Lepton (e,μ,) **- neutron interaction and low-energy scattering**

Jaume Carbonell

In collaboration with T. Frederico (ITA Sao Jose dos Campos)

INT Washington University, Seattle, october 2024

MOTIVATION

In the nuclear reactions, there are in fact no nuclear targets : targets are atomic However the effect of the e⁻, their interaction with projectile, is (almost) always ignored.

Some years ago (*) we realized that the difference between **pp** and **pH** (p-[pe]_{bound}) lowenergy scattering was huge : the consequences of a single atomic electron were dramatic While $\mathbf{a}_{\text{op}} \approx -0.1$ fm, $\mathbf{a}_{\text{off}} = 397\text{\AA}$! (not a joke!)

not to talk about a rich series of resonances for L=1,2,3,...

(*) R. Lazauskas, J. Carbonell, Few-Body Syst 31 (2002)125 J. Carbonell, R. Lazauskas, D. Delande, L. Hilico, S.Kilic, Europhys Lett 64 (2003) 316

To go ahead with this study we had several possibilities :

- increase the complexity of the projectile : $p \rightarrow {}^{2}H \rightarrow {}^{3}He \rightarrow {}^{3}He$
- increase the number of electrons in the **target : H** \rightarrow 3He \rightarrow 4He \rightarrow 6Li
- both !

In all cases it becomes terribly complicate … and very fast!

So we decided to pursue with an equally simple case : **np** versus **nH**, i.e. **n [pe]**

Not only because it was easier but because, even at zero energy, there are new interesting low-energy processes that occur, e.g. $nH \rightarrow [pn] + e^{-}$

Since the V_{no} is well known, we needed only a reliable V_{en}

- in configuration space
- to be inserted in a non relativistic Schrodinger equation

We could not find it in the literature, so we decided to built it ourselves

The aim of this talk talk is to present the main properties of the Lepton (e, μ **,** τ **)-Neutron interaction (*)**

as well as some low-energy results (mainly limited to S-wave)

(*) J.C. and Tobias Frederico, Phys Rev C 109, 064002 (2024)

Lepton–neutron (Ln) interaction

If neutron was point-like, the **Ln** interaction would be given by the hyperfine Hamiltonian**(*)**

$$
H_{eN} = \frac{\mu_0}{4\pi} \left\{ -\frac{8\pi}{3}\mu_e \cdot \mu_N\; \delta(\mathbf{x}) + \left[\mu_e \cdot \mu_N - 3(\mu_e \cdot \mathbf{\hat{x}})(\mu_N \cdot \mathbf{\hat{x}}) - \frac{e}{m_e} \mathbf{L} \cdot \mu_N \right] \frac{1}{r^3} \right\}
$$

It is a sum of two terms :

2. The interaction between the Magnetic moments **M**₁ and **M**_n

$$
V_{M_1M_2}(\vec{r})=-\frac{2}{3}\;\vec{M_1}\cdot\vec{M_1}\;\delta(\vec{r})\;-\;\frac{3(\vec{M_1}\cdot\hat{r}_1)(\vec{M_2}\cdot\hat{r})-\vec{M_1}\cdot\vec{M_1}}{4\pi r^3}
$$

3. The spin-orbit term

$$
H_{LS}^{ln} = \frac{\mu_0}{4\pi} \frac{e}{m_e} \frac{1}{r^3} \mathbf{L} \cdot \vec{M}_n
$$

To account for the **n** finite size, these expressions must be integrated over the **n** charge and magnetic densities, contained in the experimentally measured em form factors (G_F and G_M) The charge distribution gives an addition term (small but relevant) *^VM*1*M*² (~*r*) = ¹

1. Purely Coulomb Ln interaction ...despite n being neutral.

$$
V_{en}^C(\vec{r})=-\frac{e^2}{4\pi\epsilon_0}\;\int d\vec{r}_n\;\frac{\rho_n(\vec{r}_n)}{|\;\vec{r}+\vec{r}_n\;|}=\alpha(\hbar c)\;\int d\vec{r}_n\;\frac{\rho_n(\vec{r}_n)}{|\;\vec{r}+\vec{r}_n\;|}
$$

(*) See, e.g. Jackson eq 5.73

SOME NOTATIONS

Magnetic moments :

$$
M = \mu \sigma
$$

 σ = Pauli matrices **μ**_l and \mathbf{q}_I algebrics (+ or -) with (for leptons e⁻, μ⁻, τ⁻) q_L=-e and e>0

$$
\vec{M}_l = g_l \frac{q_l \hbar}{2m_l} \vec{S} = \mu_l \vec{\sigma}, \qquad \mu_l = -\frac{g_l}{2} \frac{e\hbar}{2m_l} = -1.00116 \left(\frac{m_e}{m_l} \right) \mu_B, \qquad \mu_B = \frac{e\hbar}{2m_e} = 5.788382 \times 10^{-5} \text{ eV T}^{-1}
$$
\n
$$
\vec{M}_n = g_n \frac{e\hbar}{2m_p} \vec{S} = \mu_n \vec{\sigma}, \qquad \mu_n = \frac{g_n}{2} \frac{e\hbar}{2m_p} = -1.91304 \ \mu_N, \qquad \qquad \mu_N = \frac{e\hbar}{2m_p} = 3.152451 \times 10^{-8} \text{ eV T}^{-1}.
$$

Landé factors **gl**=+2.00232 **gn** =-3.82608

NEUTRON FORM FACTORS AND DENSITIES

Neutron charge (ρ_c) and magnetic (ρ_m) densities are obtained as FT of the Sachs electric (G_E) and magnetic (G_M) form factors in the Breit-frame

$$
\rho_{c,m}^n(\vec{r}) = \int \frac{d\vec{q}}{(2\pi)^3} G_{E,M}^n(q^2) e^{i\vec{q}\cdot\vec{r}} \quad \Longleftrightarrow \qquad G_{E,M}^n(q^2) = \int d\vec{r} \, \rho_{c,m}(\vec{r}) e^{i\vec{q}\cdot\vec{r}},
$$

 $t=q^2=-Q^2$ is the (space-like) momentum transfer

By expanding the plane wave in the r.h.s. and integrating over the angular part, one gets

$$
G(q^{2}) = G(0) - \frac{\langle r^{2} \rangle}{6}q^{2} + \frac{\langle r^{4} \rangle}{120}q^{4} + O(q^{6}).
$$

and so

$$
\left\langle r_n^{2k} \right\rangle_{c,m} = \frac{(-1)^k k!}{(2k+1)!} \left[\frac{d^k G_{E,M}}{d(q^2)^k} \right]_{q^2=0},
$$

NEUTRON CHARGE DENSITIES

We have considered 3 different parametrizations of the n-charge form factor G_E :

Friar and Negele, Adv Nucl. Phys 8,219(1975)

Kelly, Phys Rev C70, 068202(2004) **Atac et al**, Nature Communications 12, (2021) (data + LQCD)

$$
G_E^n(q^2) = \beta_n \frac{q^2}{\left(1 + \frac{q^2}{b_n^2}\right)^3}
$$

$$
G_E^n(q^2) = \frac{A\tau}{1 + B\tau} G_D(q^2), \quad \tau = \frac{q^2}{4m_p^2},
$$

$$
G_D(q^2) = \frac{1}{\left(1 + \frac{q^2}{b^2}\right)^2}
$$

All adjusted to the experimental value …but differ beyond

$$
\langle r_n^2 \rangle = \int d\vec{r} \; r^2 \rho_c^n(\vec{r}) = -0.116 \pm 0.002 \; \text{fm}^2
$$

NEUTRON MAGNETIC DENSITIES

We have considered 2 different parametrizations of the n-magnetic form factor G_M :

Dipole form, Galster et al Nucl Phys B 32,221(1971)

Kelly, Phys Rev C70, 068202(2004)

Adjusted to

\n
$$
\int d\vec{r} \; \rho_m^n(\vec{r}) = \mu_n = -1.91
$$

I. L-n INTERACTION : COULOMB TERM

$$
V_{en}^C(\vec{r}) = -\frac{e^2}{4\pi\epsilon_0} \int d\vec{r}_n \, \frac{\rho_n(\vec{r}_n)}{|\vec{r} + \vec{r}_n|} = \alpha(\hbar c) \int d\vec{r}_n \, \frac{\rho_n(\vec{r}_n)}{|\vec{r} + \vec{r}_n|} \qquad \qquad \underbrace{\mathbf{R} = \mathbf{r} + \mathbf{r}_n}_{\mathbf{r}}
$$

Results into a potential well of depth \simeq 0.3 MeV (about the e mass anyway!) Attractive and the same for the 3 leptons **e-, μ-, -** (changing the sign for anti-leptons)

2. Ln INTERACTION : MAGNETIC DIPOLE TERM

 $V_{MM}^{ln}(\vec{r}) = -\frac{\mu_0 \mu_l \mu_n}{4\pi} \left[\frac{8\pi}{3} \vec{\sigma}_l \cdot \vec{\sigma}_n \; \delta(\vec{r}) \; + \; \frac{\hat{S}_{12}(\hat{r})}{r^3} \right].$ The ponit-like « MM » interaction is written as $\hat{S}_{12}(\hat{r}) \equiv 3(\vec{\sigma}_1 \cdot \hat{r})(\vec{\sigma}_2 \cdot \hat{r}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2$ with the usual tensor operator

Integrated over the n magnetic density (quite lengthy !)

$$
V^{ln}_{MM}(\vec{r})=-\frac{\mu_0\mu_l\mu_n}{4\pi}\left[\frac{8\pi}{3}\ \vec{\sigma}_l\cdot\vec{\sigma}_n\int d\vec{r}_n\rho^n_m(\vec{r}_n)\delta(\vec{R})+\int d\vec{r}_n\frac{3(\vec{\sigma}_l\cdot\hat{R})(\vec{\sigma}_n\cdot\hat{R})-\vec{\sigma}_l\cdot\vec{\sigma}_n}{R^3}\ \rho^n_m(\vec{r}_n)\right]
$$

turns into a (huge!) **spin-spin + tensor** potential

 $V_{MM}^{ln}(x) = V_{S}(x)(\vec{\sigma} \cdot \vec{\sigma}) + V_{T}(x)\hat{S}_{12},$

 $\vec{R} = \vec{r} + \vec{r}_n$

1. When using the **Dipole** FF, the result is analytical and one gets

$$
V_S(x) = -\frac{1}{3} C_{MM}^{ln} e^{-x}
$$

\n
$$
V_T(x) = -C_{MM}^{ln} \frac{1 - \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6}\right) e^{-x}}{x^3}
$$
 x=br

 C_{MM}^{en} = 4359.4109 MeV. and for the **en** case

The 1/ r^3 of V_T , is naturally regularized at r=0.

It remains asymptotically in the diagonal and coupling term…**with all kind of sorrows !**

With **Kelly** FF it remains anayltical but better to dont show it !

2. The lepton mass **m** appears in the prefactor

$$
C_{MM}^{ln} = \mu_0 \frac{\mu_n \mu_l}{4\pi} b_n^3 = -\frac{g_n g_l}{4} \frac{\alpha (b\hbar c)^3}{4(m_n c^2)(m_l c^2)}.
$$

It is interesting to take as reference **Ven** case and write

$$
V_{MM}^{ln}(x) = \left(\frac{m_e}{m_l}\right) V_{MM}^{en}(x).
$$

If for **en** case, V_c is negligeable with respect to V_{MM} , the last one scales as $1/m_l$ and these potentials can be comparable for heavier leptons

3. Ln INTERACTION : SPIN-ORBIT TERM

 $H_{LS}^{ln} = \frac{\mu_0}{4\pi} \frac{e}{m_e} \frac{1}{r^3} \mathbf{L} \cdot \vec{M}_n$ The ponit-like spin-orbit interaction

was also Integrated over the n magnetic density

$$
H_{LS}^{ln} = -\frac{\mu_0}{4\pi} \frac{e\mu_n}{\mu_{ln}} \vec{\sigma}_n \cdot \mathbf{p} \wedge \int d\mathbf{r}_n \frac{\mathbf{R}\rho_m^n(\mathbf{r}_n)}{R^3}
$$

and turns into

 $V_{LS}^{ln} = V_{LS}(x) (\vec{L} \cdot \vec{s}_n).$

For the Dipole FF one gets $V_{LS}(x) = C_{LS}^{ln} \frac{1 - (1 + x + \frac{x^2}{2})e^{-x}}{x^3}$ $C_{LS}^{ln} = g_n \frac{\alpha(b\hbar c)^3}{(\mu_{ln} c^2)(m_p c^2)}$

The spin-orbit operator $\mathsf{L}.\mathsf{s}_n$ is not the usual one (it does not conserve total spin S)

It is convenient to give the matrix elements in the standard ∣SLJ> basis

- $\langle {}^1S_0 | \vec{L} \cdot \vec{s}_n | {}^1S_0 \rangle = \langle {}^3S_1 | \vec{L} \cdot \vec{s}_n | {}^3S_1 \rangle = 0$ - Null for S-waves :
- L>0 triplet « unnnatural parity**(*)** » states (3P0,3P2,3D1,3D3,….) :

$$
\langle^{3} L_{L\pm 1} \mid \vec{L} \cdot \vec{s}_n \mid^{3} L_{L\pm 1} \rangle = \lambda_{\pm}(L) \qquad \lambda_{\pm}(L) = \begin{cases} \frac{L}{2} & \text{if } j_n = L + \frac{1}{2} \\ -\frac{L}{2} - \frac{1}{2} & \text{if } j_n = L - \frac{1}{2} \end{cases}
$$

- L>0 « natural^(**) parity » states: spin-singlet $(^1P_1)$ and spin-triplet $(^3P_1)$ are coupled

$$
S = 0 \t S = 1
$$

$$
\langle^{2S+1}L_{J=L} | \vec{L} \cdot \vec{s}_n |^{2S'+1} L_{J=L} \rangle = \frac{S}{S} = 0 \t \begin{pmatrix} 0 & S = 1 \\ \sqrt{L(L+1)} & -1 \end{pmatrix}
$$

 $...$ by $1/r³$ potentials

(*) « unnatural » because L#J (**) « natural » because L=J

SOME REMARKS

Our expressions for V_c , V_s , V_l , V_l _s were obtained for arbitrary fermions (M_1 , p_1) (M_2 , p_2)

In the **np** case, by using Friar+Dipole form factor, our results are in agreement with the pionner work **(*)** where the em corrections to S-wave **np** scattering length have been estimated (using AV18)

In the **ln** case, the main difference with **(*)** is in the 'LS' term For the **np** they obtained :

$$
V_{np}^{LS}(r) = -\frac{\alpha}{2M_nM_R} \mu_n \frac{F_{LS}}{r^3} \left[\mathbf{L} \cdot \mathbf{S} + \mathbf{L} \cdot \mathbf{A} \right] \qquad A = \frac{1}{2} \left(\sigma_n - \sigma_p \right)
$$

and disregarded A …which does not conserve S : standard spin-orbit term.

In **ln this approximation is not justified**… and create some misfortunes (see later)

SUMARY OF Ln INTERACTION

When we put all together :

$$
V^{ln}(x) = V_C^{ln}(x) + V_S^{ln}(x)(\vec{\sigma} \cdot \vec{\sigma}) + V_T^{ln}(x)\hat{S}_{12} + V_{LS}^{ln}(x) (\vec{L} \cdot \vec{s}_n)
$$

The states are labeled by $J^{\pi}=0^{\pm},1^{\pm},2^{\pm}...$ the only conserved QNs

All L>0 states are two-by-two coupled, either by $V_T(^3P_2~^3F_2...)$ or by $V_{LS}(^1P_1~^3P_1...)$ with $1/r³$ potentials, in the diagonal as well as in the coupling terms:

A real cauchemar !!!

Better to go slowly…and start with S-waves

V_{In} in some selected Partial Waves

- Very different scales for 3 leptons
- All singlet states are the same
- All V repulsive (except ${}^{3}L_{L+1}$)

SOME RESULTS

Ln S-WAVE SCATTERING AND LOW ENERGY PARAMETERS

Scattering length a₀ and effective range r₀ for different choices of G_F / G_M **(no experimental results)**

1S0 (all in fm)

SOME REMARKS

Typical sizes: $a_0 \approx 10^{-3}$ fm but huges (even negative) r_0 !

 a_0 quite independent of the FF parametrisation (specially for e and μ) r_0 quite depedent !

If T=V (perturbative) LEPs will change sign from particle to antiparticle (Non perturbative effects are of the order of 1%)

Ln S-WAVE SCATTERING AND LOW ENERGY PARAMETERS

3S1 (all in fm)

SAME REMARKS AS FOR 1S0

Almost flavour-independent !!! ... despite 3 orders of magnitude on m_1 's

Ln S-WAVE CROSS SECTION

The S-wave phaseshifts $\delta_0(k)$ were computed.

In the kinematical domain were the non-relativistic treatement is justified they are well reproduced by the leading term in

$$
\delta_0(k) = -k a_0 \bigg[1 + \frac{1}{2} r_0 a_0 k^2 + \cdots \bigg],
$$

The zero-energy cross section

$$
\sigma_{ln}(0) = \pi (|a_s|^2 + 3 |a_t|^2)
$$

provides very close values for the 3 considered leptons

$$
\sigma_{en}(0) = 0.358 \,\mu b \qquad \sigma_{\mu n}(0) = 0.292 \,\mu b \qquad \sigma_{\tau n}(0) = 0.136 \,\mu b
$$

(no experimental results)

Ln POSSIBLE BOUND STATES

Longstanding debate, in theory as well as in experimental

For : very strong potentials **Against** very small scattering length (negative for attractive chanels)

Most favorable case is the 1S0 e^+n and μ^+n for which the V_s is attractive (5 GeV) but for which $a_0 \approx -0.003$ fm

When introducing a scaling factor $V_s=s^*V$ bound state appears for $s=230-270$!!

No any bound state, by far !!!!

COHERENT SCATTERING and n – e* « e-bound to heavy Atom » SCATTERING

When very low-energy n scattering by solids, it is pertinent to consider the coherent scattering

$$
a_c=\frac{a_s+3 a_t}{4}
$$

In en S-waves the interaction is dominated by V_s , with $\sigma.\sigma$ =-3 for S=0 and $\sigma.\sigma$ =1 for S=1...

If T=V=a (and nothing else in V than V_S !) there would be an exact cancellation between a_s and a_t . and no zero-energy coherent scattering $(a_c=0)!$

The coherent scattering is thus provided by :

- The « negligeable » Coulomb potential V_{C} ...

and/or

- The non perturbative effects (beyond $T=V=a$)

Numerical results will tell us who is who ….

- Coherent en scattering length **(upper half)** are 101-103 times smaller than 1S0/3S1 separately
- For en and un cases, great stability w.r. FF
- For **en**, **V_C** alone (lower half part) is not enough : one needs V_s and non perturbative !
- Coherent cross sections $\sigma_c = 4\pi \left| \frac{1}{4} \left[f_s(k) + 3 f_t(k) \right] \right|^2$ gives (Atac + Kelly FFs)

$$
\sigma_c^{en} = 0.0023 nb \qquad \sigma_c^{\mu n} = 2.2 nb \qquad \sigma_c^{\tau n} = 79 nb
$$

(no experimental results) …but who cares about ?

A very different situation occurs when scattering « zero »-energy n's on materials

(the only measured quatity)

Unill now al the scattering fresults were « on flight » scattering **One suposes that the e's are « attached » to atom (a*), which recoils as a whole (M>>mn)**

- The n-Atom reduced mass μ_{nA} is taken equal to $m_n=939.565$ MeV
- All spin-spin effects are disregarded (averaged to zero, not « compensated »)
- Scattering comes only from V_C !!!

The accepted experimental (*) **value is** $b_{ne} = 1.32 +1 - 0.03$ **fm !!!!**

Our result a_c^C(ne)=7.14 10⁻⁷ fm, with μ_{nA} =m_n turns into $a_c^*(ne^*)$ =1.32 10⁻³ fm (Friar)

This result assumes that only V_C contributes and is givern perturbatively by

$$
a_0^B(e^*n) = \frac{(m_n c^2)\alpha}{3(\hbar c)} \langle r^2 \rangle_n \qquad r_0^B(e^*n) = -\frac{1}{5 a_0^B(n e^*)} \frac{\langle r^4 \rangle_n}{\langle r^2 \rangle_n}
$$

 a_0 entirely determined by <r 2 _n> and so quite stable wr/FF r_0 depends on $\leq r^4$ _n > and is less fixed by FF !!!

(*) Hartmut Abele, Progress in Particle and Nuclear Physics 60 (2008) 1-81

NB.

If **n** would fill the full V_{ne} interaction (keeping $\mu_{nA} = m_n$):

Totally different results…

Enhancement factor m_n/m_e

In particluar there is a $n-e^*$ « bound » state in 3S1 (change sign) with B=150 MeV r=0.5 fm !!!

HIGHER ANGULAR MOMENTA (L>0) 8.75×10^{-11} 8.88 1.5 .5862.02.586258E/02 6.054740E-02 μ **BEARING ANGLIFATE AD MOMENTA ASSAULT** 8.88 8.80602 E-03 2.10016 E-03 2.1335 E-03 1.133 E-1335 E-1335 E-1335 E-1335

Nothing is known in the L-n system Nothing is known in the L-n system 9 10 -5.158794E-02 5.419018E-02 -5.171460E-02 5.445660E-02 -5.241127E-02 5.593371E-02

For a single channel, short range $+ C_{3}/r^{3}$, two key references $(*,*)$ Results based on the « two-potential formula » (like for Coulomb) : 1 or a $\frac{311916}{2114111161}$, $3110111a1196$ 1 031 1 , 100 $\overline{10}$

 $-L=0$: no a₀ and σ_0 (k=0) divergent ! (hopefully we are not concerned)

- L>0 : at k→0 everything is determined by asymptotic coefficient of **Vln** tan *L*(*k*) = ¹ ²*L*(*^L* + 1)(*k*3) + *^O*(*k*2) - L>0 : at k \rightarrow 0 everything is determined by asymptotic coefficient of $\bf V_{\rm in}$

$$
\beta_3 = \frac{2\mu}{\hbar^2} C_3 \quad \text{with} \quad C_3 = \lim_{r \to \infty} r^3 \ V(r).
$$

lt depends on the partial wave **β₃= β₃(L,S,J)** and [Length] *Lerius on the partial wave p₃=*

 phase shifts and so $k\beta_3$ $l\Omega(k^2)$ $\sigma_{LSJ}(k) = (2J+1) \frac{\pi \beta_3^2}{4L^2(L)}$ $\frac{\pi \mu_{3}}{4L^{2}(L+1)} + O(k)$ $\tan \delta_{LSJ}(k) = \frac{k\beta_3}{2L(L+1)}$ $\frac{\kappa \rho_3}{2L(L+1)} + O(k^2)$ $\mathsf{End} \ \mathsf{so}$

$$
\sigma_{LSJ}(k) = (2J+1)\frac{1}{4L^2(I)}
$$

- **Example part plays no role**
 Lon vanishing contributions at k
- Short-range part plays no role
- Non-vanishing contributions at k=0 !!!
- How to extract S-waye contributions from an exi
- Non-vanishing contributions at k=0 !!!
- How to extract S-wave contributions from an experiment ?

(*) B. Gao, Phys. Rev. A 59, 2778 (1999) *LSJ* (*k*) = (2*^J* + 1)⇡3(*L, S, J*)² (**) Tim-Oliver Muller, PRL 110, 260401 (2013)

_—

VLn asymptotic coefficients for the lowest PW + zero energy cross section (μb)

Remind S-wave (1S0+3S1) values

 $\sigma_{en}(0) = 0.358 \,\mu b$ $\sigma_{\mu n}(0) = 0.292 \,\mu b$ $\sigma_{\tau n}(0) = 0.136 \,\mu b$

Dominated by P+D+F waves

Some misfortunes….

 $β₃ = β₃(L, S, J)$ is determined by the matrix elements of the LSJ operator $V^{ln}(x) = V^{ln}_C(x) + V^{ln}_S(x) (\vec{\sigma} \cdot \vec{\sigma}) + V^{ln}_T(x) \hat{S}_{12} + V^{ln}_{LS}(x) (\vec{L} \cdot \vec{s}_n)$

- Spin-spin is independent of L
- S₁₂ tends to a constant when L→∞
- **L.sn diverges linearly with L (for some familly of states) !!!!!**

Because of that the sum over L has a logarithmic divergence !!!!!

The origin of that « anomaly » is not clear …. but must be clarified :

- either a consequence of L.s term that may be regularized
- intrinsic property of this operator (disregarded in NNP-waves)
- should be limited to differential cross sections ?

IN CONCLUSION

We have obtained the lepton-neutron (en, μ u, τ n) potential in configuration space It is based on the hyperfine (em) interaction integrated over the neutron em densities It has a central (V_C), spin-spin (V_S), tensor (V_T) and "spin-orbit" (V_{LS}) terms

The S-waves low-energy scattering parameters were computed and we checked their stability with respect to different form factor parametrisations

The "in medium" n scattering with electron-bound-to-atom (ne*) was considered The computed coherent scattering length is compatible with the experimental results. It is entirely determined by $V_{\rm C}$ (Coulomb) and it is perturbative

L>0 angular momentum states were considered.

- All of them are 2x2 coupled by tensor or by spin-orbit terms
- The interaction is long range $(1/r³)$ both in the diagonal and in the coupling terms No scattering theory is - for the moment - available
- They contribute at zero energy, are dominant, and the PW sum seems to diverge (due to LS !)

First application to nH scattering are coming soon (Next INT Workhsop)

Many thanks for your attention !

…and for this nice workshop

Good luck to everybody for next Tuesday ….!