

The r-mode puzzle

a Stationary reference frame

Partner

OUFABC

INT Workshop "Discovering Continuous GW with Nuclear, Astro and Particle Physics", November 21 2024, Seattle

Pulsar periods and Keplerian mass-shedding limit

- fastest observed spin to date: 716 Hz for PSR J1748-2446ad
- Accretion can spin up a pulsar, theoretically up to the Keplerian mass-shedding limit:

$$
f_K \sim \frac{1}{2\pi} \sqrt{\frac{2GM}{R^3}} \sim 2 \text{ kHz or } P_K \sim 500 \,\mu\text{s}
$$

JFABC

[Andrew Steiner] What could be limiting the spins of accreting pulsars? Magnetic torques could limit the spin up due to accretion (also r-modes?) [Andersson, Kokkotas & Schutz, 1999, Bildsten, 1998]

r-modes and the CFS instability

[C. Hanna & B. Owen]

- r-modes: fluid modes of oscillation, restored by the Coriolis force
- generically unstable due to the emission of gravitational waves (CFS instability) [Chandrasekhar, 1970; Friedman & Schutz, 1978; Andersson 1998; Friedman & Morsink, 1998]

for the dominant $l = m = 2$ r-mode $σ_R = (2/3)Ω$ (corotating frame) $\sigma = \sigma_R - m\Omega = -(4/3)\Omega$ (inertial frame) Instability condition: a counter-rotating mode appears as corotating for an inertial observer UFABC

solar rossby waves

rossby waves on Earth

Neutron star r-modes and the instability window

- Linear instability; nonlinear couplings should set the saturation amplitude [Arras et al., 2003; Bondarescu, Teukolsky & Wasserman, 2007]
- * Shear and bulk viscosity shape the instability window The r-mode instability window will be found by solving for the zeros of

JFABC

$$
\frac{1}{t} = -\frac{1}{\tau_{gw}} \left(\frac{1 \text{ ms}}{P}\right)^{p_{gw}} + \frac{1}{\tau_{bv}} \left(\frac{1 \text{ ms}}{P}\right)^{p_{bv}} \left(\frac{T}{10^9 \text{ K}}\right)^6 + \frac{1}{\tau_{sv}} \left(\frac{10^9 \text{ K}}{T}\right)^2
$$

[Lindblom, Owen & Morsink, 1998; ! *P* 1 ms"*^p^d* Andersson, Kokkotas & Schutz, 1999]

[Kokkotas, 2003]

typical values: $\tau_{gw} \sim 20 \text{ s}, \tau_{bv} \sim 10^{10} \text{ s}, \tau_{sv} \sim 10^8 \text{ s},$
 $p_{gw} \sim 6, p_{bv} \sim 2, p_{sv} \sim 0$ p_{gw} ~ 6, p_{bv} ~ 2, p_{sv} ~ 0

What happens in the r-mode instability?

- the r-mode grows exponentially until it reaches a saturation amplitude α
- the star heats up due to the unstable mode
- the r-mode spins down the star
- the star cools down

UFABC

accretion spins up the star again

[Levin, 1999, Andersson et al. 2000] Equilibrium between spin up and spin down is unstable: neutron star follows a limit cycle

Neutron stars observed in the instability window

- Neutron stars in LMXBs and MSRPs are found in the r-mode instability window
- Should they be observed there? Some stars are so deep into the window that they should have large α ($\alpha > 10^{-3}$)
- For large (small) values of α , the star should spend less than $1\,\%$ (30 $\%$) of the time inside the window
- Number of sources that should be on:

$$
N_{\rm on} = \frac{\tau_{\rm on}}{\tau_{\rm cycle}} \sim 5 \times 10^{-8} \alpha^{-1.6} N_{\rm sample}
$$

[Heyl, 2002]

JFABC

temperature information is modeldependent and uncertain…

Duration of the GW emission in the r-mode cycle

The time for the system to complete the circuit depends only weakly on A (saturation amplitude), here 3.7 – 4.8 Myr.

Curves are labelled with the duration of the GW emission.

The duty cycle ranges from $\sim 30\,\%$ to $\sim 0.0001\,\%$.

Uncertainties in the temperature estimates

Factors:

- uncertain envelope composition (considered in this plot)
- some systems may still be thermally relaxing to a steady state after an outburst and may have sizeable temperature gradients in the crust [Brown & Cumming, 2009]
- resulting factor of a few uncertainty seems to have no qualitative impact [Haskell, Degenaar and Ho, 2012]

r-mode windows? Alternative models and uncertainties

Corrections to the r-mode frequency

- * For the $\ell = m = 2$ r-mode, the observed gravitational wave frequency σ is related to the rotating frame frequency σ_R by $\sigma = \sigma_R - 2\Omega = (\kappa - 2)\Omega, \quad \kappa \equiv$ *^R* Ω
- For a slowly rotating Newtonian star, $\sigma_R =$ $2m\Omega$ $\frac{1}{\ell(\ell+1)} = (2/3)\Omega$
- Relativistic effects are quantified by the compactness *M/R.*
- The effect of fast rotation can be expressed as $\kappa = \kappa_0 + \kappa_2$ Ω^2 $\pi G \bar{\rho}_0$
- If we know κ_0 and κ_2 as functions of the compactness and observe an r-mode, we can solve for *M/R*!

Corrections to the r-mode frequency

Observations of r-modes in LMXBs? XTE J1751-305 and 4U 1636-536

- Strohmayer & Mahmoodifar reported in 2014 oscillations consistent with r-modes in RXTE data:
	- * XTE J1751-305: κ = 0.5727597 and f = 435 Hz (found in the 2002 discovery outburst)
	- $*$ 4U 1636-536: κ = 0.5645388 and f = 582 Hz (found in the 2001 thermonuclear superburst)
- More observations? NICER should be able to see these oscillations, if they are there! (But see also "Where are the r-modes?" by Mahmoodifar and Strohmayer, 2017).

Caveats: constraints from measured spin-down and alternatives

- Problem: the r-mode amplitude derived from the observed modulation amplitude leads to a spin down rate too large to be consistent with the observations [Strohmayer & Mahmoodifar 2014]
- Alternatives: rotationally modified g-modes, r-modes modified by a solid crust, surface g-modes or r-modes, unstable toroidal crustal modes or amplification at the surface of a core r-mode with lower amplitude [Andersson, Jones & Ho, 2014; Lee, 2014]

Questions:

shape of the instability window? r -mode amplitude \times signal amplitude?

An application: results for XTE J1751-305

Using

 for fully relativistic uniform *κ*0 density stars [Lokitch, Friedman & Andersson, 2003]

+ $κ$ ₂ for fast rotating Newtonian polytropes [Lindblom, Mendell & Owen, 1999]

[Anderson, Jones & Ho, 2014]

More *M-R* constraints from the (possible) r-mode frequencies

[Chirenti & Jasiulek, 2018]

For a radius range of $11 - 13$ km, with the assumed r-mode detections and APR4 + SLY we find the mass estimates:

 XTE J1751-305: 1.48 – 1.56 M_{\odot} 4 U 1636-536: 1.60 – 1.68 M_{\odot} **JFABC**

Conclusions Puzzles

Puzzle 1: What limits the spin of accreting neutron stars? Effect of magnetic torques in accretion process? r-modes?

Puzzle 2: Why are there (so many) neutron stars in LMXBs and MSRPs that seem to be in the r-mode instability window? measurements? Modeling of the window? Physical assumptions? *T*

Puzzle 3: r-modes in XTE J1751-305 and 4U 1636-536? Modified r-modes? g-modes? mode amplitude \times amplitude of X-ray modulation?

Puzzle 4: What is the r-mode saturation amplitude? Will r-modes be detectable with LIGO? With 3G detectors?

Recommendation for observers: Look for r-modes in stars inside the window!

