

Measuring Nuclear Physics with Cosmic Explorer

Duncan Brown, Syracuse University

https://cosmicexplorer.org/

Abbott,..., DAB et al. PRL **119** 161101 (2017)

The information about the EOS is encoded in the gravitational-wave phase evolution

$\Phi_{\rm GW}(t) = 0 pN(t; \mathcal{M}) \left[1 + 1 pN(t; \eta) + \dots + 3.5 pN(t; \eta) + 5 pN(t; \text{EOS})\right]$

$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$

$$\eta = \frac{(m_1 m_2)}{(m_1 + m_2)^2}$$

Peters and Mathews Phys. Rev. **131**, 435 (1963), Blanchet Liv. Rev. Rel. 17, 2 (2014)

Tidal effects enter the post-Newtonian gravitational-wave phase as

$$\Lambda \equiv \frac{\lambda}{m^5} = \frac{2}{3}k_2 \left(\frac{Gm}{Rc^2}\right)^{-5}$$

$$(1+q)^{5} (1+q)^{4} \Lambda_{2}$$

 $q = m_2/m_1 \le 1$

Flanagan and Hinderer PRD 77 021502 (2008)

ChiralSoftest, $B_{BBH}^{ChiralSoftest} = 2.1$ - Chiral_14125, $B_{\text{BBH}}^{\text{Chiral}_14125} = 2.3$ Chiral_3836, $B_{BBH}^{Chiral_3836} = 2.7$ Chiral_Soft1, $B_{BBH}^{Chiral_Soft1} = 2.8$ Chiral_230, $B_{BBH}^{Chiral_{230}} = 2.8$ Chiral_8428, $B_{BBH}^{Chiral_8428} = 2.4$ Chiral_13990, $B_{BBH}^{Chiral_{-13990}} = 2.4$ - Chiral_mid2, $B_{\rm BBH}^{\rm Chiral_mid2} = 1.1$ SLy, $B_{
m BBH}^{
m SLy}=0.96$ MPA1, $B_{\text{BBH}}^{\text{MPA1}} = 0.26$ Chiral_4264, $B_{BBH}^{Chiral_{4264}} = 0.21$ - Chiral_Stiffest_2nsat, $B_{BBH}^{Chiral_Stiffest_2nsat} = 0.21$ Chiral_10306, $B_{\rm BBH}^{\rm Chiral_{10306}} = 0.2$ Chiral_10549, $B_{\rm BBH}^{\rm Chiral_10549} = 0.17$ Chiral_2544, $B_{BBH}^{Chiral_{2544}} = 0.12$ Chiral_12975, $B_{\rm BBH}^{\rm Chiral_{12975}} = 0.17$ Chiral_1239, $B_{\rm BBH}^{\rm Chiral_{1239}} = 0.14$ Chiral_mid1, $B_{BBH}^{Chiral_mid1} = 0.039$ H4, $B_{\rm BBH}^{\rm H4} = 0.022$ MS1, $B_{\rm BBH}^{\rm MS1} = 9.5e-05$ ChiralStiffest, $B_{BBH}^{ChiralStiffest} = 5.3e-06$ Chiral_5743 Chiral_10124 22.525.020 km

Calculate Bayes factor for specific EOS vs BBH

Only the stiffest EOS are ruled out at high confidence

Soft EOSes and black holes are all consistent with GW170817

c.f. Abbott et al. CQG **37** 045006 (2020)

GW170817 DECam observation (0.5–1.5 days post merger)

GW170817 DECam observation (>14 days post merger)

Ν

Soares-Santos,..., DAB, et al. ApJ 848 L16 (2017)

F

Capano, Tews, Brown, De, Margalit, Kumar, DAB, Krishnan, Reddy, Nature Astron. 4, 625 (2020)

Distribution of number of events required to reach 2% precision in the neutron star radius

Evans, ..., DAB, et al. arXiv:2306.13745 (2023)

CMB

Detect the majority of neutron star mergers in the universe!

All-sky coverage for GRBs in the Cosmic Explorer era will maximize the science output

Z

Redshift

Pop III Black Holes

100

SNP

SNIP

GW190521

Precision measurement of the masses and spins of large numbers of compact objects

Explore the core collapse mechanism and angular momentum transport in massive stars

GW150914

Holes

Ck

R

 \mathbf{m}

Connect remnant physics to EM observations of progenitors

Detector network	Soft EoS	Medium E
LIGO-Virgo	$2\mathrm{e}5^{+4\mathrm{e}4}_{-4\mathrm{e}4}$	$5e4^{+1e4}_{-1e4}$
$3\mathrm{A}^{\sharp}$	$300\substack{+50 \\ -50}$	100^{+40}_{-40}
CE20	21^{+10}_{-10}	15^{+7}_{-7}
CE40	12^{+3}_{-3}	8^{+1}_{-1}
$CE40+2 A^{\sharp}$	9^{+4}_{-4}	$6^{+\bar{2}}_{-2}$
$CE40+CE20+A^{\sharp}$	5^{+2}_{-2}	$3^{+\overline{1}}_{-1}$

Stiff EoS oS $7000\substack{+900\\-900}$ 20^{+}_{-} 3^{+1}_{-1} 1+0.6 $\begin{array}{c} 1_{-0.6} \\ 0.4_{-0.2}^{+0.2} \\ 0.2_{-0.07}^{+0.07} \end{array}$

Years to measure R_{1.4} to 10 m

Bandopadhyay, ..., DAB, et al. arXiv:2402.05056

Supernovae in Cosmic Explorer

Srivastava, Ballmer, DAB, Afle, Burrows, Radice, Vartanyan PRD 100, 043026 (2019)

70 kpc at SNR 8 95 kpc at SNR 8 c.f. DUNE

For a galactic progenitor with $\beta = 0.02$, 90 % credible interval is 0.02 (aLIGO), 0.002 (CE)

A galactic supernova observed by Cosmic Explorer could constrain fpeak to within 10 Hz

Afle and DAB Phys. Rev. D 103, 023005 (2021)

Around 400 ms after the bounce, most of the energy is in the f-mode of the protoneutron star

For supernova < 10 kpc Cosmic Explorer can measure the energy in the f-mode of the protoneutron star to within 20%

-20

Afle, ..., DAB, et al. Phys. Rev. D **107**, 123005 (2023)

Where is Cosmic Explorer today?

Cosmic Explorer Horizon Study Summarizes the roadmap for US third-generation detectors

- https://dcc.cosmicexplorer.org/CE-P2100003/public
- For the next few years, we (including you!) will be
 - Deepening our understanding of the next-generation science case,
 - Developing instrument science to pave the wave for new detectors
 - Creating theoretical frameworks and data analysis algorithms for CE science
- Join the consortium!
- https://cosmicexplorer.org/consortium.html

Cosmic Explorer NSF White Paper Responds to the NSF MPS Advisory Committee request

- arXiv:2306.13745
- Updates Horizon Study
- Incorporates new community input from consortium science letters
 <u>https://dcc.cosmicexplorer.org/cgi-bin/private/DocDB/DisplayMeeting?</u>
- <u>https://dcc.cosmicexplorer.org/cgi-conferenceid=1053</u>
- Begins detailed comparison of possible detector configurations

	$CE40+CE20+1A^{\sharp}$ (4020A) $CE40+2A^{\sharp}$ (40LA) $3A^{\sharp}$ (H)	LA)
§2.1 BHs and NSs Throughout Cosmic Time	Detect 500 BNS mergers at z > 5 Detect 500 BBH mergers at z > 10 ($\Delta m_1/m_1 < 20\%$)	Unachiev Unachiev
§2.2 Multi-messenger Astrophysics and Dynamics of Dense Matter	Locate 100 BNS mergers within $\Delta \Omega < 1 \text{ deg}^2$ Constrain Nuclear Equation of State (NS radius < 10 m) Map 500 GRBs to progenitors ($z > 2$; $\Delta \Omega < 100 \text{ deg}^2$) Detect 10 BNS mergers 300 s before merger ($\Delta \Omega < 10 \text{ deg}^2$)	100 y Unachiev >100 y
§2.3 New Probes of Extreme Astrophysics	Detect BNS with post-merger $SNR > 5$ Detect 25 millisecond pulsars	40 y
§2.4 Fundamental Physics and Cosmology	Measure H_0 to within 0.2% Detect 10 BBH mergers with SNR > 1000	3600 y 500 y
§2.5 Early Universe	Detect Stochastic Background for $\Omega_{\rm GW} < 5 \times 10^{-12}$	40 y
Time [Years]	1 10 I 10	

$CE40+2A^{\sharp}$	(40LA)	$3A^{\sharp}$ (HLA)
--------------------	--------	---------------------

cosmicexplorer.org

Home Overview Science News The CE Consortium - For Researchers - NSF Funding -

Cosmic Explorer

Next-generation gravitational-wave observatories

