 2.35$ 



## What's up with PREX-II & CREX?

\* PREX-II and CREX measurements influences empirical parameters if *χ*EFT constraints are not added

\* The overall impact of PREX-II & CREX is overshadowed by  $\chi$ EFT

# Why is pQCD uninformative?

- \* To check if an EOS is consistent with the pQCD prediction, we assume knowledge of the EOS at a low-density limit
- \* This choice is arbitrary
- \* Previous works used an ad hoc density of  $n_{\text{low}} = 10 n_s$  and conclude pQCD can rule out soft EOSs above  $2.2 n_0$
- \* We choose corresponds to central density of the maximum mass star and observe negligible impact





### Posterior of NS mass distribution



- \* Overall constraint is dominated by the PSRs mass measurements
- \* Tight constraint on  $\mu_1$  and narrow spread
- \* Broader distribution for the secondary componenet



- \* A comprehensive Bayesian framework to simultaneously infer NS EOS and population model is provided combining astrophysical observations and nuclear inputs
- \* Not only GWs and NICERs, the addition of 129 PSRs mass measurements overall tightens the M-R band
- \* Significant Impact of  $\chi$ EFT Calculations on Empirical Parameters and as well as the M-R band
- \* PREX-II and CREX measurements influences empirical parameters if  $\chi$ EFT constraints are not added. The overall impact of PREX-II & CREX is overshadowed by  $\chi$ EFT.
- \* Constraints coming from pQCD have a **minimal effect** on EOS inference.



