January, 13 2025

Search for proton decay in the Hyper-Kamiokande experiment

N. F. CALABRIA (on behalf of the Hyper-Kamiokande Collaboration) INFN and Politecnico di Bari

Baryon Number Violation: From Nuclear Matrix Elements to BSM Physics Institute for Nuclear Theory, University of Washington, Seattle (USA)

Outline

- Introduction
- State of the art in Super-Kamiokande
- Hyper-Kamiokande overview
- Proton decay in Hyper-Kamiokande
- Conclusions

Introduction

- Matter is very stable (age of the Universe $\sim 10^{10}$ years)
- Electrons must be stable due to the conservation of electric charge
- Neutrons decay if left outside of the nucleus
- What about protons?
- Conservation of Baryon number introduced to explain matter stability [Weyl, 1929; Wigner, 1949] Accidental global symmetry in the Standard Model, might be violated.

Proton decay is a valuable tool to probe physics Beyond the Standard Model (BSM)

Grand Unified Theories (GUTs)

- Unify SM gauge groups [Georgi, Glashow, 1974; Fritzch, Minkowski, 1975]
- GUTs scale: 10¹⁴⁻¹⁶ GeV, well beyond collider energies.
- Lepton and baryon numbers are not conserved: protons can decay.

Many models and predictions!

P S B Dev et al 2024 J. Phys. G: Nucl. Part. Phys. 51 033001

How to search for proton decay

- Predicted proton lifetimes > 10^{30} years
 - Age of the Universe: 10¹⁰ years
- Watch many (10³⁰ or more!) protons for (relatively) short time need many observable protons!
 - Large scale water Cherenkov detectors are a good choice:
 - Water is cheap and abundant
 - Water contains 10 protons per molecule, of which 2 are free (no nuclear momentum)
 - Water Cherenkov detectors are scalable

Super-Kamiokande: state of the art

Location: Kamioka mine, Japan, ~1000 m underground below Mount Ikeno.

39 m x 42 m cylindric tank filled with 50 kton of ultrapure water:

- Inner Detector (ID): 11k 50 cm Photomultiplier Tubes (PMTs) (40% coverage) facing inwards.
- **Outer Detector (OD):** 2k 20cm PMTs facing outwards

Some research topics in SK:

- Proton decay
- Neutrino oscillations (2015 Nobel Prize)
- Neutrino astrophysics

Events in Super-Kamiokande

Event reconstruction

	APfit	fiTQun
Type of fit	Sequential fits	Single log-likelihood function minimization $L(\mathbf{x}) = \prod_{j}^{\text{unhit}} P_j(\text{unhit} \mathbf{x}) \prod_{i}^{\text{hit}} [1 - P_i(\text{unhit} \mathbf{x})] f_q(q_i \mathbf{x}) f_t(t_i \mathbf{x})$
Used by	Super-Kamiokande	T2K, MiniBooNE, Super-Kamiokande, Hyper-Kamiokande
Max # rings	5	6
PID	e [±] , μ [±]	e [±] , μ [±] , π [±]

- fiTQun is part of the official reconstruction software suite for Hyper-Kamiokande.
- Machine Learning algorithms for Hyper-Kamiokande are under development and study.

PHYSICAL REVIEW D 102, 112011 (2020)

p -> $e^+\pi^0$ in Super-Kamiokande

Final state: three rings visible, all three showering. Signal from both free (hydrogen) and bound (oxygen) protons. Nuclear effects are an unavoidable source of inefficiency.

Typical background from atmospheric v interaction

Neutron tagging algorithm (~20% efficiency) applied to reduce background

Exposure: 450 kton*year

	Conventional FV	Additional FV	
Signal efficiency	39.8%	25.8%	
Expected background	0.49 events	0.10 events	Total Exp. Bkg 1.3 ev / Mton * yr

No candidates: lower limit on proton partial lifetime set at

 τ > 2.4 x 10³⁴ years

The future: Hyper-Kamiokande (Hyper-K, HK)

3 kton 1983 - 1996 Supernova SN1987A neutrinos

Super-Kamiokande

50 kton 1996 – Present Neutrino oscillations

Hyper-Kamiokande

260 kton **2027** - ...

Proton decay? + much more...

Hyper-K is a multipurpose experiment

Very broad physics program, many opportunities for discovery!

2020 – Construction started 2027 – Operation start

2 Main hosts:

- U-Tokyo for HK detector
- KEK J-PARC for beam/near detectors

Hyper-K Overview

Hosted in the world's largest human-made cavern

Excavation is in progress:

- Access tunnel: done
- Dome: done
- Cavern: in progress

	Super-K	Hyper-K
Site	Mozumi	Tochibora
Overburden	2780 m.w.e.	1700 m.w.e.
Number of ID PMTs	11129	20000
Photo-coverage	40%	20% (×2 efficiency)
Mass / Fiducial Mass	50 kton / 22.5 kton	258 kton / 186 kton

Hyper-K Overview

Hyper-K Status Schedule

Aiming at operation start in 2027

Hyper-K Collaboration

22 countries, 104 institutes, 583 members as of April 1, 2024

NUMBER OF COLLABORATORS

Hyper-K Collaboration Meeting, October 2024, Toyama.

Hyper-K as a Nucleon Decay Discovery Experiment

- Fiducial Mass ~ 8 times SK: 186 kton (HK) vs. 22.5 kton (SK)
- Upgraded photosensors (50 cm Box & Line PMTs)
 - 2x detection efficiency
 - 2x timing resolution
 - 2x pressure tolerance

Expected ~1 order of magnitude sensitivity gain for proton decay search. Start probing lifetimes ~ 10^{35} years

p -> $e^+\pi^0$ in Hyper-K

800

800

Number of Events

Number of Events

6

5

4

3

2

14

600

600

atm. v

back.

Assuming 10 years of HK exposure and lifetime limit ~ SK (1.7 x 10³⁴ years)

 $P_{\rm tot}$ < 100 MeV

1000

1000

Total mass (MeV/c²)

 $100 \leq P_{\rm tot} < 250 \,\,{\rm MeV}$

Total mass (MeV/c²)

PDK

signal

1200

1200

Probe τ ~	- 10 ³⁵ years
------------------	--------------------------

$0 < p_{tot}$	$< 100 \ {\rm MeV}/c$	$100 < p_{to}$	$_t < 250 \ { m MeV}/c$
ϵ_{sig} [%]	Bkg $[/Mton \cdot yr]$	ϵ_{sig} [%]	Bkg [/Mton·yr]
18.7 ± 1.2	0.06 ± 0.02	19.4 ± 2.9	0.62 ± 0.20

HK background is ~50% of SK

 $p \rightarrow v K^+$ in Hyper-K

19

Other channels

Hyper-K TDR, Nov 2018, arXiv:1805.04163

Mode	Sensitivity (90% CL) [years]	Current limit [years]
$p \rightarrow e^+ \pi^0$	7.8×10^{34}	1.6×10^{34}
$p \to \overline{\nu} K^+$	3.2×10^{34}	0.7×10^{34}
$p \rightarrow \mu^+ \pi^0$	7.7×10^{34}	0.77×10^{34}
$p \rightarrow e^+ \eta^0$	4.3×10^{34}	1.0×10^{34}
$p \to \mu^+ \eta^0$	4.9×10^{34}	0.47×10^{34}
$p \rightarrow e^+ \rho^0$	0.63×10^{34}	0.07×10^{34}
$p \to \mu^+ \rho^0$	0.22×10^{34}	0.06×10^{34}
$p \rightarrow e^+ \omega^0$	0.86×10^{34}	0.16×10^{34}
$p \to \mu^+ \omega^0$	1.3×10^{34}	0.28×10^{34}
$n \rightarrow e^+ \pi^-$	2.0×10^{34}	0.53×10^{34}
$n \rightarrow \mu^+ \pi^-$	1.8×10^{34}	0.35×10^{34}

Mode	Sensitivity $(90\% \text{ CL})$ [years]	Current limit [years]
$p \to e^+ \nu \nu$	10.2×10^{32}	1.7×10^{32}
$p \to \mu^+ \nu \nu$	10.7×10^{32}	2.2×10^{32}
$p \rightarrow e + X$	31.1×10^{32}	7.9×10^{32}
$p \to \mu^+ X$	33.8×10^{32}	4.1×10^{32}
$n \to \nu \gamma$	23.4×10^{32}	5.5×10^{32}
$np \rightarrow e^+ \nu$	6.2×10^{32}	2.6×10^{32}
$np \rightarrow \mu^+ \nu$	4.2×10^{32}	2.0×10^{32}
$np \rightarrow \tau^+ \nu$	6.0×10^{32}	3.0×10^{32}

30 years of HK exposure

10 years of HK exposure

Also neutron – antineutron oscillation analysis possible: Searched in SK with 90 kton*year exposure. $\tau > 2.7 \times 10^8$ s [PHYSICAL REVIEW D 91, 072006 (2015)]

Summary

- Proton decay is a valuable probe to test Physics Beyond the Standard Model
- Hyper-K will play a central role in exploring the future of particle physics
- Hyper-K will bring proton decay searches to proton lifetimes ~ 10^{35} years
- Many exciting challenges and discoveries ahead: data taking is expected to start in 2027!

THANK YOU FOR YOUR ATTENTION!