Transverse Momentum Distributions Phenomenology With NN

Chiara Bissolotti **Argonne National Laboratory**

QCD at the Femtoscale in the Era of Big Data

June 18th, 2024

with Map Collaboration

Valerio Bertone, Matteo Cerutti Simone Rodini

HAS QCD HADRONIC STRUCTURE AND QUANTUM CHROMODYNAMICS

TMDs: 3D maps in momentum space

Transverse Momentum Distributions

TMDs

 $f^q(x, \mathbf{k_T})$

collinear

Parton Distribution Functions

PDFs

U maps

Nucleon tomography Mapping the proton

...what you see depends on how you look!

TMDs: 3D maps in momentum space

Transverse Momentum Distributions

TMDs

 $f^q(x, \mathbf{k_T})$

collinear

Parton Distribution Functions

PDFs

0.0 ky (GeV)

Complications **Transverse momentum can be ...**

intrinsic

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

slide credit: Fulvio Piacenza

perturbative

what we measure is:

TMD PDFS

$f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_j \otimes f^j \right) (x,b_*;\mu_b) e^{R(b_*;\mu_b,\mu)} f_{\mathrm{NP}}(x,b)$

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

unpolarized Transverse Momentum Dependent Parton Distribution Functions

TMD PDFS

$f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_j \otimes f^j \right) (x,b_*;\mu_b) e^{R(b_*;\mu_b,\mu)} f_{\mathrm{NP}}(x,b)$

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

unpolarized Transverse Momentum Dependent Parton Distribution Functions

collinear PDFs

TMD PDFs

unpolarized Transverse Momentum Dependent Parton Distribution Functions collinear PDFs $f^{j}(x, b_{*}; \mu_{b})e^{R(b_{*}; \mu_{b}, \mu)}f_{NP}(x, b)$

matching to the collinear region

$$f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_j \otimes \right)^q$$

perturbative expansion in $\alpha_{s}(\mu)$

perturbative evolution

TMD PDFS

matching to the collinear region $f_1^q(x,b;\mu,\zeta) = \sum_i (C_j \otimes f$

perturbative expansion in $\alpha_{s}(\mu)$

$$L = \ln \frac{Q^2}{\mu_b^2}$$

resummation of large logarithms

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

unpolarized Transverse Momentum Dependent Parton Distribution Functions

collinear PDFs

$$f^{j})(x, b_{*}; \mu_{b})e^{R(b_{*}; \mu_{b}, \mu)}f_{NP}(x, b)$$

perturbative evolution

TMD PDFS

matching to the collinear region

perturbative expansion in $\alpha_{s}(\mu)$

$$L = \ln \frac{Q^2}{\mu_b^2}$$

resummation of large logarithms

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$$\begin{split} F_{UU}^{1}(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2}) \\ &= \sum_{a} \mathcal{H}_{UU}^{1a}(Q^{2}, \mu^{2}) \int d^{2}\boldsymbol{k}_{\perp A} d^{2}\boldsymbol{k}_{\perp B} f_{1}^{a}(x_{A}, \boldsymbol{k}_{\perp A}^{2}; \mu^{2}) f_{1}^{\bar{a}}(x_{B}, \boldsymbol{k}_{\perp B}^{2}; \mu^{2}) \delta^{(2)}(\boldsymbol{k}_{\perp A} - \boldsymbol{q}_{T} + \boldsymbol{k}_{\perp B}) \\ &+ Y_{UU}^{1}(Q^{2}, \boldsymbol{q}_{T}^{2}) + \mathcal{O}(M^{2}/Q^{2}) \end{split}$$

 $d\sigma$ $\overline{dq_T}$ °91 / res. U

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$$\mathbf{q}_T x_1 f_1^q(x_1, \mathbf{b}; \mu, \zeta_1) x_2 f_1^{\overline{q}}(x_2, \mathbf{b}; \mu, \zeta_2)$$

QCD running constant α_s

non perturbative region quark confinement

U.S. DEPARTMENT OF **ENERGY** Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

b-min choice

 GeV^{-1}

 $\left(1 - \exp\left(-\frac{b^4}{h^4}\right)\right)^{\frac{1}{4}}$ $\overline{b_{\max}^4}$ $b_*(b) = b_{\max}$ b^4 $-\exp$ min

Argonne National Laboratory is a 🔰 U.Š. Department of Energy laboratory managed by UChicago Argonne, LLC.

invalidates perturbative calculations

b* prescription

$$f(x,b;\mu,\zeta) = \left[\frac{f(x,z)}{f(x,z)}\right]$$

non perturbative

Non perturbative function depends on the choice of b*-prescription

Integrations In order to compare theory with data \ast experiments measure the cross section σ

integration over the range in momentum transfer

$$\sigma = \int_{Q_{\min}}^{Q_{\max}} dQ \int_{y_{\min}}^{y_{\max}}$$

numerical integration

Ogata quadrature

Parameterization of the non-perturbative part of TMDs TMD PDF $f_{1NP}(x, b_T^2) \propto F.T. \text{ of } \left(e^{-\frac{k_{\perp}^2}{g_{1A}}} + \lambda_B k_{\perp}^2 e^{-\frac{k_{\perp}^2}{g_{1B}}} + \lambda_C e^{-\frac{k_{\perp}^2}{g_{1C}}} \right)$

Gaussians

NP evolution $g_{K}(b_{T}^{2}) = -g_{2}^{2} \frac{b_{T}^{2}}{4}$

"analytic", "with a functional form" weighted Gaussian $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$

12 parameters

Parameterization of the non-perturbative part of TMDs

proof of concept

$$f_{NP}(x, b_T) = e^{NNAD(x, b_T)} e^{S_{NP}}$$

formula implemented in NangaParbat

$$f_{\rm NP}(x, b_T, \zeta) = \exp\left[-\left(\operatorname{NN}(x, b_T) - \operatorname{NN}(x, 0)\right) - g_2^2 \log\left(\frac{\zeta}{Q_0^2}\right) b_T^2\right]$$

Neural Network

Motivation

What do we want to do? What do we want to prove?

* are NN really a more general parameterization with respect to the "analytic classics"? e.g. 'analytic functional forms', like sums of Gaussian and weighted Gaussians

We want to/have to test methodology

goal. fit for the first time TMDs with NN

https://docs.nnpdf.science/tutorials/closuretest.html

/ Tutorials / How to run a closure test

How to run a closure test s

Closure tests are a way to validate methodology by fitting on pseudodata generated from pre-existing PDFs.

Closure tests to validate the methodology

is added on top of the central data no Monte Carlo noise — each replica is fitting the same set of data

central pseudo-data is shifted by some noise η drawn from the experimental covariance matrix

no MC noise is added — each replica fits a subset of the same shifted data

central pseudo-data is shifted by level 1 noise η MC noise is added on top of the level 1 shift

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

central pseudo-data is given by Central predictions of the known model

to validate the methodology

closure test of level 0

Generate **DSeudodata** based on a model that we know

℁ central value: MAP22

*** uncertainties: real DY data**

can we recover the **MAP22 result?**

fit with NN

Closure test - level 0

comparison with central replica of MAP22

replicas here come from variating the random seed for the initial values of the parameters

 $\chi^2 - 10^{-3}$

Closure test - level 0

Results of NN TMD fit **Caveat: very preliminary results!**

 $\chi^2 = 1.02$

5 nodes (hidden layer)

Results of NN TMD fit **Caveat: very preliminary results!**

10 nodes (hidden layer)

 $\chi^2 = 0.97$

preliminary results on Drell-Yan data

Study b* prescriptions - do they have an impact on the TMDs?

Perform all stages of closure tests - validate the use of NN

***** ... keep trying to use NN in TMD fits

