Recent developments in the modelling of neutron-star crusts

Nicolas Chamel Université Libre de Bruxelles, Belgium

IReNA-INT workshop, 9-13 December 2024

Outline

Neutron superfluid dynamics in neutron-star crusts

- Small superflow: superfluid density
- Large superflow: gapless superfluidity

- Shallow heating in magnetars
 - Possible role of electron captures

Onclusions & perspectives

Neutron superfluid dynamics in neutron-star crusts

Spin glitches and superfluidity

 \sim 240 pulsars have been found to suddenly~spin~up. Such spin glitches have been also detected in accreting neutron stars.

Review: Antonopoulou, Haskell, Espinoza, Rep. Prog. Phys. 85, 126901 (2022)

Glitches are thought to be triggered by the **unpinning of quantized vortices**.

Review: Zhou et al., Universe 8(12), 641(2022)

Similar phenomenon observed in ⁴He and predicted in ultracold atoms.

Poli et al., PRL 131, 223401 (2023)

This suggests the existence of a neutron **superflow in neutron-star crusts**.

How does the neutron superfluid dynamics impact the cooling?

Neutron superfluidity in neutron-star crusts

The **breaking of translational symmetry** leads to the depletion of the superfluid reservoir. *Leggett, PRL 25, 1543 (1970)*

A superflow with velocity V_n induces an average neutron mass current

$$ar{
ho}_{n}=
ho_{n,s}oldsymbol{V}_{n}=
ho_{n}rac{m_{n}}{m_{n}^{\star}}oldsymbol{V}_{n}.$$

The superfluid density $\rho_{n,s} < \rho_n (m_n^* > m_n)$ is a current-current **response function**.

This "is not the density of anything", Richard Feynman.

 $ho_{n,s} \ll
ho_n$ in intermediate crustal layers ($\sim 10^{13} {
m g \ cm^{-3}})$

Chamel, Nucl. Phys. A747, 109 (2005); PRC85, 035801 (2012)

Review: Chamel, J. Low Temp. Phys. 189, 328 (2017)

Such depletion has been recently measured in cold atomic condensates in optical traps. *Chauveau et al., PRL 130, 226003 (2023); Tao et al., PRL131,163401 (2023)*

Neutron band structure and Fermi surface

In the weak coupling $\Delta/\varepsilon_F \rightarrow 0$:

$$\rho_{n,s} \approx \frac{m_n^2}{12\pi^3\hbar^2} \sum_{\alpha} \int_{\mathrm{F}} |\nabla_{\boldsymbol{k}} \varepsilon_{\alpha \boldsymbol{k}}| \mathrm{d} \mathcal{S}^{(\alpha)}$$

Carter et al., Nucl. Phys. A748, 675 (2005)

Similar expression for cold atoms *Pitaevskii et al., PRA71, 053602 (2005)*

In intermediate layers:

- cluster size $\sim \lambda_F \ll$ lattice spacing
- periodic potential $\sim 2\varepsilon_F \gg \Delta$

Bragg scattering leads to strong distortions of the Fermi surface.

Neglect of pairing? 1D toy models: *Minami&Watanabe,PRR4,033141(2022) Watanabe&Pethick,PRL119,062701 (2017)*

Picture made with XCrySDen

Neutron superfluid fraction and pairing gaps

In the BCS theory, the neutron superfluid density is given by

$$\rho_{n,s} = \frac{m_n^2}{24\pi^3\hbar^2} \sum_{\alpha} \int d^3 \boldsymbol{k} \, |\boldsymbol{\nabla}_{\boldsymbol{k}} \varepsilon_{\alpha \boldsymbol{k}}|^2 \frac{|\Delta|^2}{(\boldsymbol{E}_{\alpha \boldsymbol{k}})^3}$$

Carter, Chamel, Haensel, Nucl. Phys. A759, 441 (2005)

Neutron superfluid fraction and pairing gaps

Results of full **3D band-structure calculations with BCS pairing** at baryon density 0.03 fm⁻³ for a body-centered cubic lattice:

Δ (MeV)	Δ/ε_F	$\rho_{n,s}/\rho_{n,f}$
1.59	0.0869	0.0750
1.11	0.0604	0.0750
0.770	0.0420	0.0752
0.535	0.0292	0.0755
0.372	0.0203	0.0760
0.259	0.0141	0.0766
0.180	0.00981	0.0770
0.125	0.00682	0.0774

lattice spacing 47.3 fm

 $25 \times 25 \times 25$ grid ($\delta r \sim 0.95$ fm)

 \sim 1300 bands (half without pairing)

imes 1360 k \Rightarrow 10⁶ Bloch states

Chamel, arXiv:2412.05599

 $\rho_{n,s} \ll \rho_n$ independently of Δ similarly to fermionic condensate in a 1D periodic optical lattice when potential depth \gg Fermi energy. *Orso& Stringari, Phys. Rev. A109, 023301 (2024)*

However, pairing could play a more important role in the nuclear pasta mantle because of weaker periodic potential (potential depth $\leq \varepsilon_F$) *Almirante&Urban, Phys.Rev.C109, 045805 (2024); Phys.Rev.C110, 065802(2024) Sekizawa et al., Phys. Rev.C105, 045807 (2022)*

Numerical challenge

The determination of the superfluid fraction is computationally costly because of the high spatial resolution needed: $\delta \ell \lesssim 1$ fm whereas the lattice spacing can reach ~ 110 fm (140 fm for fcc lattice)

Chamel, arXiv:2412.05599

Superfluid density and cooling

The suppression of the superfluid fraction impacts sound modes:

- transverse lattice phonons are slower,
- longitudinal lattice and superfluid phonons are mixed.

- The specific heat of phonons $\propto (k_{\rm B}T/\hbar v)^3$ is enhanced.
- Changes in phonon velocities alter electron-phonon scattering therefore the thermal conductivity.

Chamel,Page,Reddy,PRC87,035803(2013) J.Phys.Conf.Ser.665, 012065(2016)

This may have implications for the cooling of neutron stars.

Ignoring spatial inhomogeneities, the flow is frictionless provided $V_n < V_{Ln}$, Landau's critical velocity

$$V_{Ln} \equiv V_F \sqrt{\frac{\mu_n}{2\varepsilon_F} \left[\sqrt{1 + \left(\frac{\Delta}{\mu_n}\right)^2} - 1 \right]} \approx \frac{\Delta}{\hbar k_F}$$

If $V_n < V_{Ln}$, no excitation can be created because of an energy gap: no dissipation.

Ignoring spatial inhomogeneities, the flow is frictionless provided $V_n < V_{Ln}$, Landau's critical velocity

$$V_{Ln} \equiv V_F \sqrt{\frac{\mu_n}{2\varepsilon_F} \left[\sqrt{1 + \left(\frac{\Delta}{\mu_n}\right)^2} - 1 \right]} \approx \frac{\Delta}{\hbar k_F}$$

Ignoring spatial inhomogeneities, the flow is frictionless provided $V_n < V_{Ln}$, Landau's critical velocity

$$V_{Ln} \equiv V_F \sqrt{\frac{\mu_n}{2\varepsilon_F} \left[\sqrt{1 + \left(\frac{\Delta}{\mu_n}\right)^2} - 1 \right]} \approx \frac{\Delta}{\hbar k_F}$$

Ignoring spatial inhomogeneities, the flow is frictionless provided $V_n < V_{Ln}$, Landau's critical velocity

$$V_{Ln} \equiv V_F \sqrt{\frac{\mu_n}{2\varepsilon_F} \left[\sqrt{1 + \left(\frac{\Delta}{\mu_n}\right)^2} - 1 \right]} \approx \frac{\Delta}{\hbar k_F}$$

But the gap shrinks with increasing V_n .

Ignoring spatial inhomogeneities, the flow is frictionless provided $V_n < V_{Ln}$, Landau's critical velocity

$$V_{Ln} \equiv V_F \sqrt{\frac{\mu_n}{2\varepsilon_F} \left[\sqrt{1 + \left(\frac{\Delta}{\mu_n}\right)^2} - 1 \right]} \approx \frac{\Delta}{\hbar k_F}$$

The gap vanishes for $V_n = V_{Ln}$ but superfluidity is not destroyed!

Gapless superfluidity

- Δ coincides with the energy gap only for $V_n = 0$
- Δ is the order parameter and remains finite for $V_n > V_{Ln}$

 Δ vanishes at the critical velocity

$$V_{cn}\approx \frac{\exp(1)}{2}\,V_{Ln}\approx 1.4\,V_{Ln}$$

The superfluid is gapless for $V_{Ln} \leq V_n < V_{cn}$.

Allard & Chamel, PRC103, 025804 (2021)

A normal fluid of quasiparticles excitations is present even at T = 0: the superfluid density is reduced $\rho_{n,s} < \rho_n$ in the gapless phase.

Gapless superfluidity and specific heat

The neutron specific heat is considerably enhanced and comparable to that in the normal phase:

Universal approximate analytical formula have been derived

Allard & Chamel, PRC103, 025804 (2021)

Astrophysical implications

Superfluidity can be probed from the cooling of neutron-star crusts after the end of an accretion episode

Wijnands, Degenaar, Page, J. Astrophys. Astron. 38, 49, (2017)

KS 1731–260 appeared colder than expected after \sim 3000 days:

Cackett et al., ApJ 722, L137 (2010)

KS 1731–260 appeared colder than expected after \sim 3000 days:

Cackett et al., ApJ 722, L137 (2010)

Data could be fitted by **fine tuning the neutron pairing gaps** Δ_n *Turlione et al., A&A 577, A5 (2015)*

KS 1731–260 appeared colder than expected after \sim 3000 days:

Cackett et al., ApJ 722, L137 (2010)

Data could be fitted by **fine tuning the neutron pairing gaps** Δ_n *Turlione et al., A&A 577, A5 (2015)*

But these empirical gaps are not compatible with latest microscopic calculations based on different many-body approaches.

KS 1731–260 appeared colder than expected after \sim 3000 days:

Cackett et al., ApJ 722, L137 (2010)

Data could be fitted by **considering the vanishing of neutron pairing gaps** in the densest crustal layers, as predicted by quantum Monte Carlo calculations

Deibel et al., ApJ 839, 95 (2017)

KS 1731–260 appeared colder than expected after \sim 3000 days:

Cackett et al., ApJ 722, L137 (2010)

But this conclusion is no longer supported by more recent quantum Monte Carlo calculations (in agreement with other microscopic approaches).

Observational puzzles: MXB 1659-29

MXB 1659-29 exhibited an unexpected late-time cooling:

Cackett et al., ApJ 774, 131 (2013)

Observational puzzles: MXB 1659-29

MXB 1659-29 exhibited an unexpected late-time cooling:

Cackett et al., ApJ 774, 131 (2013)

Data could be fitted by considering **disordered nuclear pasta** in the densest crustal layers, as predicted by classical molecular dynamics (at $\bar{n} = 0.05 \text{ fm}^{-3}$, $T \approx 1 \text{ MeV}$ and $Y_p \approx 0.4$).

Horowitz et al., PRL 114, 031102 (2015)

Observational puzzles: MXB 1659-29

MXB 1659-29 exhibited an unexpected late-time cooling:

Cackett et al., ApJ 774, 131 (2013)

Data could be fitted by considering **disordered nuclear pasta** in the densest crustal layers, as predicted by classical molecular dynamics (at $\bar{n} = 0.05 \text{ fm}^{-3}$, $T \approx 1 \text{ MeV}$ and $Y_p \approx 0.4$).

Horowitz et al., PRL 114, 031102 (2015)

But this conclusion was not confirmed by subsequent simulations. Nandi & Schramm, ApJ 852, 135 (2018)

Classical vs quantum recipe of nuclear pasta

Extended Thomas Fermi (ETF) calculations with/out shell effects (SI):

The region containing pasta shrinks dramatically with shell effects! Shchechilin, Chamel, Pearson, PRC108, 025805 (2023); PRC109, 055802 (2024)

Neutron diffusion in accreted crusts

In traditional accreted crust models, neutrons are emitted all at once by nuclei and sink with them.

This leads to **spurious jump of the neutron chemical potential**

Steiner, PRC85, 055804 (2012)

Free neutrons actually appear at lower density and pressure *Chamel et al., PRC91, 055803 (2015)*

Thermodynamically consistent treatment by Gusakov & Chugunov:

- same equation of state as catalyzed crust despite composition
- considerably reduced heating \sim 0.3 vs \sim 1.5 MeV/nucleon

Gusakov&Chugunov, PRL 124, 191101 (2020); PRD104, L081301 (2021)

Cooling of KS 1731-260 revisited

We have run cooling simulations using crustcool code modified to account for neutron diffusion with realistic pairing gaps:

In the absence of superflow (BCS), the thermal relaxation is still too fast due to the suppression of the neutron specific heat.

Cooling of KS 1731-260 revisited

We have run cooling simulations using crustcool code modified to account for neutron diffusion with realistic pairing gaps:

Observations can only be fitted by using unrealistic pairing gaps.

Cooling of KS 1731-260 revisited

We have run new cooling simulations accounting for **neutron** diffusion and gapless superfluidity with realistic pairing gaps:

Gapless superfluidity can naturally explain observations. Allard & Chamel, PRL 132, 181001 (2024)

Cooling of MXB 1659-29 revisited

We have run new cooling simulations accounting for **neutron** diffusion and gapless superfluidity with realistic pairing gaps:

Gapless superfluidity yields again the best fits to data. Allard & Chamel, PRL 132, 181001 (2024)

Gapless superfluidity and delayed cooling

- In both Haensel&Zdunik and Gusakov&Chugunov models, the neutron specific heat is negligible irrespective of neutron diffusion
- Cooling is dictated by electrons and ions

Whereas in the gapless phase, the neutron specific heat dominates thus leading to a delayed cooling.

Cooling of MXB 1659-29 after second outburst

We have run new cooling simulations for the second outburst keeping fixed the core temperature:

Allowing for gapless superfluidity leads to very different predictions. Allard & Chamel, PRL 132, 181001 (2024)

Spectral fits of MXB 1659-29

Cackett et al. (2013) actually presented 4 different spectral fits for the last observation after the end of the first outburst:

model	$k_{ m B}T_{ m eff}^{\infty}$ (eV)	N _H (cm ⁻²)
absorbed atmosphere	49.0±2.0	2×10^{21} (observations)
atm.+power law $\Gamma = 1.5$	45.0±3.0	2×10^{21} (observations)
atm.+power law $\Gamma = 2$	$43.0{\pm}5.0$	$2 imes 10^{21}$ (observations)
absorbed atmosphere	55±3.0	$(4.7 \pm 1.3) imes 10^{21}$ (free)

In recent studies, the last fit (the only one consistent with standard cooling) has been adopted. Why discarding other fits?

- Large variations of *N_H* possibly due to disk precession.
- But fitting N_H through both outbursts did not show variations.

Parikh et al., A&A 624, A84 (2019)

Gapless superfluidity can explain all spectral fits Allard&Chamel, Eur. Phys. J. A60, 116 (2024)

Sensitivity analyses

Varying the envelope composition, neutron-star mass and radius, accretion rate, gapless superfluidity still yields the best fits:

After end of the first outburst of MXB 1659-29:

Similar conclusions for KS 1731-260.

Allard&Chamel, Eur. Phys. J. A60, 116 (2024)

Different cooling scenarios

Different models lead to different predictions for the long-term cooling:

Since the end of the second outburst of MXB 1659–29:

Allard&Chamel, Eur. Phys. J. A60, 116 (2024)

Further observations are crucially needed!

Stability of the super Landau superflow?

Fully self-consistent time-dependent quantum simulations of the **motion of a single cluster through the neutron superfluid**:

The gapless superfluid is stable in deep crust but in shallow layers Cooper pair breaking leads to the **formation of vortex rings**: onset of quantum turbulence? Glitch triggering mechanism?

Peçak, Chamel, Zdanowicz et al., Phys. Rev. X 14, 041054 (2024)

Conclusions I

The breaking of translation symmetry in the crust of neutron stars leads to the depletion of the neutron superfluid reservoir.

- The neutron superfluid fraction is suppressed due to **Bragg** scattering independently of BCS pairing
- This suppression alters thermal properties and potentially the cooling of neutron stars.
- But beyond BCS calculations are needed to draw more definite conclusions.

Vortex pinning induces a neutron superflow in the crust.

- When $V_n > V_{Ln}$, superfluidity becomes **gapless**.
- Gapless superfluidity naturally explains the observed cooling of transiently accreting neutron stars due to the huge specific heat.
- This scenario could be tested with further observations.

Shallow heating in magnetars

Highly-magnetized neutron stars

Soft gamma-ray repeaters and anomalous X-ray pulsars are X-ray sources with luminosities $\sim 10^{31} - 10^{36}$ erg/s, exhibiting bursts and flares ($\lesssim 10^{39} - 10^{47}$ erg/s) from milliseconds to seconds.

16 SGRs (12 confirmed, 4 candidates) 14 AXPs (12 confirmed, 2 candidate) *McGill Online Magnetar Catalog*

Their emission and their activity are thought to be powered by **extremely high magnetic fields** $> 10^{14} - 10^{15}$ G, as supported by spin-down and spectroscopic studies.

Magnetar outbursts

Enhancements of the persistent X-ray flux by several orders of magnitude lasting for weeks or even years have been also observed:

Coli Zelali el al., MINHAS 474, 901 (2010

Outbursts are usually attributed to some internal heating.

Internal heating source

A popular explanation involves the dissipation of mechanical energy during crust quakes.

Caveat: only effective in the deep crust (solid) while heat sources must be shallow to avoid excessive neutrino losses. *Kaminker et al.*, MNRAS 395, 2257 (2009)

Critical review of various scenarios: Beloborodov & Li, ApJ 833, 261 (2016)

Heating from electron captures

The compression of matter accompanying the **decay of the magnetic field** may induce **electron captures in the crust**. This is analogous to accreting neutron stars.

Cooper & Kaplan, ApJ 708, L80 (2010)

Two-step process:

• first electron capture in quasi equilibrium (B decay time scale)

 $(A,Z) + e^- \rightarrow (A,Z-1) + \nu_e$

second electron capture off equilibrium releasing some heat Q
 (A, Z − 1) + e[−] → (A, Z − 2) + ν_e + Q

Further compression may give rise to delayed neutron emission

$$(A,Z) + e^-
ightarrow (A - \Delta N, Z - 1) + \Delta N n + \nu_e$$

Cooper&Kaplan assumed same heat sources as in accreting neutron stars. However, physical conditions are completely different.

Chamel, Fantina, Suleiman, Zdunik, Haensel, Universe 7(6), 193 (2021)

Consequence of a high internal magnetic field In the outer crust, electrons are free and relativistic. Their motion perpendicular to **B** is quantized into **Rabi levels**:

$$e_{\nu} = \sqrt{c^2 p_z^2 + m_e^2 c^4 (1 + 2\nu B_*)}$$

where $\nu = 0, 1, 2...$ and $B_* = B/B_c$
with $B_{rel} = \frac{m_e^2 c^3}{\hbar e} \simeq 4.4 \times 10^{13}$ G.
Rabi, Z.Phys.49, 507 (1928)

The equation of state is very stiff

$$ho pprox
ho_{s} \left(1 + \sqrt{rac{P}{P_{0}}}
ight), \ \ P_{0} \simeq 1.45 imes 10^{20} (B/10^{12} \text{ G})^{7/5} \left(rac{Z}{A}
ight)^{2} \text{ dyn cm}^{-2}$$

Chamel et al., PRC86, 055804 (2012); Mutafchieva et al., PRC 99, 055805 (2019)

The composition of the crust can be also altered because magnetars are born with very strong **B** that can be sustained for $> 10^3$ yrs. *Duncan&Thompson, ApJ392,L9(1992)* Analytical determination of the crust composition Usual approach: numerical minimization of the Gibbs free energy per nucleon at different pressures *P* (assuming full equilibrium) *Lai& Shapiro, ApJ 383, 745 (1991)*

- layers can be easily missed if δP not small enough
- numerically costly (calculations for a range of *B*)

New approach: iterative minimization of the pressures between adjacent crustal layers (approximate analytical formulas) *Chamel, PRC 101, 032801(R) (2020) Chamel&Stoyanov,PRC 101, 065802 (2020)*

- very accurate ($\delta P/P \sim 0.1\%$)
- nuclear abundances and depths at no additional cost
- $\bullet \sim 10^4 10^6$ times faster depending on B

Freely available computer codes for very low- and very high *B*: http://doi.org/10.5281/zenodo.3839787

Onset of electron captures with magnetic fields Threshold density and pressure of electron captures by ⁵⁶Fe:

Onset of electron captures with magnetic fields Threshold density and pressure of electron captures by ⁵⁶Fe:

We have obtained very accurate analytical expressions for any nucleus and arbitrary magnetic fields.

Chamel&Fantina, Universe 8(6), 328 (2022)

Heat released by electron captures

Maximum possible heat released by electron capture by ⁵⁶Fe:

 ${\cal Q}$ is essentially independent of B and is determined by nuclear masses and excitations energies.

Full data for ρ_{β} , P_{β} , Q for other nuclei can be downloaded here: https://zenodo.org/records/6604639

Magnetars vs accreting neutron stars

- Same electron captures in all magnetars vs burst-dependent in accreting neutron stars
- Most of the heat is released at densities and pressures substantially higher than in accreting neutron stars.
- Heat sources are not uniformly distributed but are concentrated at densities ρ ~ 10¹⁰ - 10¹¹ g cm⁻³ (P ~ 10²⁹ - 10³⁰ dyn cm⁻²).

In both cases:

- The maximum heat is essentially **independent of** *B* **and of the crust structure** (assumption of solid crust not required).
- The heat is mainly determined by the Q values in vacuum

$$\mathcal{Q}(A,Z) \approx Q_{\mathrm{EC}}(A,Z-1) - Q_{\mathrm{EC}}(A,Z)$$

$$Q_{\rm EC}(A,Z) = M'(A,Z)c^2 - M'(A,Z-1)c^2$$

• Additional heat may be deposited by **pycnonuclear fusions**.

Conclusions II

Electron captures induced by magnetic field decay in the outer crust of magnetars may potentially be a viable internal heating source.

- This mechanism operates whether the crust is solid or not, and independently of its structure.
- The time scales are comparable to SGR/AXP kinematic ages.
- Locations at densities $10^{10} 10^{11}$ g cm⁻³ (for $B \sim 10^{16} 10^{17}$ G) and power $W^{\infty} \sim 10^{35} 10^{36}$ erg/s consistent with cooling.

Chamel et al., Universe 7(6), 193 (2021)

Simulations of the full magnetothermal evolutions (combined with reaction networks) are required to confirm this scenario.

- Very fast code to compute the initial crustal composition: http://doi.org/10.5281/zenodo.3839787
- Very accurate analytical formulas for ρ_β, P_β, Q for any B: Chamel&Fantina, Universe 8(6), 328 (2022)
- Numerical data set: https://zenodo.org/records/6604639