Lepton (e,μ,τ) - neutron interaction and low-energy scattering

Jaume Carbonell

In collaboration with T. Frederico (ITA Sao Jose dos Campos)

INT Washington University, Seattle, october 2024

MOTIVATION

In the nuclear reactions, there are in fact no nuclear targets : targets are atomic However the effect of the e⁻, their interaction with projectile, is (almost) always ignored.

Some years ago (*) we realized that the difference between **pp** and **pH** (p-[pe]_{bound}) lowenergy scattering was huge : the consequences of a single atomic electron were dramatic While $a_{pp} \approx -0.1$ fm, $a_{pH} = 397$ Å ! (not a joke!)

not to talk about a rich series of resonances for L=1,2,3,...

(*) R. Lazauskas, J. Carbonell, Few-Body Syst 31 (2002)125 J. Carbonell, R. Lazauskas, D. Delande, L. Hilico, S.Kilic, Europhys Lett 64 (2003) 316 To go ahead with this study we had several possibilities :

- increase the complexity of the projectile : $p \rightarrow {}^{2}H \rightarrow {}^{3}H \rightarrow {}^{3}He \rightarrow {}^{3}He$
- increase the number of electrons in the target : $H \rightarrow 3He \rightarrow 4He \rightarrow 6Li$
- both !

In all cases it becomes terribly complicate ... and very fast!

So we decided to pursue with an equally simple case : np versus nH, i.e. n [pe]

Not only because it was easier but because, even at zero energy, there are new interesting low-energy processes that occur, e.g. $nH \rightarrow [pn] + e^{-1}$

Since the V_{np} is well known, we needed only a reliable V_{en}

- in configuration space
- to be inserted in a non relativistic Schrodinger equation

We could not find it in the literature, so we decided to built it ourselves

The aim of this talk talk is to present the main properties of the Lepton (e, μ , τ)-Neutron interaction (*)

as well as some low-energy results (mainly limited to S-wave)

(*) J.C. and Tobias Frederico, Phys Rev C 109, 064002 (2024)

Lepton-neutron (Ln) interaction

If neutron was point-like, the Ln interaction would be given by the hyperfine Hamiltonian^(*)

$$H_{eN} = \frac{\mu_0}{4\pi} \left\{ -\frac{8\pi}{3} \mu_e \cdot \mu_N \ \delta(\mathbf{x}) + \left[\mu_e \cdot \mu_N - 3(\mu_e \cdot \mathbf{\hat{x}})(\mu_N \cdot \mathbf{\hat{x}}) - \frac{e}{m_e} \mathbf{L} \cdot \mu_N \right] \frac{1}{r^3} \right\}$$

It is a sum of two terms :

2. The interaction between the Magnetic moments M_L and M_n

$$V_{M_1M_2}(\vec{r}) = -\frac{2}{3} \vec{M_1} \cdot \vec{M_1} \,\delta(\vec{r}) - \frac{3(\vec{M_1} \cdot \hat{r_1})(\vec{M_2} \cdot \hat{r}) - \vec{M_1} \cdot \vec{M_1}}{4\pi r^3}$$

3. The spin-orbit term

$$H_{LS}^{ln}=~rac{\mu_0}{4\pi}rac{e}{m_e}rac{1}{r^3}{f L}\cdotec{M_n}$$

To account for the **n** finite size, these expressions must be integrated over the **n** charge and magnetic densities, contained in the experimentally measured em form factors (G_E and G_M) The charge distribution gives an addition term (small but relevant)

1. Purely Coulomb Ln interaction ...despite n being neutral.

$$V_{en}^C(\vec{r}) = -\frac{e^2}{4\pi\epsilon_0} \int d\vec{r}_n \; \frac{\rho_n(\vec{r}_n)}{\mid \vec{r} + \vec{r}_n \mid} = \alpha(\hbar c) \; \int d\vec{r}_n \; \frac{\rho_n(\vec{r}_n)}{\mid \vec{r} + \vec{r}_n \mid}$$

(*) See, e.g. Jackson eq 5.73

SOME NOTATIONS

Magnetic moments :

 σ = Pauli matrices μ_I and q_I algebrics (+ or -) with (for leptons e⁻, μ⁻, τ⁻) q_L=-e and e>0

$$\vec{M_l} = g_l \frac{q_l \hbar}{2m_l} \vec{S} = \mu_l \vec{\sigma} , \qquad \mu_l = -\frac{g_l}{2} \frac{e\hbar}{2m_l} = -1.00116 \left(\frac{m_e}{m_l}\right) \ \mu_B , \qquad \mu_B = \frac{e\hbar}{2m_e} = 5.788382 \times 10^{-5} \text{ eV T}^{-1}$$
$$\vec{M_n} = g_n \frac{e\hbar}{2m_p} \vec{S} = \mu_n \vec{\sigma} , \qquad \mu_n = \frac{g_n}{2} \frac{e\hbar}{2m_p} = -1.91304 \ \mu_N , \qquad \mu_N = \frac{e\hbar}{2m_p} = 3.152451 \times 10^{-8} \text{ eV T}^{-1} .$$

Landé factors g_1 =+2.00232 g_n =-3.82608

NEUTRON FORM FACTORS AND DENSITIES

Neutron charge (ρ_c) and magnetic (ρ_m) densities are obtained as FT of the Sachs electric (G_E) and magnetic (G_M) form factors in the Breit-frame

$$\rho_{c,m}^{n}(\vec{r}) = \int \frac{d\vec{q}}{(2\pi)^{3}} G_{E,M}^{n}(q^{2}) e^{i\vec{q}\cdot\vec{r}} \quad \Longleftrightarrow \qquad G_{E,M}^{n}(q^{2}) = \int d\vec{r} \rho_{c,m}(\vec{r}) e^{i\vec{q}\cdot\vec{r}},$$

t=q²=-Q² is the (space-like) momentum transfer

By expanding the plane wave in the r.h.s. and integrating over the angular part, one gets

$$G(q^2) = G(0) - \frac{\langle r^2 \rangle}{6}q^2 + \frac{\langle r^4 \rangle}{120}q^4 + O(q^6).$$

and so

$$\langle r_n^{2k} \rangle_{c,m} = \frac{(-1)^k k!}{(2k+1)!} \left[\frac{d^k G_{E,M}}{d(q^2)^k} \right]_{q^2=0},$$

NEUTRON CHARGE DENSITIES

We have considered 3 different parametrizations of the n-charge form factor G_E :

Friar and Negele, Adv Nucl. Phys 8,219(1975)

Kelly, Phys Rev C70, 068202(2004) Atac et al, Nature Communications 12, (2021) (data + LQCD)

$$G_E^n(q^2) = \beta_n \frac{q^2}{\left(1 + \frac{q^2}{b_n^2}\right)^3}$$
$$G_E^n(q^2) = \frac{A\tau}{1 + B\tau} G_D(q^2), \quad \tau = \frac{q^2}{4m_p^2},$$
$$G_D(q^2) = \frac{1}{\left(1 + \frac{q^2}{b^2}\right)^2}$$

2

All adjusted to the experimental value ... but differ beyond

$$\langle r_n^2 \rangle = \int d\vec{r} \ r^2 \rho_c^n(\vec{r}) = -0.116 \pm 0.002 \ \text{fm}^2$$

NEUTRON MAGNETIC DENSITIES

We have considered 2 different parametrizations of the n-magnetic form factor G_M :

 $G_M^n(q^2) = rac{\mu_n}{\left(1 + rac{q^2}{h^2}
ight)^2},$

 $G_M^n(Q^2) = \mu_n \frac{1 + a_1 \tau}{1 + b_1 \tau + b_2 \tau^2 + b_3 \tau^3},$

Dipole form, Galster et al Nucl Phys B 32,221(1971)

Kelly, Phys Rev C70, 068202(2004)

Adjusted to
$$\int d\vec{r} \ \rho_m^n(\vec{r}) = \mu_n$$
= -1.91

I. L-n INTERACTION : COULOMB TERM

Results into a potential well of depth $\simeq 0.3$ MeV (about the e mass anyway!) Attractive and the same for the 3 leptons e-, μ -, τ - (changing the sign for anti-leptons)

2. Ln INTERACTION : MAGNETIC DIPOLE TERM

The ponit-like « MM » interaction is written as $V_{MM}^{ln}(\vec{r}) = -\frac{\mu_0 \mu_l \mu_n}{4\pi} \left[\frac{8\pi}{3} \vec{\sigma}_l \cdot \vec{\sigma}_n \, \delta(\vec{r}) \, + \, \frac{\hat{S}_{12}(\hat{r})}{r^3} \right]$ with the usual tensor operator $\hat{S}_{12}(\hat{r}) \equiv 3(\vec{\sigma}_1 \cdot \hat{r})(\vec{\sigma}_2 \cdot \hat{r}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2$

Integrated over the n magnetic density (quite lengthy !)

$$V_{MM}^{ln}(\vec{r}) = -\frac{\mu_0 \mu_l \mu_n}{4\pi} \left[\frac{8\pi}{3} \ \vec{\sigma}_l \cdot \vec{\sigma}_n \int d\vec{r}_n \rho_m^n(\vec{r}_n) \delta(\vec{R}) + \int d\vec{r}_n \frac{3(\vec{\sigma}_l \cdot \hat{R})(\vec{\sigma}_n \cdot \hat{R}) - \vec{\sigma}_l \cdot \vec{\sigma}_n}{R^3} \ \rho_m^n(\vec{r}_n) \right]$$

turns into a (huge!) **spin-spin + tensor** potential

 $V_{MM}^{ln}(x) = V_S(x)(\vec{\sigma} \cdot \vec{\sigma}) + V_T(x)\hat{S}_{12},$

 $\vec{R} = \vec{r} + \vec{r}_n$

1. When using the **Dipole** FF, the result is analytical and one gets

$$V_S(x) = -\frac{1}{3} C_{MM}^{ln} e^{-x} \qquad x=br$$

$$V_T(x) = -C_{MM}^{ln} \frac{1 - \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6}\right) e^{-x}}{x^3}$$

and for the **en** case $C_{MM}^{en} = 4359.4109$ MeV.

The $1/r^3$ of V_T, is naturally regularized at r=0.

It remains asymptotically in the diagonal and coupling term...with all kind of sorrows !

With Kelly FF it remains anayltical but better to dont show it !

2. The lepton mass m_l appears in the prefactor

$$C_{MM}^{ln} = \mu_0 \frac{\mu_n \mu_l}{4\pi} b_n^3 = -\frac{g_n g_l}{4} \frac{\alpha \ (b\hbar c)^3}{4(m_n c^2)(m_l c^2)}$$

It is interesting to take as reference V^{en} case and write

$$V_{MM}^{ln}(x) = \left(\frac{m_e}{m_l}\right) V_{MM}^{en}(x).$$

If for **en** case, V_c is negligeable with respect to V_{MM} , the last one scales as $1/m_l$ and these potentials can be comparable for heavier leptons

3. Ln INTERACTION : SPIN-ORBIT TERM

 $H_{LS}^{ln} = \frac{\mu_0}{4\pi} \frac{e}{m_e} \frac{1}{r^3} \mathbf{L} \cdot \vec{M}_n$ The ponit-like spin-orbit interaction

was also Integrated over the n magnetic density

$$H_{LS}^{ln} = -\frac{\mu_0}{4\pi} \frac{e\mu_n}{\mu_{ln}} \,\vec{\sigma}_n \cdot \mathbf{p} \wedge \int d\mathbf{r}_n \,\frac{\mathbf{R}\rho_m^n(\mathbf{r}_n)}{R^3}$$

and turns into

 $V_{LS}^{ln} = V_{LS}(x) \ (\vec{L} \cdot \vec{s}_n).$

For the Dipole FF one gets $V_{LS}(x) = C_{LS}^{ln} \frac{1 - (1 + x + \frac{x^2}{2})e^{-x}}{x^3}$ $C_{LS}^{ln} = g_n \frac{\alpha (b\hbar c)^3}{(\mu_{ln}c^2)(m_pc^2)}$

The spin-orbit operator **L.s**_n is not the usual one (it does not conserve total spin S)

It is convenient to give the matrix elements in the standard |SLJ> basis

- Null for S-waves : $\langle {}^{1}S_{0} | \vec{L} \cdot \vec{s}_{n} | {}^{1}S_{0} \rangle = \langle {}^{3}S_{1} | \vec{L} \cdot \vec{s}_{n} | {}^{3}S_{1} \rangle = 0$
- L>0 triplet « unnatural parity^(*) » states (3P0,3P2,3D1,3D3,....) :

$$\langle {}^{3}L_{L\pm 1} \mid \vec{L} \cdot \vec{s}_{n} \mid {}^{3}L_{L\pm 1} \rangle = \lambda_{\pm}(L), \qquad \lambda_{\pm}(L) = \begin{cases} \frac{L}{2} & \text{if } j_{n} = L + \frac{1}{2} \\ -\frac{L}{2} - \frac{1}{2} & \text{if } j_{n} = L - \frac{1}{2} \end{cases}$$

- L>0 « natural^(**) parity » states: spin-singlet (${}^{1}P_{1}$) and spin-triplet (${}^{3}P_{1}$) are coupled

$$\langle ^{2S+1}L_{J=L} \mid \vec{L} \cdot \vec{s}_n \mid^{2S'+1} L_{J=L} \rangle = \begin{array}{cc} S = 0 & S = 1 \\ S = 0 & \sqrt{L(L+1)} \\ S = 1 & \sqrt{L(L+1)} & -1 \end{array} \right)$$

...by 1/r³ potentials

(*) « unnatural » because L#J (**) « natural » because L=J

SOME REMARKS

Our expressions for V_C, V_S, V_T, V_{LS} were obtained for arbitrary fermions $(\mathbf{M}_1, \mathbf{\rho}_1)$ $(\mathbf{M}_2, \mathbf{\rho}_2)$

In the **np** case, by using Friar+Dipole form factor, our results are in agreement with the pionner work (*) where the em corrections to S-wave **np** scattering length have been estimated (using AV18)

In the In case, the main difference with (*) is in the 'LS' term For the np they obtained :

$$V_{np}^{LS}(r) = -\frac{\alpha}{2M_n M_R} \,\mu_n \,\frac{F_{LS}}{r^3} \,\left[\mathbf{L} \cdot \mathbf{S} + \mathbf{L} \cdot \mathbf{A}\right] \qquad A = \frac{1}{2} \left(\sigma_n - \sigma_p\right)$$

and disregarded A ... which does not conserve S : standard spin-orbit term.

In In this approximation is not justified ... and create some misfortunes (see later)

SUMARY OF Ln INTERACTION

When we put all together :

$$V^{ln}(x) = V_C^{ln}(x) + V_S^{ln}(x)(\vec{\sigma} \cdot \vec{\sigma}) + V_T^{ln}(x)\hat{S}_{12} + V_{LS}^{ln}(x) \ (\vec{L} \cdot \vec{s}_n)$$

The states are labeled by $J^{\pi}=0^{\pm}, 1^{\pm}, 2^{\pm}...$ the only conserved QNs

All L>0 states are two-by-two coupled, either by V_T (${}^3P_2 - {}^3F_2 ...$) or by V_{LS} (${}^1P_1 - {}^3P_1 ...$) with 1/r³ potentials, in the diagonal as well as in the coupling terms:

A real cauchemar !!!

Better to go slowly...and start with S-waves

V_{ln} in some selected Partial Waves

- Very different scales for 3 leptons
- All singlet states are the same
- All V repulsive (except ³L_{L+1})

SOME RESULTS

Ln S-WAVE SCATTERING AND LOW ENERGY PARAMETERS

Scattering length a_0 and effective range r_0 for different choices of G_E / G_M (no experimental results)

1S0 (all in fm)

${}^{1}S_{0}$	Friar-Dipole		Kelly-Kelly		Atac-Kelly	
	a_0	r_0	a_0	r_0	a_0	r_0
e ⁻ n	2.926×10^{-3}	-149	2.920×10^{-3}	-186	2.920×10^{-3}	-186
$\mu^- n$	2.501×10^{-3}	-170	2.497×10^{-3}	-215	2.501×10^{-3}	-215
$\tau^- n$	1.574×10^{-4}	4814	1.623×10^{-4}	-2145	1.849×10^{-4}	-276
e^+n	-2.949×10^{-3}	150	-2.943×10^{-3}	186	-2.943×10^{-3}	186
$\mu^+ n$	-2.518×10^{-3}	171	-2.514×10^{-3}	217	-2.517×10^{-3}	216
$\tau^+ n$	-1.577×10^{-4}	-4802	-1.625×10^{-4}	2142	-1.851×10^{-4}	276

SOME REMARKS

Typical sizes: $a_0 \simeq 10^{-3}$ fm but huges (even negative) r_0 !

 a_0 quite independent of the FF parametrisation (specially for e and $\mu)$ $r_0\,$ quite depedent !

If T=V (perturbative) LEPs will change sign from particle to antiparticle (Non perturbative effects are of the order of 1%)

Ln S-WAVE SCATTERING AND LOW ENERGY PARAMETERS

3S1 (all in fm)

Friar-Dipole			Kelly-Kelly		Atac-Kelly	
$3S_{1}$	a_0	r_0	a_0	r_0	a_0	r_0
e^-n	-0.981×10^{-3}	448	-0.979×10^{-3}	559	-0.979×10^{-3}	559
$\mu^- n$	-1.015×10^{-3}	462	-1.012×10^{-3}	546	-1.009×10^{-3}	557
$\tau^{-}n$	-1.200×10^{-3}	498	-1.192×10^{-3}	482	-1.117×10^{-3}	535
e^+n	0.979×10^{-3}	-448	0.977×10^{-3}	-559	0.977×10^{-3}	-559
$\mu^+ n$	1.012×10^{-3}	-461	1.010×10^{-3}	-545	1.006×10^{-3}	-556
$\tau^+ n$	1.200×10^{-3}	-497	1.189×10^{-3}	-481	1.117×10^{-3}	-535

SAME REMARKS AS FOR 1S0

Almost flavour-independent !!! ... despite 3 orders of magnitude on m_l 's

Ln S-WAVE CROSS SECTION

The S-wave phaseshifts $\delta_0(k)$ were computed.

In the kinematical domain were the non-relativistic treatement is justified they are well reproduced by the leading term in

$$\delta_0(k) = -k a_0 \left[1 + \frac{1}{2} r_0 a_0 k^2 + \cdots \right],$$

The zero-energy cross section

$$\sigma_{ln}(0) = \pi (|a_s|^2 + 3 |a_t|^2).$$

provides very close values for the 3 considered leptons

$$\sigma_{en}(0) = 0.358 \,\mu b \qquad \sigma_{\mu n}(0) = 0.292 \,\mu b \qquad \sigma_{\tau n}(0) = 0.136 \,\mu b$$

(no experimental results)

Ln POSSIBLE BOUND STATES

Longstanding debate, in theory as well as in experimental

For : very strong potentials Against : very small scattering length (negative for attractive chanels)

Most favorable case is the 1S0 e^n and μ^n for which the V_S is attractive (5 GeV) but for which $a_0 \simeq -0.003$ fm

When introducing a scaling factor $V_s = s^*V$ bound state appears for s = 230-270 !!

No any bound state, by far !!!!

COHERENT SCATTERING and n – e* « e-bound to heavy Atom » SCATTERING

When very low-energy n scattering by solids, it is pertinent to consider the coherent scattering

$$a_c = \frac{a_s + 3 a_t}{4}$$

In en S-waves the interaction is dominated by V_S, with $\sigma.\sigma$ =-3 for S=0 and $\sigma.\sigma$ =1 for S=1...

If T=V=a (and nothing else in V than V_S !) there would be an exact cancellation between a_s and a_t ...and no zero-energy coherent scattering $(a_c=0)!$

The coherent scattering is thus provided by :

- The « negligeable » Coulomb potential V_C ...

and/or

- The non perturbative effects (beyond T=V=a)

Numerical results will tell us who is who

	Friar-Dipole	Kelly-Kelly	Atac-Kelly
	a_c (fm)	a_c (fm)	a_c (fm)
$e^{-}n$	-4.50×10^{-6}	-4.42×10^{-6}	-4.43×10^{-6}
$\mu^- n$	-1.36×10^{-4}	-1.35×10^{-4}	-1.32×10^{-4}
$\tau^{-}n$	-5.07×10^{-4}	-4.88×10^{-4}	-3.76×10^{-4}
	a_c^C (fm)	a_c^C (fm)	a_c^C (fm)
$e^{-}n$	-7.14×10^{-7}	-7.08×10^{-7}	-6.90×10^{-7}
$\mu^- n$	-1.33×10^{-4}	-1.32×10^{-4}	-1.28×10^{-4}
$\tau^- n$	-8.60×10^{-4}	-8.53×10^{-4}	-8.31×10^{-4}
e^+n	7.14×10^{-7}	7.08×10^{-7}	6.90×10^{-7}

- Coherent en scattering length (upper half) are 10¹-10³ times smaller than 1S0/3S1 separately
- For en and µn cases, great stability w.r. FF
- For en, V_c alone (lower half part) is not enough : one needs V_s and non perturbative !
- Coherent cross sections $\sigma_c = 4\pi \left| \frac{1}{4} \left[f_s(k) + 3f_t(k) \right] \right|^2$ gives (Atac + Kelly FFs)

$$\sigma_{c}^{en} = 0.0023 \ nb$$
 $\sigma_{c}^{\mu n} = 2.2 \ nb$ $\sigma_{c}^{\tau n} = 79 \ nb$

(no experimental results) ...but who cares about ?

A very different situation occurs when scattering « zero »-energy n's on materials

(the only measured quatity)

Unill now all the scattering fresults were « on flight » scattering One suposes that the e's are « attached » to atom (a*), which recoils as a whole (M>>m_n)

- The n-Atom reduced mass μ_{nA} is taken equal to m_n =939.565 MeV
- All spin-spin effects are disregarded (averaged to zero, not « compensated »)
- Scattering comes only from V_C !!!

The accepted experimental (*) value is b_{ne}=1.32 +/- 0.03 fm !!!!

Our result $a_c^c(ne)=7.14 \ 10^{-7}$ fm, with $\mu_{nA}=m_n$ turns into $a_c^*(ne^*)=1.32 \ 10^{-3}$ fm (Friar)

	Friar-Dipole		Kelly-Kelly		Atac-Kelly	,
	a_0	r_0	a_0	r_0	a_0	r_0
e*-n	-0.0013152	+501.48	-0.0013050	+448.75	-0.0012703	518.18
Born	-0.0013152	+501.49	-0.0013050	+448.77	-0.0012703	518.16

This result assumes that only V_C contributes and is givern perturbatively by

$$a_0^B(e^*n) = \frac{(m_n c^2)\alpha}{3(\hbar c)} \langle r^2 \rangle_n \qquad r_0^B(e^*n) = -\frac{1}{5 a_0^B(ne^*)} \frac{\langle r^4 \rangle_n}{\langle r^2 \rangle_n}$$

 a_0 entirely determined by $\langle r_n^2 \rangle$ and so quite stable wr/FF r_0 depends on $\langle r_n^4 \rangle$ and is less fixed by FF !!!

(*) Hartmut Abele, Progress in Particle and Nuclear Physics 60 (2008) 1-81

NB.

If **n** would fill the full V_{ne} interaction (keeping $\mu_{nA}=m_n$):

Totally different results...

	Friar-Dipole	Kelly-Kelly	Atac-Kelly	
$\overline{a_s^*}$	0.843	0.905	0.905	
a_t^*	0.611	0.567	0.567	
a_c^*	0.669	0.652	0.652	

Enhancement factor m_n/m_e

In particluar there is a $n-e^*$ « bound » state in 3S1 (change sign) with B=150 MeV r=0.5 fm !!!

HIGHER ANGULAR MOMENTA (L>0)

Nothing is known in the L-n system

For a <u>single channel</u>, short range + C_3/r^3 , two key references ^(*,**) Results based on the « two-potential formula » (like for Coulomb) :

- L=0 : no a_0 and $\sigma_0(k=0)$ divergent ! (hopefully we are not concerned)

- L>0 : at k \rightarrow 0 everything is determined by asymptotic coefficient of V_{In}

$$\beta_3 = \frac{2\mu}{\hbar^2} C_3$$
 with $C_3 = \lim_{r \to \infty} r^3 V(r)$.

It depends on the partial wave $\beta_3 = \beta_3(L,S,J)$ and [Length]

phase shifts $\tan \delta_{LSJ}(k) = \frac{k\beta_3}{2L(L+1)} + O(k^2)$ and so $\sigma_{LSJ}(k) = (2J+1)\frac{\pi\beta_3^2}{4L^2(L+1)} + O(k)$

- Short-range part plays no role
- Non-vanishing contributions at k=0 !!!
- How to extract S-wave contributions from an experiment ?

(*) B. Gao, Phys. Rev. A 59, 2778 (1999) (**) Tim-Oliver Muller, PRL 110, 260401 (2013)

V_{Ln} asymptotic coefficients for the lowest PW + zero energy cross section (µb)

	en		μn		au n	
	$oldsymbol{eta}_3$	$\sigma_L(0)$	$oldsymbol{eta}_3$	$\sigma_L(0)$	$oldsymbol{eta}_3$	$\sigma_L(0)$
$^{3}P_{0}$	1.76×10^{-2}	0.61	1.70×10^{-2}	0.57	1.38×10^{-2}	0.37
${}^{3}P_{1}$	0.88×10^{-2}	0.45	0.91×10^{-2}	0.49	1.07×10^{-2}	0.68
${}^{3}P_{2}$	-5.28×10^{-3}	0.28	-5.34×10^{-3}	0.28	-5.67×10^{-3}	0.32
${}^{3}D_{1}$	2.06×10^{-2}	0.28	2.03×10^{-2}	0.27	1.86×10^{-2}	0.23
${}^{3}D_{2}$	0.88×10^{-2}	0.08	0.91×10^{-2}	0.09	1.07×10^{-3}	0.12
${}^{3}D_{3}$	-1.09×10^{-2}	0.18	-1.10×10^{-2}	0.18	-1.15×10^{-3}	0.20
${}^{3}F_{2}$	2.58×10^{-2}	0.18	2.56×10^{-2}	0.18	2.43×10^{-2}	0.16
${}^{3}F_{3}$	0.88×10^{-2}	0.03	0.91×10^{-2}	0.03	1.07×10^{-2}	0.04
${}^{3}F_{4}$	-1.66×10^{-2}	0.14	-1.67×10^{-2}	0.13	-1.73×10^{-2}	0.15

Remind S-wave (1S0+3S1) values

 $\sigma_{en}(0) = 0.358 \,\mu b$ $\sigma_{\mu n}(0) = 0.292 \,\mu b$ $\sigma_{\tau n}(0) = 0.136 \,\mu b$

Dominated by P+D+F waves

Some misfortunes....

 $\beta_3 = \beta_3(L,S,J)$ is determined by the matrix elements of the LSJ operator $V^{ln}(x) = V_C^{ln}(x) + V_S^{ln}(x)(\vec{\sigma} \cdot \vec{\sigma}) + V_T^{ln}(x)\hat{S}_{12} + V_{LS}^{ln}(x)(\vec{L} \cdot \vec{s}_n)$

- Spin-spin is independent of L
- S_{12} tends to a constant when $L{\rightarrow}^\infty$
- L.s_n diverges linearly with L (for some familly of states) !!!!!

Because of that the sum over L has a logarithmic divergence !!!!!

The origin of that « anomaly » is not clear but must be clarified :

- either a consequence of L.s term that may be regularized
- intrinsic property of this operator (disregarded in NNP-waves)
- should be limited to differential cross sections ?

IN CONCLUSION

We have obtained the lepton-neutron (en, μu , τn) potential in configuration space It is based on the hyperfine (em) interaction integrated over the neutron em densities It has a central (V_C), spin-spin (V_S), tensor (V_T) and "spin-orbit" (V_{LS}) terms

The S-waves low-energy scattering parameters were computed and we checked their stability with respect to different form factor parametrisations

The "in medium" n scattering with electron-bound-to-atom (ne*) was considered The computed coherent scattering length is compatible with the experimental results. It is entirely determined by V_C (Coulomb) and it is perturbative

L>0 angular momentum states were considered.

- All of them are 2x2 coupled by tensor or by spin-orbit terms
- The interaction is long range (1/r³) both in the diagonal and in the coupling terms No scattering theory is - for the moment - available
- They contribute at zero energy, are dominant, and the PW sum seems to diverge (due to LS !)

First application to nH scattering are coming soon (Next INT Workhsop)

Many thanks for your attention !

...and for this nice workshop

Good luck to everybody for next Tuesday!