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MOTIVATION

In the nuclear reactions, there are in fact no nuclear targets : targets are atomic
However the effect of the e-, their interaction with projectile, is (almost) always ignored.
 
Some years ago (*) we realized that the difference between pp and pH (p-[pe]bound) low-
energy scattering was huge : the consequences of a single atomic electron were dramatic

While app ≈ -0.1 fm,  apH = 397Å !   (not a joke!)

not to talk about a rich series of resonances for  L=1,2,3,…

(*) R. Lazauskas, J. Carbonell, Few-Body Syst 31 (2002)125
J. Carbonell, R. Lazauskas, D. Delande, L. Hilico, S.Kilic, Europhys Lett 64 (2003) 316
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Fig. 5. X+–H scattering length (in atomic units) as a function of the projectile mass (in MeV). The values corresponding to physical particles are indicated
by arrows.

Fig. 6. Cross section for the L = 0 pH scattering in pp spin triplet state as a function of the energy (in atomic units). Three body results (filled squares) are
compared to those (solid line) given by the two-body Landau potential [34] modified in order to reproduce the binding energy the first excited state.

value is due to the existence of a first excited bound state with extremely small binding energy. By using the effective range
expansion, its binding energy was found to be B = (1.135 ± 0.035) × 10−9 a.u. that is ≈ 30 neV.

This state can be also viewed as the first excited vibrational level v = 1 of 2pσu symmetry in the H+
2 molecular ion.

A direct computation of this state using ad-hoc variational techniques [30] confirmed its existence and provided a more
accurate value of the binding energy B = 1.085045 × 10−9 [31]. Further work showed that it is stable with respect to the
relativistic and leading order QED corrections. Taking them into account, its binding energy is only slightly modified and
becomes B = 1.082247 × 10−9 [32].

It is worth mentioning that this H+
2 first excited antisymmetric state exists also in the so-called Landau p–H poten-

tial [34]. The latter consists in adding to the polarization term (14) a repulsive one due to the Pauli principle between
protons in the spin triplet state and reads (in atomic units)

V L(x) = η
2x

ex+1 − αd

2x4 (15)

The total potential V L is regularized to a constant below xc = 2.5. In its original formulation (η = 1) it entails an excited
S-wave state, although with binding energy two order of magnitude smaller than the exact three-body value and a p–H
scattering length consequently larger.

To our knowledge the H+
2 first vibrational 2pσu state above described constitutes the most weakly bound natural

molecule ever predicted.1 A direct computation provides a root mean squared radius R = 270 a.u. and its wavefunction
has still sizeable values well beyond 1000 a.u. That makes the state extremely unstable against any kind of perturbation.

1 It is, however, possible to prepare arbitrarily weakly bound systems suitably adjusting external magnetic fields, like for instance in [33].



To go ahead with this study we had several possibilities :
  - increase the complexity of the projectile :  p→ 2H → 3H → 3He → 3He 
  - increase the number of electrons in the target : H → 3He → 4He → 6Li
  - both !
In all cases it becomes terribly complicate … and very fast!

So we decided to pursue with an equally simple case :  np versus nH, i.e. n [pe]

Not only because it was easier but because, even at zero energy, there are new 
interesting low-energy processes that occur, e.g. nH → [pn] + e-

Since the Vnp is well known, we needed only a reliable Ven
 - in configuration space
 - to be inserted in a non relativistic Schrodinger equation

We could not find it in the literature, so we decided to built it ourselves

The aim of this talk talk is to present the main properties of the 
Lepton (e, μ, 𝝉)-Neutron interaction (*) 

as well as some low-energy results (mainly limited to S-wave)

(*) J.C. and Tobias Frederico, Phys Rev C 109, 064002 (2024)



Lepton–neutron (Ln) interaction
If neutron was point-like, the Ln interaction would be given by the hyperfine Hamiltonian(*)

It is a sum of two terms :

2. The interaction between the Magnetic moments ML and Mn

3. The spin-orbit term

To account for the n finite size, these expressions must be integrated over the n charge and 
magnetic densities, contained in the experimentally measured em form factors (GE and GM)
The charge distribution gives an addition term (small but relevant)

1. Purely Coulomb Ln interaction …despite n being neutral.

(*) See, e.g. Jackson eq 5.73

4.2 Hyperfine Hamiltonian

Consider the interaction between two point-like magnetic dipoles (Ericson-Weise pag 43)

VM1M2 = ( ~M1 ^ ~r)( ~M2 ^ ~r)
1

4⇡r
(35)

which results into

VM1M2(~r) = �2

3
~M1 · ~M1 �(~r) � 3( ~M1 · r̂1)( ~M2 · r̂)� ~M1 · ~M1

4⇡r3
(36)

which can be writen in the form

VM1M2(~r) = � 1

4⇡

"
8⇡

3
~M1 · ~M1 �(~r) +

3( ~M1 · r̂1)( ~M2 · r̂)� ~M1 · ~M1

r3

#
(37)

By inserting the expressions for magnetic moments (34) in the dipole-dipole Magnetic Hamiltonian (37) one gets

VM1M2(~r) = �µ1µ2

4⇡


8⇡

3
~�1 · ~�1 �(~r) +

3(~�1 · r̂1)(~�2 · r̂)� ~�1 · ~�1
r3

�
(38)

In terms of the tensor operaror
Ŝ12 ⌘ 3(~�1 · r̂1)(~�2 · r̂)� ~�1 · ~�1

one gets

VM1M2(~r) = �µ1µ2

4⇡

"
8⇡

3
(~�1 · ~�2) �(~r) +

Ŝ12

r3

#
(39)

• Jackson eq (5.73) pag 190 gives for the Hyperfine Hamiltonian

HeN =
µ0

4⇡

⇢
�8⇡

3
µe · µN �(x) +


µe · µN � 3(µe · x̂)(µN · x̂)� e

me
L · µN

�
1

r3

�
(40)

I use e as the absolute value of electron charge, such that qe = �e

µe = ge
qeh̄

2m
Se = ge

qeh̄

2m

1

2
�

HeN = VMeMN (r) +
µ0

4⇡

e

me

1

r3
L · µN (41)
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SOME NOTATIONS

Magnetic moments :           M = μ 𝝈   

𝝈 = Pauli matrices
μl and ql algebrics (+ or -) with (for leptons e-, μ-, 𝛕- ) qL=-e and e>0  

Landé factors    gl=+2.00232    gn=-3.82608    
 



NEUTRON FORM FACTORS AND DENSITIES

Neutron charge (ρc) and magnetic (ρm) densities are obtained as FT of the Sachs
electric (GE) and magnetic (GM) form factors in the Breit-frame

t=q2=-Q2 is the (space-like) momentum transfer

By expanding the plane wave in the r.h.s. and integrating over the angular part, one gets 

and so



We have considered 3 different parametrizations of the n-charge form factor GE :

Friar and Negele, Adv Nucl. Phys 8,219(1975)

Kelly, Phys Rev C70, 068202(2004)

Atac et al, Nature Communications 12, (2021)
(data + LQCD)

All adjusted to the experimental value
…but differ beyond

NEUTRON CHARGE DENSITIES



We have considered 2 different parametrizations of the n-magnetic form factor GM:

Dipole form, Galster et al Nucl Phys B 32,221(1971)

Kelly, Phys Rev C70, 068202(2004)

Adjusted to                                 = -1.91

NEUTRON MAGNETIC DENSITIES

𝛍n units 𝛍n units



I. L-n  INTERACTION : COULOMB TERM 

Results into a potential well of depth ≃ 0.3 MeV (about the e mass anyway!)
Attractive and the same for the 3 leptons e-, μ-, 𝝉- (changing the sign for anti-leptons)



2. Ln  INTERACTION : MAGNETIC DIPOLE TERM

The ponit-like « MM » interaction is written as

with the usual tensor operator

Integrated over the n magnetic density (quite lengthy !)

turns into a (huge!) spin-spin + tensor potential



1. When using the Dipole FF, the result is analytical and one gets

       
      and for the en case

     The 1/r3 of VT, is naturally regularized at r=0.
      It remains asymptotically in the diagonal and coupling term…with all kind of sorrows ! 

      With Kelly FF it remains anayltical but better to dont show it !

2.  The lepton mass ml appears in the prefactor 

    It is interesting to take as reference Ven case and write

    If for en case, VC is negligeable with respect to VMM, the last one scales as 1/ml
    and these potentials can be comparable for heavier leptons

x=br



3. Ln  INTERACTION : SPIN-ORBIT TERM

The ponit-like spin-orbit interaction 

was also Integrated over the n magnetic density

and turns into

For the Dipole FF one gets



The spin-orbit operator L.sn is not the usual one (it does not conserve total spin S)

It is convenient to give the matrix elements in the standard ∣SLJ> basis

- Null for S-waves :

- L>0 triplet « unnnatural parity(*) » states (3P0,3P2,3D1,3D3,….) :

- L>0 « natural(**) parity » states: spin-singlet (1P1) and spin-triplet (3P1) are coupled

   …by 1/r3 potentials 

(*) « unnatural » because L#J
(**) « natural » because L=J



SOME REMARKS

Our expressions for VC,VS,VT,VLS were obtained for arbitrary fermions (M1,𝛒1) (M2,𝛒2) 
       
In the np case, by using Friar+Dipole form factor, our results are in agreement with 
the pionner work (*) where the em corrections to S-wave np scattering length have 
been estimated (using AV18) 

In the ln case, the main difference with (*) is in the ‘LS’ term
For the np they obtained :

and disregarded A …which does not conserve S :  standard spin-orbit term.

In ln this approximation is not justified… and create some misfortunes (see later)

(*)   R.B. Wiringa, V.G.J. Stoks and R. Schiavilla, Phys. Rev. 51 (1995) 38



SUMARY OF Ln INTERACTION

When we put all together :

The states are labeled by  J𝜋=0±,1±, 2±… the only conserved QNs 

All L>0 states are two-by-two coupled, either by VT (3P2-3F2…) or by VLS (1P1-3P1…)
with 1/r3 potentials, in the diagonal as well as in the coupling terms:

 A real cauchemar  !!!

Better to go slowly…and start with S-waves



Vln in some selected Partial Waves

- Very different scales for 3 leptons

- All singlet states are the same

- All V repulsive (except 3LL+1)



SOME RESULTS



Ln S-WAVE SCATTERING AND LOW ENERGY PARAMETERS

Scattering length a0 and effective range r0 for different choices of GE / GM

(no experimental results)

1S0   (all in fm) 

SOME REMARKS

Typical sizes: a0 ≃ 10-3 fm but huges (even negative) r0 !

a0 quite independent of the FF parametrisation (specially for e and μ)
r0  quite depedent !

If T=V (perturbative) LEPs will change sign from particle to antiparticle
(Non perturbative effects are of the order of 1% )   



Ln S-WAVE SCATTERING AND LOW ENERGY PARAMETERS

SAME REMARKS AS FOR 1S0

Almost flavour-independent !!!  … despite 3 orders of magnitude on ml ’s

3S1   (all in fm) 



Ln S-WAVE CROSS SECTION

The S-wave phaseshifts 𝝳0(k) were computed.

In the kinematical domain were the non-relativistic treatement is justified they are well 
reproduced by the leading term in

The zero-energy cross section 

provides very close values for the 3 considered leptons

(no experimental results)



Ln POSSIBLE BOUND STATES

Longstanding debate, in theory as well as in experimental

For : very strong potentials
Against : very small scattering length (negative for attractive chanels)

Most favorable case is the 1S0  e+n and μ+n for which the VS is attractive (5 GeV)
but for which a0 ≃ -0.003 fm

When introducing a scaling factor Vs=s*V  bound state appears for s=230-270 !!

No any bound state, by far !!!! 



COHERENT SCATTERING 
and 

n – e* « e-bound to heavy Atom » SCATTERING

When very low-energy n scattering by solids, it is pertinent to consider the coherent scattering

In en S-waves the interaction is dominated by VS , with σ.σ=-3 for S=0 and σ.σ=1 for S=1…

If T=V=a (and nothing else in V than VS !)  there would be an exact cancellation between 
as and at…and no zero-energy  coherent scattering  (ac=0)!

The coherent scattering is thus provided by :

- The « negligeable » Coulomb potential VC …

    and/or

- The non perturbative effects ( beyond T=V=a )

Numerical results will tell us who is who ….



- Coherent en scattering length (upper half) are 101-103 times smaller than 1S0/3S1 separately

- For en and μn cases, great stability w.r. FF

- For en, VC alone (lower half part) is not enough : one needs VS and non perturbative !

- Coherent cross sections                                                         gives (Atac + Kelly FFs)

 

(no experimental results) …but who cares about ?



A very different situation occurs when scattering « zero »-energy n’s on materials

(the only measured quatity)

Unill now al the scattering fresults were « on flight » scattering
One suposes that the e’s are « attached » to atom  (a*), which recoils as a whole (M>>mn)
- The n-Atom reduced mass μnA is taken equal to mn=939.565 MeV
- All spin-spin effects are disregarded (averaged to zero, not  « compensated »)
- Scattering comes only from VC !!!

The accepted experimental (*) value is bne=1.32 +/- 0.03  fm !!!!
Our result  ac

C(ne)=7.14 10-7 fm, with μnA=mn turns into  ac*(ne*)=1.32 10-3 fm (Friar)

This result assumes that only VC contributes and is givern perturbatively by

a0 entirely determined by <r2
n > and so quite stable wr/FF

r0 depends on <r4
n > and is less fixed by FF !!!

(*) Hartmut Abele, Progress in Particle and Nuclear Physics 60 (2008) 1-81 



NB.

If n would fill the full Vne interaction (keeping μnA=mn):

Totally different results…

Enhancement factor mn/me

In particluar there is a n-e* « bound » state in 3S1 (change sign)
with B=150 MeV r=0.5 fm !!!



HIGHER ANGULAR MOMENTA (L>0)

Nothing is known in the L-n system

For a single channel, short range + C3/r3, two key references (*,**)
Results based on the « two-potential formula » (like for Coulomb) :

- L=0 : no a0 and σ0(k=0) divergent !      (hopefully we are not concerned)

- L>0 : at k→0 everything is determined by asymptotic coefficient of Vln

           
            It depends on the partial wave β3= β3(L,S,J)  and [Length]
                   
            phase shifts
 
            and so

           - Short-range part plays no role
           - Non-vanishing contributions at k=0  !!!
           - How to extract S-wave contributions from an experiment ?
          

(*) B. Gao, Phys. Rev. A 59, 2778 (1999)
(**) Tim-Oliver Muller, PRL 110, 260401 (2013) 

8 7 5.460962E-02 6.777266E-02 5.443230E-02 6.733325E-02 5.345697E-02 6.494186E-02

8 8 8.806022E-03 1.997254E-03 9.101551E-03 2.133559E-03 1.072709E-02 2.963723E-03

8 9 -4.573815E-02 6.021929E-02 -4.586258E-02 6.054740E-02 -4.654703E-02 6.236810E-02

9 8 6.044695E-02 6.022857E-02 6.027310E-02 5.988264E-02 5.931689E-02 5.799767E-02

9 9 8.806022E-03 1.428624E-03 9.101551E-03 1.526122E-03 1.072709E-02 2.119934E-03

9 10 -5.158794E-02 5.419018E-02 -5.171460E-02 5.445660E-02 -5.241127E-02 5.593371E-02

10 9 6.629155E-02 5.419690E-02 6.612045E-02 5.391750E-02 6.517933E-02 5.239357E-02

10 10 8.806022E-03 1.057020E-03 9.101551E-03 1.129158E-03 1.072709E-02 1.568511E-03

10 11 -5.744158E-02 4.925895E-02 -5.757008E-02 4.947958E-02 -5.827685E-02 5.070192E-02

7.1 General theory about 1/r3.

By neglecting the strong phase shifts Bao (PRC59 1999 pag) and Miller (PRL eq 10) give5
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VLn asymptotic coefficients for the lowest PW + zero energy cross section (μb) 

Remind S-wave (1S0+3S1) values

Dominated by P+D+F waves



Some misfortunes….
β3= β3(L,S,J) is determined by the matrix elements of the LSJ operator

 

- Spin-spin is independent of L

- S12 tends to a constant when L→∞

- L.sn diverges linearly with L (for some familly of states) !!!!!

Because of that the sum over L has a logarithmic divergence !!!!!

The origin of that « anomaly » is not clear …. but must be clarified :

 - either a consequence of L.s term that may be regularized 
 
 - intrinsic property of this operator (disregarded in NNP-waves)

 - should be limited to differential cross sections ? 





We have obtained the lepton-neutron (en, μu, 𝝉n) potential in configuration space
It is based on the hyperfine (em) interaction integrated over the neutron em densities
It has a central (VC), spin-spin (VS) , tensor (VT) and “spin-orbit” (VLS) terms

The S-waves low-energy scattering parameters were computed and we checked their stability 
with respect to different form factor parametrisations

The “in medium“ n scattering with electron-bound-to-atom (ne*) was considered
The computed coherent scattering length is compatible with the experimental results.
It is entirely determined by VC (Coulomb) and it is perturbative

L>0 angular momentum states were considered.
- All of them are 2x2 coupled by tensor or by spin-orbit terms
- The interaction is long range (1/r3) both in the diagonal and in the coupling terms

No scattering theory is - for the moment - available
- They contribute at zero energy, are dominant, and the PW sum seems to diverge (due to LS !)

First application to nH scattering are coming soon (Next INT Workhsop) 

IN CONCLUSION



Many thanks for your attention !

…and for this nice workshop 

Good luck to everybody for next Tuesday ….!


