

Stochastic gravitational-waves from boson clouds

Richard Brito CENTRA, Instituto Superior Técnico, Lisboa

Fundação e a Tecnologia

Superradiant instability in a nutshell

From: Siemonsen, May & East, PRD107, 104003 (2023)

Superradiant instability in a nutshell

Superradiance Instability Phase

$$t < t_{\text{sat.}}, \quad M_{\text{cloud}}(t) = e^{t/\tau_{\text{inst}}} \qquad \tau_{\text{inst}}^{\text{scalar}} \approx 15 \text{ days} \left(\frac{M}{10M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^9 \left(\frac{0.9}{\chi_i}\right), \quad \tau_{\text{inst}}^{\text{vector}} \approx 140 \text{ s} \left(\frac{M}{10M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^7$$

$$t > t_{\text{sat.}}, \quad M_{\text{cloud}}(t) = \frac{M_{\text{cloud}}^{\text{sat.}}}{1 + t/\tau_{\text{GW}}} \qquad \tau_{\text{GW}}^{\text{scalar}} \approx 10^5 \text{ yr} \left(\frac{M}{10M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^{15} \left(\frac{0.5}{\chi_i - \chi_f}\right), \quad \tau_{\text{GW}}^{\text{vector}} \approx 2 \text{ days} \left(\frac{M}{10M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^{11} \left(\frac{M}{\chi_i}\right) \left(\frac{M}{10M_{\odot}}\right) \left(\frac{M}{10M$$

$$t < t_{\text{sat.}}, \quad M_{\text{cloud}}(t) = e^{t/\tau_{\text{inst}}} \qquad \tau_{\text{inst}}^{\text{scalar}} \approx 15 \text{ days} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^9 \left(\frac{0.9}{\chi_i}\right), \quad \tau_{\text{inst}}^{\text{vector}} \approx 140 \text{ s} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^7$$

$$t > t_{\text{sat.}}, \quad M_{\text{cloud}}(t) = \frac{M_{\text{cloud}}^{\text{sat.}}}{1 + t/\tau_{\text{GW}}} \qquad \tau_{\text{GW}}^{\text{scalar}} \approx 10^5 \text{ yr} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^{15} \left(\frac{0.5}{\chi_i - \chi_f}\right), \quad \tau_{\text{GW}}^{\text{vector}} \approx 2 \text{ days} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^{11} \left(\frac{M}{\chi_i}\right) \left(\frac{M}{2}\right)^{11} \left(\frac{M}{$$

Gravitational Wave Emission Phase

Image credit: Niels Siemonsen

For most unstable mode:

Galactic stochastic GW background

From: Zhu+ PRD102, 063020 (2020)

Galactic sources should contribute to a GW background in a **narrow frequency** band.

Small spread in frequency due to spread in BH masses and line-of-sight BH velocity.

Galactic signals **not uniformly** distributed in the sky (mainly located in galactic disk).

Extra-galactic stochastic GW Background

 $\frac{dE_{\rm GW}}{df_s} \approx E_{\rm GW} \delta(f(1+z) - f_s)$ E_{G}

RB+ '17; Tsukada+ '18; Tsukada, RB, East & Siemonsen, '20; Yuan, RB, Cardoso '21; Yuan, Jiang & Huang '22

$$_{\rm GW} = \int_{t=0}^{\Delta t} dt \, \dot{E}_{\rm GW} = \frac{M_{cloud}^{sat.} \Delta t}{\Delta t + \tau_{\rm GW}}$$

 Δt - signal duration

$$\mathbf{\Omega}_{\rm GW}^{\rm iso}(f) = \frac{f}{\rho_c} \int dz \frac{dt}{dz} \int d\chi_i dM_i \, p(\chi_i) \frac{d\dot{n}}{dM_i} \, \frac{dE_{\rm GW}}{df_s}$$

- "isolated" black-holes channel $M_i \in [3M_{\odot}, 50]M_{\odot}$

$$\mathbf{\Omega}_{\rm GW}^{\rm iso}(f) = \frac{f}{\rho_c} \int dz \frac{dt}{dz} \int d\chi_i dM_i \, p(\chi_i) \frac{d\dot{n}}{dM_i} \, \frac{dE_{\rm GW}}{df_s}$$

 $\frac{dn}{dM} = \psi(z_f)\phi(\mathcal{M}_*)\frac{d\mathcal{M}_*}{dM}, \quad \psi(z_f) - \text{star formation rate}, \quad \phi(\mathcal{M}_*) \propto \mathcal{M}_*^{-2.35} - \text{Salpeter initial mass function}$

 $d\mathcal{M}_*/dM = (dg/d\mathcal{M}_*)^{-1}$, where $M = g(\mathcal{M}_*, Z)$ relates BH mass M to its progenitor star \mathcal{M}_* . Implicitly depends on redshift via stellar metallicity Z dependence.

- "isolated" black-holes channel $M_i \in [3M_{\odot}, 50]M_{\odot}$

$$\mathbf{\Omega}_{\rm GW}^{\rm iso}(f) = \frac{f}{\rho_c} \int dz \frac{dt}{dz} \int d\chi_i dM_i \, p(\chi_i) \frac{d\dot{n}}{dM_i} \, \frac{dE_{\rm GW}}{df_s}$$

 $\frac{dn}{dM} = \psi(z_f)\phi(\mathcal{M}_*)\frac{d\mathcal{M}_*}{dM}, \quad \psi(z_f) - \text{star formation rate}, \quad \phi(\mathcal{M}_*) \propto \mathcal{M}_*^{-2.35} - \text{Salpeter initial mass function}$

 $d\mathcal{M}_*/dM = (dg/d\mathcal{M}_*)^{-1}$, where $M = g(\mathcal{M}_*, Z)$ relates BH mass M to its progenitor star \mathcal{M}_* . Implicitly depends on redshift via stellar metallicity Z dependence.

- "isolated" black-holes channel $M_i \in [3M_{\odot}, 50]M_{\odot}$

Note: Distribution of BH spins for isolated BHs at birth **largely unknown**. We will assume $p(\chi_i)$ uniform.

$$\mathbf{\Omega}_{\rm GW}^{\rm iso}(f) = \frac{f}{\rho_c} \int dz \frac{dt}{dz} \int d\chi_i dM_i \, p(\chi_i) \frac{d\dot{n}}{dM_i} \, \frac{dE_{\rm GW}}{df_s}$$

 $\frac{dn}{dM} = \psi(z_f)\phi(\mathcal{M}_*)\frac{d\mathcal{M}_*}{dM}, \quad \psi(z_f) - \text{star formation rate}, \quad \phi(\mathcal{M}_*) \propto \mathcal{M}_*^{-2.35} - \text{Salpeter initial mass function}$

 $d\mathcal{M}_*/dM = (dg/d\mathcal{M}_*)^{-1}$, where $M = g(\mathcal{M}_*, Z)$ relates BH mass M to its progenitor star \mathcal{M}_* . Implicitly depends on redshift via stellar metallicity Z dependence.

$$\Omega_{\text{GW}}^{\text{rem}}(f) = \frac{f}{\rho_c} \int dz \frac{dt}{dz} \int dM_1 dM_2 R(z; M_1, M_2) P(z)$$

- "isolated" black-holes channel $M_i \in [3M_{\odot}, 50]M_{\odot}$

Note: Distribution of BH spins for isolated BHs at birth **largely unknown**. We will assume $p(\chi_i)$ uniform.

 $(M_1)P(M_2)\frac{dE_{\rm GW}}{df}$ – **BBH merger remnant** channel

Merger rate density $R(z; M_1, M_2)$ and $P(M_{1/2})$ follows what is used by LVK.

$$\mathbf{\Omega}_{\rm GW}^{\rm iso}(f) = \frac{f}{\rho_c} \int dz \frac{dt}{dz} \int d\chi_i dM_i \, p(\chi_i) \frac{d\dot{n}}{dM_i} \, \frac{dE_{\rm GW}}{df_s}$$

 $\frac{dn}{dM} = \psi(z_f)\phi(\mathcal{M}_*)\frac{d\mathcal{M}_*}{dM}, \quad \psi(z_f) - \text{star formation rate}, \quad \phi(\mathcal{M}_*) \propto \mathcal{M}_*^{-2.35} - \text{Salpeter initial mass function}$

 $d\mathcal{M}_*/dM = (dg/d\mathcal{M}_*)^{-1}$, where $M = g(\mathcal{M}_*, Z)$ relates BH mass M to its progenitor star \mathcal{M}_* . Implicitly depends on redshift via stellar metallicity Z dependence.

$$\Omega_{\text{GW}}^{\text{rem}}(f) = \frac{f}{\rho_c} \int dz \frac{dt}{dz} \int dM_1 dM_2 R(z; M_1, M_2) P(z)$$

Note: In this case $\chi_i := \chi_i(M_1, M_2)$, $M_i := M_i(M_1, M_2)$ (neglecting component spins)

- "isolated" black-holes channel $M_i \in [3M_{\odot}, 50]M_{\odot}$

Note: Distribution of BH spins for isolated BHs at birth **largely unknown**. We will assume $p(\chi_i)$ uniform.

 $(M_1)P(M_2)\frac{dE_{\rm GW}}{df}$ – **BBH merger remnant** channel

Merger rate density $R(z; M_1, M_2)$ and $P(M_{1/2})$ follows what is used by LVK.

Main uncertainty: BH spin distribution

From: Yuan, Jiang & Huang, PRD106, 023020

Amplitude of SGWB **largely dependent** on assumed $p(\chi_i)$ for isolated BH channel.

Dot-dashed lines: $\chi_i \in [0.5,1[$ Solid lines: $\chi_i \in [0,1[$ **Dashed lines:** $\chi_i \in [0, 0.5]$

Isolated BHs vs merger remnant BHs

Scalar bosons

Vector bosons

From: Leo Tsukada's PhD thesis

Solid lines: isolated; **Dashed lines:** merger remnants

Constraints using LIGO 01+O2 data

Scalar bosons

Tsukada, T. Callister, A. Matas, P. Meyers, '18 Tsukada Phd thesis ´21

Vector bosons

Tsukada, RB, East & Siemonsen, '20

Constraints using LIGO 01+O2 data

Scalar bosons

Tsukada, T. Callister, A. Matas, P. Meyers, '18 Tsukada Phd thesis ²¹

Vector bosons

Tsukada, RB, East & Siemonsen, '20

Constraints with O3 data for scalar bosons

From: Yuan, Jiang & Huang, PRD106, 023020

	m = 1		All <i>m</i> -modes	
χ_i (Uniform)	$\log \mathcal{B}$	m_s (eV)	$\log \mathcal{B}$	m_s (eV)
[0,1]	-0.26	$[1.4, 13] \times 10^{-13}$	-0.27	$[1.5, 15] \times 10^{-13}$
[0,0.5]	-0.15	$[1.9, 8.1] \times 10^{-13}$	-0.15	$[1.8, 8.1] \times 10^{-13}$
[0.5,1]	-0.29	$[1.3, 14] \times 10^{-13}$	-0.30	$[1.3, 17] \times 10^{-13}$

couplings to photons, etc...) in the calculation.

Combine constraints coming from continuous GW + stochastic background searches (+ BH spin distributions).

of supermassive black holes.

Include non-gravitational interactions (self-interactions,

Robust predictions for stochastic GW background in LISA (and PTA?) probably requires including superradiant instability in models that follow the formation and evolution

couplings to photons, etc...) in the calculation.

Combine constraints coming from continuous GW + stochastic background searches (+ BH spin distributions).

of supermassive black holes.

Thank you!

Include non-gravitational interactions (self-interactions,

Robust predictions for stochastic GW background in LISA (and PTA?) probably requires including superradiant instability in models that follow the formation and evolution

Backup slides

Gravitational-waves from boson clouds

Uncertainties: Choice of SFR

SFR = star formation rate

From: Tsukada, RB, East & Siemonsen, '20