Status update: transport coefficients of strongly coupled plasma from holography

Alex Buchel

(Perimeter Institute & University of Western Ontario)

Based on arXiv: arXiv: 2312.05377 and arXiv:2402.16109 (with S.Cremonini and L.Early)

Heavy Ion Physics in the EIC Era, INT, 22 August 2024

 \implies From Kovtun-Son-Starinets (arXiv:hep-th/0405231):

- universality of $\frac{\eta}{s}$ at strong coupling
- existence the lower bound on $\frac{\eta}{s}$

Outline:

- 3-ways for extract transport coefficients:
 - Kubo formulas
 - dispersion relations
 - near-equilibrium entropy production

- Holography of EOS of QGP:
 - conformal models (*e.g.*, $\mathcal{N} = 4$ SYM)
 - top-down models:
 - explicit breaking of scale inv. (masses, relevant couplings)
 - spontaneous breaking of scale inv. (β -functions)
 - phenomenological (bottom-up) models \supset top-down models

- Beyond 2-derivative gravity:
 - more generic UV fixed points $(c \neq a)$
 - finite 't Hooft coupling corrections
 - $-\frac{\eta}{s}$ is not universal
 - no lower bound on shear viscosity in gauge theory plasma

- Future directions:
 - DL:
 - EOS/transport correlations
 - reconstructing gravitational dual from lattice QCD EOS
 - string theory vs. phenomenological models
 - Extension of the framework to μ_i (multiple chemical potentials \implies transport @ criticality)
 - sensitivity of transport to features of gravitational potentials

 \Rightarrow Consider a (neutral) gauge theory plasma close to equilibrium. **Relativistic hydrodynamics** is an effective theory of the conserved stress-energy tensor $T^{\mu\nu}$, formulated as the series of the local-velocity gradients:

- $\nabla_{\mu}T^{\mu\nu} = 0$
- $T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + T^{\mu\nu}_{(2)} + \cdots$
 - $T^{\mu\nu} = \underbrace{\mathcal{E} \ u^{\mu}u^{\nu} + P \ (g^{\mu\nu} + u^{\mu}u^{\nu})}_{\mathcal{O}(\partial^{0}u)} + \underbrace{\left[-\eta \ \sigma^{\mu\nu} \zeta \ (g^{\mu\nu} + u^{\mu}u^{\nu})\nabla \cdot u\right]}_{\mathcal{O}(\partial^{1}u): \ \sigma^{\mu\nu} \sim \partial^{\mu}u^{\nu}} + \underbrace{\left[\dots \ \right]}_{\mathcal{O}(\partial^{2}u, (\partial u)^{2})} + \dots$
 - u^{μ} local fluid velocity; $u^{\mu}u_{\mu} = -1$
 - η , ζ shear and bulk viscosities
 - expansion parameter of hydro as EFT: $\frac{1}{T} \cdot |\partial u| \ll 1$

- **Kubo** formulas ($\boldsymbol{x} \equiv \{x_1, x_2, x_3\}$) from equilibrium c.f.:
 - the shear viscosity,

$$\eta = -\lim_{w \to 0} \frac{1}{w} \operatorname{Im} G_R(w)$$
$$G_R(w) = -i \int dt d\boldsymbol{x} e^{iwt} \theta(t) \langle [T_{12}(t, \boldsymbol{x}), T_{12}(0, \boldsymbol{0})] \rangle$$

• the bulk viscosity,

$$\zeta = -\frac{4}{9} \lim_{w \to 0} \frac{1}{w} \operatorname{Im} G_R(w)$$
$$G_R(w) = -i \int dt d\boldsymbol{x} e^{iwt} \theta(t) \langle [\frac{1}{2} T_i^i(t, \boldsymbol{x}), \frac{1}{2} T_j^j(0, \boldsymbol{0})] \rangle$$

• dispersion spectrum of linearized fluctuations in plasma ($\propto e^{-iwt + i\boldsymbol{q}\cdot\boldsymbol{x}}$):

$$\mathfrak{w} \equiv \frac{w}{2\pi T}, \qquad \mathfrak{q} \equiv \frac{|\mathbf{q}|}{2\pi T}$$

• the shear mode,

$$\mathfrak{w} = -i \; \frac{2\pi\eta}{s} \; \mathfrak{q}^2 + \mathcal{O}(\mathfrak{q}^3)$$

• the sound,

$$\mathfrak{w} = c_s \cdot \mathfrak{q} - i \; \frac{4\pi\eta}{3s} \left(1 + \frac{3\zeta}{4\eta} \right) \; \mathfrak{q}^2 + \mathcal{O}(\mathfrak{q}^3)$$

where the speed of the sound waves can also be extracted from EOS,

$$c_s^2 = \frac{\partial P}{\partial \mathcal{E}}$$

• entropy production in approach to equilibrium:

• define the non-equilibrium entropy s

$$Ts = P + \mathcal{E}, \qquad \partial P = s \partial T$$

and the entropy current S^{μ} ,

$$S^{\mu} = \underbrace{\mathfrak{su}^{\mu}}_{\mathcal{O}(\partial^{0}u)} + \underbrace{\left[-\frac{u_{\nu}}{T} T^{\mu\nu}_{(1)}\right]}_{\mathcal{O}(\partial^{1}u)} + \underbrace{\left[\cdots\right]}_{\mathcal{O}(\partial^{2}u,(\partial u)^{2})} + \cdots$$

• from hydro EOM,

$$T\partial_{\mu}S^{\mu} = \underbrace{\frac{\eta}{2} \sigma_{\mu\nu}\sigma^{\mu\nu} + \zeta \left(\partial_{\lambda}u^{\lambda}\right)^{2}}_{\mathcal{O}(\partial^{2})} + \mathcal{O}(\partial^{3})$$

 \implies Holographic dictionary:

Kubo \implies equilibrum c.f. in holographic black hole dispersion \implies holographic black hole QNMs entropy production \implies AH dynamics of black hole

 \implies Consistent picture in holography

Holography of EOS of QGP

• conformal models: $\mathcal{N} = 4$ supersymmetric Yang-Mills theory

• SU(N) gauge theory A_{μ} + bosons ϕ_i + fermions ψ_a = maximally supersymmetric and scale invariant $\Longrightarrow \mathcal{L}_{SYM}[A_{\mu}, \psi_a, \phi_i]$

$$Z_{SYM}[\mathcal{M}_4] \equiv \underbrace{\int [dAd\psi d\phi] \epsilon^{i \int_{\mathcal{M}_4} d^4 x \mathcal{L}_{SYM}}}_{\text{gauge theory}} = \underbrace{e^{i S_5[\partial \mathcal{M}_5 = \mathcal{M}_4]}}_{\text{dual "gravity" in 5-dim}}$$

classical gravity approximation:

 $\begin{cases} \text{'t Hooft limit :} & N \to \infty \,, g_{YM}^2 \to 0 \text{ with } \lambda \equiv g_{YM}^2 N = \text{const} \\ \text{strong coupling :} & \lambda \to \infty \end{cases}$

$$S_5 = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} \mathrm{d}^5 x \sqrt{-g} \left(R + 12 \right) \,, \qquad G_5 = \frac{\pi}{2N^2}$$

• AdS-Schwarzschild black hole:

$$ds_5^2 = \frac{r_0^2}{u} \left(-(1-u^2)dt^2 + dx^2 \right) + \frac{du^2}{4u^2(1-u^2)}$$

•
$$u \to 1$$
 BH horizon
• $u \to 0 \iff \mathcal{M}_5 \to \partial \mathcal{M}_5 = \mathcal{M}_4 = \mathbb{R}^{3,1};, \qquad ds_{\mathcal{M}_4}^2 = -dt^2 + dx^2$

• BH temperature T and the entropy density s:

$$T = \frac{r_0}{\pi}$$
, $s \equiv \frac{\text{horizon area density}}{4G_5} = \frac{r_0^3}{4G_5}$

 \implies Thermal properties of BH are interpreted as thermal properties of strongly coupled $\mathcal{N} = 4$ SYM plasma (trade $r_0 \leftrightarrow T$):

• the energy density

$$\mathcal{E} = \frac{3}{8}\pi^2 N^2 T^4 = \frac{3}{4}\epsilon_{SB}$$

• the pressure

$$P = \frac{1}{8}\pi^2 N^2 T^4$$

• the entropy density

$$s = \frac{1}{2}\pi^2 N^2 T^3$$

 \implies Transport in $\mathcal{N} = 4$ (Policastro-Son-Starinets)

$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}, \qquad \frac{\zeta}{s} = 0$$

• QCD thermodynamics from lattice; (Karsch, Laermann, hep-lat/0305025). The plateau is $\sim 80\%$ of the SB result — close to 3/4 in SYM thermodynamics

 \implies From A.Bazarov et.al (HotQCD Collaboration), arXiv:1407.6387:

 \implies The violation of the conformality,

$$\frac{\epsilon - 3p}{\epsilon} \sim 50\%$$

at the maximum

$\mathbf{QCD} \neq \mathbf{CFT!} \qquad - \qquad \mathbf{part I}$

- quark masses \implies explicit breaking of the scale invariance
 - holographic model ($\mathcal{N} = 2^*$ model):

$$\mathcal{L}_{SYM} \longrightarrow \mathcal{L}_{SYM} + \delta \mathcal{L}, \qquad \delta \mathcal{L} = -2 \int d^4 x \left[\lambda_2 \mathcal{O}_2 + \lambda_3 \mathcal{O}_3 \right]$$

,

where dim $[\mathcal{O}_{\Delta}] = \Delta$; $\lambda_{\Delta} \neq 0$ is its coupling constant; *e.g.*, :

$$\mathcal{O}_2 \sim \mathrm{Tr} |\phi|^2$$

 $\underbrace{\mathcal{O}_3} \sim \operatorname{Tr} \overline{\psi} \psi$

boson mass-term operator

- QCD has a strong coupling scale \implies "spontaneous" breaking of scale invariance ($\beta_{QCD} < 0$); confinement/deconfinement+ χ SB
 - holographic model (Klebanov-Strassler model):

 $\mathcal{N} = 1, SU(N)$ SYM + irrelevant in the IR operators

 \implies Holographic implementation of non-conformal models:

$$S_{5} = \frac{1}{16\pi G_{5}} \int_{\mathcal{M}_{5}} d^{5}x \sqrt{-g} \left[\underbrace{\mathbb{R} + 12}_{\text{CFT sector}} \qquad \underbrace{-\frac{1}{2} \sum_{i} (\partial \phi_{i})^{2} - V\{\phi_{i}\}}_{\text{deformation}} \right]$$
$$\phi_{i} \leftrightarrow \mathcal{O}_{\Delta_{i}} , \qquad m_{i}^{2} \equiv \frac{\partial^{2} V}{\partial \phi_{i}^{2}} \Big|_{\phi_{i} = 0} = \Delta_{i} (\Delta_{i} - 4)$$

• $\mathcal{N} = 2^*$ model:

$$V\{\phi_2,\phi_3\} = -4e^{-\frac{2}{\sqrt{6}}\phi_2} - 8e^{\frac{1}{\sqrt{6}}\phi_2}\cosh\left[\frac{1}{\sqrt{2}}\phi_3\right] + e^{\frac{4}{\sqrt{6}}\phi_2}\sinh^2\left[\frac{1}{\sqrt{2}}\phi_3\right]$$

• Klebanov-Strassler model:

$$V = V\{\phi_3^{(1)}, \phi_3^{(2)}, \phi_4, \phi_6, \phi_7, \phi_8\}$$

• holographic phenomenology: **anything goes!**

 \implies From $\mathcal{N} = 2^*$ BH thermodynamics:

- (L) Trace of the energy-momentum tensor normalized to the energy density of $\mathcal{N} = 4$ SYM ($\epsilon_0 = \frac{3}{8}\pi^2 N_c^2 T^4$ with N_c denoting the number of colors) as a function of m/T. The results indicate that, thermodynamically, the effects of the conformal symmetry breaking are the strongest at $m/T \approx 4.8$.
- (R) Trace anomaly in deep IR approach to a CFT_5

 \implies From Klebanov-Strassler BH thermodynamics:

- lattice QCD (the red dots)
- $\mathcal{N} = 2^*$ (the solid green line)
- KS gauge theory (the solid blue line)
- vertical lines: T = 0.3GeV (red), phase transitions in KS (blue)

 \implies **Theorem:** for any model,

$$S_{5} = \frac{1}{16\pi G_{5}} \int_{\mathcal{M}_{5}} d^{5}x \sqrt{-g} \left[R + 12 - \frac{1}{2} \sum_{i} \left(\partial \phi_{i} \right)^{2} - V\{\phi_{i}\} \right]$$

the shear viscosity is universal:

$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B} \approx 0.08$$

 surprising, because by dimensional analysis, for a generic non-conformal model is expected to be a functional of ratios

$$\frac{\lambda_{\Delta_i}}{T^{4-\Delta_i}}$$

for every nonzero coupling $\lambda_{\Delta_i} \neq 0$ of an operator \mathcal{O}_i

 \implies bulk viscosity in $\mathcal{N} = 2^*$:

• Left:
$$m_f < m_b$$
, $\frac{m_f^2}{m_b^2} \in [0.2, 0.9]$
• Right: $m_f \ge m_b$, $\frac{m_f^2}{m_b^2} \in [1, 6]$

• The solid line represents the bulk viscosity "bound"

$$\frac{\zeta}{\eta} \ge 2\left(\frac{1}{3} - c_s^2\right)$$

 \implies bulk viscosity in Klebanov-Strassler model:

- dashed blue: the bulk viscosity bound
- dashed vertical: T_c for the deconfinement transition in KS

Holographic lessons at $N = \infty$ and $\lambda = \infty$:

- $\frac{\eta}{s}$ is universal
- bulk viscosity is typically $\zeta \lesssim \eta$, becoming larger in models with stronger breaking of supersymmetry

$$\frac{\zeta}{\eta} \sim \mathcal{O}(1) \times \left(\frac{1}{3} - c_s^2\right)^2$$

<u>side note</u>: at weak coupling $\frac{\zeta}{s} \sim \left(\frac{1}{3} - c_s^2\right)^2$

$QCD \neq CFT!$ — part II

• QCD number of colors

$$\frac{1}{N} = \frac{1}{3} \qquad \neq 0$$

• QCD 't Hooft coupling

$$\frac{1}{\lambda_{QCD}} \neq 0$$

 \implies In the past, holographic analysis in this directions were limited to conformal theories (few explicit results); technically very difficult

Beyond 2-derivative gravity-I:

$$S_5 = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R + 12 - \frac{1}{2} \sum_i \left(\partial \phi_i \right)^2 - V\{\phi_i\} + \underbrace{\beta \cdot \delta L}_{\text{higher-der}} + \mathcal{O}(\beta^2) \right]$$

• eight-derivative curvature corrections described by:

$$\delta L_4 \equiv C^{hmnk} C_{pmnq} C_h^{\ rsp} C^q_{\ rsk} + \frac{1}{2} C^{hkmn} C_{pqmn} C_h^{\ rsp} C^q_{\ rsk} \,,$$

where C is the Weyl tensor.

• if the UV fixed point is $\mathcal{N} = 4 SU(N)$ supersymmetric Yang-Mills theory with a gauge coupling g_{YM}^2 , then

$$\beta \equiv \frac{1}{8} \zeta(3) \left(g_{YM}^2 N_c \right)^{-3/2}$$

- using Kubo formulas (+ many technical tricks):
 - shear viscosity:

$$\frac{\eta}{s}\Big|_{\delta L_4} = \frac{1}{4\pi} \left(1 - \beta \cdot \frac{1}{72} (V - 12) \left[3 \sum_i (\partial_i V)^2 + 5(V - 12)^2 \right] \right),$$

where $\partial_i V \equiv \frac{\partial V}{\partial \phi_i}$

• bulk viscosity:

$$9\pi \frac{\zeta}{s} \bigg|_{\delta L_4} = \left(1 + \frac{5}{144} \beta (V - 12)^3 \right) \sum_i z_{i,0}^2 - \beta \cdot \frac{5}{24} (V - 12) \sum_i (z_{i,0} \cdot \partial_i V)^2$$

where $z_{i,0}$ are the values of the gauge invariant scalar fluctuations, at zero frequency, evaluated at the black hole horizon

 \implies anything goes for the scalar sector of the theory

 \implies old results for $\mathcal{N} = 4$ SYM ($V \equiv 0$):

• shear viscosity (Buchel-Liu-Starinets):

$$\frac{\eta}{s}\Big|_{\delta L_4}^{CFT} = \frac{1}{4\pi} \left(1 + \beta \cdot 120\right)$$

• bulk viscosity (Benincasa-Buchel):

$$\left. \frac{\zeta}{s} \right|_{\delta L_4}^{CFT} = \beta \cdot 0$$

 \implies no T dependence because for a conformal model no dimensional parameters

 $\implies (\mathcal{D}_{4,\Delta}): \ \delta L_4 \text{ model with}$ $V = \frac{m^2}{2} \ \phi^2 \ , \qquad m^2 = \Delta(\Delta - 4) \ , \qquad \Delta = \{2,3\}$ • shear viscosity:

$$\left. \frac{\eta}{s} \right|_{\mathcal{D}} = \frac{1}{4\pi} \left(1 + \beta \cdot \delta_{\eta;\Delta}^{\mathcal{D}} \right)$$

 $-- huge sensitivity to finite coupling corrections \\ -- solid curves on top \implies from dispersion relations$

• bulk viscosity:

$$\frac{\zeta}{\eta}\Big|_{\mathcal{D}} = \frac{\zeta}{\eta}\Big|_{0,\Delta} + \beta \cdot \delta^{\mathcal{D}}_{\zeta;\Delta}$$

— huge sensitivity to finite coupling corrections

— solid curves represent corrections extracted from the sound wave channel quasinormal mode of the background black hole

Beyond 2-derivative gravity-II:

$$S_5 = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R + 12 - \frac{1}{2} \sum_i \left(\partial \phi_i \right)^2 - V\{\phi_i\} + \underbrace{\beta \cdot \delta L}_{\text{higher-der}} + \mathcal{O}(\beta^2) \right]$$

• four-derivative curvature corrections described by:

$$\delta L_2 \equiv \alpha_1 \ R^2 + \alpha_2 \ R_{\mu\nu} R^{\mu\nu} + \alpha_3 \ R_{\mu\nu\rho\lambda} R^{\mu\nu\rho\lambda};$$

■ If *c* and *a* are the two central charges of a gauge theory UV fixed point, *i.e.*,

$$\langle T^{\mu}_{\ \mu} \rangle_{CFT} = \frac{c}{16\pi^2} I_4 - \frac{a}{16\pi^2} E_4$$

where $\{E_4, I_4\}$ are the Euler density and the square of Weyl curvature of \mathcal{M}_4 ,

$$\beta \cdot \alpha_3 = \frac{c-a}{8c} \propto \frac{1}{N}$$

- using Kubo formulas (+ many technical tricks):
 - shear viscosity:

$$\frac{\eta}{s}\Big|_{\delta L_2} = \frac{1}{4\pi} \left(1 + \beta \cdot \frac{2}{3} \alpha_3 \left(V - 12 \right) \right)$$

• bulk viscosity:

$$9\pi \frac{\zeta}{s} \Big|_{\delta L_2} = \left(1 - \frac{2}{3}(V - 12)(5\alpha_1 + \alpha_2 - \alpha_3)\beta\right) \sum_i z_{i,0}^2 \\ +\beta \cdot \frac{4(5\alpha_1 + \alpha_2 - \alpha_3)}{3(V - 12)} \sum_i (z_{i,0} \cdot \partial_i V)^2$$

where $z_{i,0}$ are the values of the gauge invariant scalar fluctuations, at zero frequency, evaluated at the black hole horizon

 \implies anything goes for the scalar sector of the theory

 \implies old results for $\mathcal{N} = 2 Sp(N) SYM + matter (V \equiv 0)$:

• shear viscosity (Katz-Petrov):

$$\frac{\eta}{s}\Big|_{\delta L_2}^{CFT} = \frac{1}{4\pi} \left(1 - \beta \cdot 8\alpha_3\right)$$

• bulk viscosity:

$$\frac{\zeta}{s}\Big|_{\delta L_2}^{CFT} = \beta \cdot 0$$

 \implies no T dependence because for a conformal model no dimensional parameters

$$\Rightarrow (\mathcal{A}_{2,\Delta}, \mathcal{B}_{2,\Delta}, \mathcal{C}_{2,\Delta}): \delta L_2 \text{ models with}$$
$$V = \frac{m^2}{2} \phi^2, \qquad m^2 = \Delta(\Delta - 4), \qquad \Delta = \{2,3\}$$
$$\bullet \mathcal{A}_{2,\Delta}: \qquad \{\alpha_1, \alpha_2, \alpha_3\} = \{0, 0, 1\}$$

 higher-derivative in the bulk, and at the horizon: s ≠ area density 4G₅
 B_{2,∆}:

$$\{\alpha_1, \alpha_2, \alpha_3\} = \{1, -4, 1\}$$

• Gauss-Bonnet model \implies 2-derivative gravity; $s = \frac{\text{area density}}{4G_5}$

•
$$C_{2,\Delta}$$
:
 $\{\alpha_1, \alpha_2, \alpha_3\} = \{0, 1, 1\}$

• higher-derivative in the bulk; effectively 2-derivative at the horizon, $s = \frac{\text{area density}}{4G_5}$ • shear viscosity:

$$\frac{\eta}{s}\Big|_{\mathcal{A},\mathcal{B},\mathcal{C}} = \frac{1}{4\pi} \left(1 + \beta \cdot \delta_{\eta;\Delta}^{\mathcal{A},\mathcal{B},\mathcal{C}} \right)$$

— all models have the same α_3 ; $\frac{\eta}{s}$ is insensitive to $\{\alpha_1, \alpha_2\}$ **but** the entropy density is sensitive!

• bulk viscosity:

$$\frac{\zeta}{\eta}\Big|_{\mathcal{A},\mathcal{B},\mathcal{C}} = \frac{\zeta}{\eta}\Big|_{0,\Delta} + \beta \cdot \delta^{\mathcal{A},\mathcal{B},\mathcal{C}}_{\zeta;\Delta}$$

- black curves represent $\mathcal{A}_{2,\Delta}$ models
- blue curves represent $\mathcal{B}_{2,\Delta}$ models
- magenta curves represent $\mathcal{C}_{2,\Delta}$ models

Beyond 2-derivative gravity-III:

While in general:

$$S_5 = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R + 12 - \frac{1}{2} \sum_i \left(\partial \phi_i\right)^2 - V\{\phi_i\} + \underbrace{\beta \cdot \delta L_2}_{\text{higher-der}} + \mathcal{O}(\beta^2) \right]$$

for $\mathcal{B}_{2,\Delta}$ models:

$$S_{5} = \frac{1}{16\pi G_{5}} \int_{\mathcal{M}_{5}} d^{5}x \sqrt{-g} \left[R + 12 - \frac{1}{2} \sum_{i} \left(\partial \phi_{i} \right)^{2} - V\{\phi_{i}\} + \underbrace{\beta \cdot \delta L_{2}^{(1,-4,1)}}_{\text{Gauss-Bonnet}} \right]$$

 \implies In the past, for holographic CFTS, *i.e.*, $V \equiv 0$, causality of the theory constrains (Maldacena-Hofman & Buchel-Myers):

$$-\frac{7}{72} \le \beta \le \frac{9}{200} \qquad \Longleftrightarrow \qquad -\frac{1}{2} \le \frac{c-a}{c} \le \frac{1}{2}$$

(Brigante et.al): \implies

$$\frac{4\pi\eta}{s} = 1 + \beta \cdot \frac{2}{3} \underbrace{\alpha_3}_{=1} \left(\underbrace{V}_{\equiv 0} - 12 \right) = 1 - 8\beta \leq \frac{16}{25}$$

 \implies Consider a single scalar field model with a potential

$$V = \frac{m^2}{2}\phi^2 \,, \qquad \Delta = 3$$

The color coding of the solid curves is as in

$$c - a/c = \{-1/2, -1/4, 0, 1/4, 1/2\}$$

Note that $\frac{4\pi\eta}{s}$ ratio (the green curve) is always below the minimal conformal value

$$\eta/s \leq 1/(4\pi) \cdot 16/25$$

Holographic lessons at $\frac{1}{N} \neq 0$ and $\frac{1}{\lambda} \neq 0$:

- $\frac{\eta}{s}$ is no universal, and does depend on T
- there is no lower bound on $\frac{\eta}{s}$
- there is a huge sensitivity to finite-N, finite- λ corrections
- sensitivity increases as ever higher-derivative corrections are included in the effective dual gravitational action
- \implies Straightforward to extend:
 - more general higher-derivative corrections
 - charged gauge theory plasma

Future directions:

- Holography is a "black box" that produces EOS + transport
 ⇒
 produces training data for DL NN
- utilize this data to study:
 - EOS/transport correlations
 - reconstructing gravitational dual from lattice QCD EOS
 - string theory vs. phenomenological models

Help wanted: experts in PINNs