

Heavy-Ion model studies with Bayesian analysis

Yi Chen (Vanderbilt U.) Jul. 12, 2024. INT 24-88W Workshop

with the JETSCAPE collaboration Manuscript in preparation 2407.XXXX

The Vanderbilt HENP work is supported by DOE-NP

Setting The Stage: Heavy-Ion Collisions

Ultrarelativistic heavy-ion collisions

Accelerate heavy ions to extreme speed and collide

> 99.99999% speed of light (Lorentz γ up to ~2700)

LHC, CERN, Geneva

RHIC, BNL, New York

What happens after collision?

Dumps energy into the field Expansion of the plasma

QGP

Decay and cool down

Particles

What happens after collision?

Dumps energy into the field Expansion of the plasma

Decay and cool down

Particles

Occasionally: create high energy particles

Goes through QGP and interact e.g. Jet quenching effect

Transport coefficient \hat{q}

 \hat{q} characterizes the size of the Δp^2 after traveling some length in QGP

Example collision event

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST Run/Event: 151076 / 1328520 Lumi section: 249

Jets coming from initial high energy quark/gluon

Jet 1, pt: 70.0 GeV

Jet 0, pt: 205.1 GeV

Current approach to modeling

A LOT of parameters needed to specify the whole thing

Both in each block and the interface between blocks

Usually different code bases

Code framework

JETSCAPE framework:

- Modular design
- Unified block interface
- Easily extensible
- Easy to run (Docker image, etc)

The Analysis

The problem we want to solve

- Extract \hat{q}
- Look at jet and hadron suppression data
 - Particles go through QGP and lose energy
 - Amount of suppression \rightarrow amount of interaction
 - Amount of interaction $\rightarrow \hat{q}$

Choice of datasets

- We adopt an agnostic approach: **all qualified dataset** by a cutoff time (Feb 2022) are included
 - "Qualified" = <u>right category</u> and in <u>target phase space</u> and possible to <u>compare rigorously</u>
- Different collision systems (AuAu, PbPb) across three CM energies (200 GeV, 2.76 TeV, 5.02 TeV)
- In total 729 data points used, jump up from previous iteration of analysis of similar nature
- We do our best to reproduce covariance matrix (more later)
 - Reported uncertainty sources + guesses from the rest

Active learning design points

Prioritize reducing predictive error across the full space

Journal of Artificial Intelligence Research 13 (1996) 129–145

Computing resources

- Effort in computing during 2022
 - O(10M) CPU hours in total
 - Lots of lessons learned unified submission interface across multiple HPC systems, data curation including all systematic uncertainties, iteration on design points, file I/O logistics, etc.
- Calculated many more observables than are used in this iteration → fast turnaround for next analyses

So we run the analysis...

Extracted \hat{q}

Compatible with JET collaboration result

All good?

Let's look closer...

Posterior observables

(Don't stare too closely, we have zoomed in version in the next pages)

Overall reasonable agreement is observed

Data

Best fit

Tension for some measurements?

Looking closer — hadrons

Generally great agreement at lower p_T No large difference across experiments

Looking closer — jets

arXiv 2407.XXXX

Also generally good agreement

Hmm?

Looking even closer — hadrons

Things deviate a bit going to higher p_T Uncertainty smallest at lower $p_T \rightarrow$ drives result

2204.01163

How can we gain more insight?

Idea: slice and dice datasets

- Split datasets in different ways and perform Bayesian analyses on subsets of data
- Investigate if there is any systematic problem with modeling
 - Similar measurements from multiple experiments useful

\hat{q} : jets vs hadrons

If we do analysis with only jet data

If we do analysis with only hadron data

\hat{q} : jets vs hadrons

Kinematic ranges

Is the difference we see inherent in the type of observables, or some other sources?

 \hat{q} supposedly should be same across observables?

One potential candidate: kinematic range

Hadrons, high vs low

Hadrons, high vs low

So what happened?

Low p_T part dominates: small experimental uncertainty High p_T part in line with jet data Points clearly to phase space for model improvement \rightarrow question of "model uncertainty"

Implications

- We can **scrutinize** the specific **model** used in this round of simulations in great detail
 - Low vs high p_T , central vs peripheral, jet vs hadron, different radii jet, and so on
 - Future: would be nice to do this with more models
- Isolate regions of interest
- Important feedback to models
- Points to interesting question: model uncertainties?

Discussions: Uncertainties

What does uncertainty mean?

- In experiments there are always some distributions behind the scene (likelihoods, Bayesian posterior, etc)
 - They tell you something about the "true" value
- "Uncertainty" is then some sort of width or range quoted from these distributions
 - There is no universal prescription from measurement to measurement (especially systematics)

Example from Higgs measurement

 $\mathscr{L} \sim c \left(H Z_{\mu} Z^{\mu} + a_2 H Z_{\mu\nu} Z^{\mu\nu} + a_3 H Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right) + \dots$

Size of CP-odd HZZ term

Side note: this is an inverse problem with an interesting non-Bayesian approach

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) CMS -2 ∆ In(L) Observed, $\phi_{a2} = 0$ or π (3D) 18 Expected, ϕ_{a2} =0 or π (3D) 16 Observed, ϕ_{a2} =0 or π (8D) Expected, $\phi_{a2} = 0$ or π (8D) 14 12 10 8 95% CL -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 $f_{a2} \cos(\phi_{a2})$

Size of higher order CP-even HZZ term

Phys.Rev. D92 (2015) 012004

Data uncertainty correlation

Suppose everything is Gaussian for now...

Correlation is key!

Agreement depends on uncertainty correlation

- Fully Correlated: "1σ"
- Non-correlated: "2σ"
- Anti-correlated: ">2σ"

Faithfully capturing the correlation is crucial

Different types of correlations

JHEP 04 (2017) 039

Phys. Rev. Lett. 119 (2017) 152301

This is parton distribution function

Cautionary tale from PDF analysis

Effect of correlation across measurements

Impact of the Correlation Between Data Sets

When the correlations of the systematic uncertainties between V+jets, ttbar, inclusive jets are not applied, substantial difference wrt the nominal PDFs is observed at 10,000 GeV², a scale relevant for precision LHC physics

Ratio to nominal

ICHEP 2022, Bologna Italy, July 6-13, 2022

Zhiqing Zhang, IJCLab, Orsay

7/12

Significantly different depending on the correlation

What about model uncertainty?

- Ideally: some distribution that encodes where the "true" value should lie
- Bayesian parameter extraction: best parameters within a predefined model space
 - Full answer is not here

95%

Improving model alongside data

- Constant improvements to the model needed to get closer to the truth
- Even though we used many measurements, there are many other potential measurement types to study
 - More information on **uncertainties** from experiments will be nice
- Lots of interesting things to explore

Summary

(Near-) future prospects

We also calculated huge number of **other jet-related observables**

Move one step at a time and **sequentially include more observables** → stay tuned for many new results in the near future!

Explore the model + experimental landscape

Summary

- We performed an updated analysis on \hat{q} extraction using a lot more data compared to previous iteration
- Bayesian analysis is useful as a tool for model studies → inform model design and improvement
 - A way forward to sort through the proliferation of models in high energy HI collisions
- **Experimental uncertainties**: we should advocate to experiment groups to release more information

Backup Slides Ahead

Computing resources

Hydrodynamic evolution takes nontrivial time to run

- We use pre-generated hydrodynamic profiles and propagate jets on top of them
- But they are significant in size and we want to distribute to the computing nodes \rightarrow logistics...
- Need O(20k-30k) core-hours per design point to match experimental precision

Jet quenching

We want to study the "strength" of this interaction

Simplified space-time diagram

Parametrization of \hat{q}

$$\hat{q}(E, T, Q) = \hat{q}_{HTL}^{run} \times f(Q^2)$$

$$\hat{q}_{HTL}^{run} = \alpha_{s,fix} \times \alpha_s(\mu^2) C_a \frac{50.484}{\pi} T^3 \ln\left(\frac{\mu^2}{6\pi T^2 \alpha_{s,fix}}\right)$$
Inspired from exponential "PDF": $f_{QGP}(x) \sim e^{-c_s x}$

$$f(Q^2) = N_0 \frac{1 + c_1 \ln(Q^2/\Lambda_{QCD}^2) + c_2 \ln(Q^2/\Lambda_{QCD}^2)}{1 + c_1 \ln(Q^2/\Lambda_{QCD}^2) + c_2 \ln(Q^2/\Lambda_{QCD}^2)} \Big|_{Q^2 \ge Q_0^2}$$
Set by $f(Q_0^2) = 1$
Other parameters Q_0 : virtuality switch to

2204.01163, see also previous talk

LBT

 τ_0 : start time

Parametrization of \hat{q}

$$\hat{q}(E, T, Q) = \hat{q}_{HTL}^{run} \times f(Q^2)$$

$$\hat{q}_{HTL}^{run} = \alpha_{s,fix} \times \alpha_s(\mu^2) C_a \frac{50.484}{\pi} T^3 \ln\left(\frac{\mu^2}{6\pi T^2 \alpha_{s,fix}}\right)$$
Inspired from exponential "PDF": $f_{QGP}(x) \sim e^{-c_3 x}$

$$\exp\left(c_3\left(1 - \frac{Q^2}{2EM}\right)\right) - 1$$

$$f(Q^2) = N_0 \frac{1 + c_1 \ln(Q^2/\Lambda_{QCD}^2) + c_2 \ln(Q^2/\Lambda_{QCD}^2)}{1 + c_1 \ln(Q^2/\Lambda_{QCD}^2) + c_2 \ln(Q^2/\Lambda_{QCD}^2)} \Big|_{Q^2 \ge Q_0^2}$$
Set by $f(Q_0^2) = 1$

$$Other parameters$$

$$Q_0: virtuality switch to LBT to tall$$

2204.01163, see also previous talk

Posterior distribution

Anti-correlation between $\alpha_{s,fix}$ and Q switch

Between MATTER and LBT

 $\propto \hat{q}$

New analysis of \hat{q}

Included jet R_{AA} into the mix! General reasonable description of data

All these impossible without a framework

Endless possibilities

Bayesian analysis: powerful tool for not only parameter extraction but also model studies

Pinpoint interesting phase space in model

Evaluate how well model does in new observables

Theory uncertainties?

(Near-) future prospects

We also calculated huge number of **other jet-related observables**

Move one step at a time and **sequentially include more observables** → stay tuned for many new results in the near future! Plot taken from Y. Go, Mon Mar 27

Important to include ALL eligible data

Ready to explore the theory / experimental landscape

