
Reliability of Modern-Day High-Performance
Scientific Computing

(How) Can I Trust It?

Pi-Yueh Chuang
pychuang@vt.edu
Virginia Tech, VA

June 11th, 2024

mailto:pychuang@vt.edu

2

Disclaimer

● No rocket science

● No equations

● No machine learning/AI

● No take-home messages but
take-home questions

● Mostly subjective opinions

I know physical activity is critical to our health, but I still don't work out …

3

We know calculation correctness is important to any
science relying on computing, but we're still sloppy on it

Why?

Aerospace and mechanical engineering… BS, MS, PhD

● Had no computer-science degrees … now @CS

● Failed my freshman-level physics twice … now @INT

● Interests:

○ Numerical Methods / Numerical Partial Differential Equations

○ Computer-Aided Engineering

○ Okay-Performance Scientific Computing

About Me

4

5

I have plenty of
confidence in my

students.
Knowing them, I

for a fact can
assure you this
plane will never

even start.

Professor: hope your code won't be the culprit of any accidents

My Very 1st Lesson in Numerical Analysis/Methods

YEAR ACCIDENT DEATHS LOSS CAUSE
1962 Mariner 1 Self-Destruction 0 >> $18 M Math Implementation
1985 Therac-25 Radiation Overdose > 3 N/A Race Conditions
1991 Patriot Missile Failure 28 $1 B Round-Off Error Accumulation
1991 Sleipner A Oil Platform Sinking 0 $700M Inaccurate Math Approximation
1996 Ariane 5 Rocket Explosion 0 >> $370 M Integer Overflow
2015 Airbus A400M Crash 4 >> $165 M Software Deployment
2018 Uber Self-Driving Car Incident 1 N/A Model Limitations

6

Reasons
Error in Analysis
Error in Methods

Results Not Reproducible

The worst scenario is paper retraction.
From Retraction Watch Database:

Luckily, Academia Is So Friendly

Journal Keywords
Numerical

Computational
Simulations
* Learning

Artificial Intelligence
Neural Networks

Analysis

31 Retractions
Since 2014

7
Note: Retraction is Good.

https://retractionwatch.com/

8

We retract the paper because to compute part of the results
additional information had been used, which, due to an
oversight, was not mentioned in the paper. The computational
algorithm contained an inner loop that imposed a constraint
on the predictions of the algorithm at each step so as to
prevent the trends in the predictions from deviating
significantly from the predictions in the prior steps.

Note: Retraction is Good.

9

Error in one line of code… made by a doctoral student

Note: Retraction is
Good.

Side question: does it
make sense to blame

"students"?

10

"All software has bugs." ~~ True

"It's usually not a huge deal as long as you're honest about it
and you do your best to correct it." ~~ True

Can we trust any computing result in academia?
Can we still trust the 1st image of a black hole?

"Good unit tests resolve the issue." ~~ What?????? Not really…

11

YEAR INCIDENT Prevent
by UT REMARKS

1962 Mariner 1 Self-Destruction Unlikely Misunderstanding of math symbols

1985 Therac-25 Radiation Overdose Maybe Skipped safety checkers due to race condition

1991 Patriot Missile Failure Unlikely Round-off error accumulations after 100+ hours

1991 Sleipner A Platform Sinking Unlikely Inaccurate math approximation

1996 Ariane 5 Rocket Explosion Maybe Overflows 64bit floats → 16bit integers

2015 Airbus A400M Crash Unlikely External info being deleted during deployment

2018 Uber Self-Driving Car Incident Unlikely Limitations in the prediction model itself

Stage Defined By Core Concept

Code Verification AIAA/ASME Components working correctly up to specifications
Solution Verification AIAA/ASME Software solving mathematics correctly

Validation AIAA/ASME Mathematics modeling physics correctly

Reproduction NASEM Same results using the same inputs/methods/code

Replication NASEM Same answer to the same scientific question using
different approaches/data/code/methods.

Basic Quality Assurance for Scientific Computing

† AIAA: American Institute of Aeronautics and Astronautics
† ASME: American Society of Mechanical Engineers
† NASEM: National Academies of Sciences, Engineering, and Medicine

12

A silly example:

13

A car traveling at v₀=2 m/s suddenly starts accelerating
at a=3 m/s². How long does it take to cover 100 m?

ANS: solving 0.5⋅ a⋅ t² + v₀⋅ t - 100=0 with t = (- v₀ + (v₀² + 4⋅ 0.5⋅ a⋅ 100)⁰𐞂⁵) / a

In Our Silly Example:

14

Code Verification Does the code return (- v₀+ (v₀²+ 4⋅ 0.5⋅ a⋅ 100)⁰𐞂⁵) / a?

Solution Verification Is (- v₀+ (v₀²+ 4⋅ 0.5⋅ a⋅ 100)⁰𐞂⁵) / a the positive real
solution of 0.5⋅ a⋅ t² + v₀⋅ t - 100=0?

Validation Does solving 0.5⋅ a⋅ t² + v₀⋅ t - 100=0 really give the time
needed for 100m?

Reproduction Can we get the same needed time if we re-run the code?

Replication Can others get the same needed time by other
approaches? (e.g., numerically solving ds/dt=v₀+a⋅ t)

How many people in scientific computing care about the quality of
scientific calculations?

15

● Roache, P. J. (1998). Verification and validation in computational science and
engineering

● Oberkampf, W. L., & Roy, C. J. (2010). Verification and validation in scientific computing.
● National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and

Replicability in Science.

Citations: 3459 Citations: 2060 Citations: 792

We've known but neglected quality assurance for
so long; is it worse in the modern days?

16

From the era of Fortran 77/90 + MPI to the era of Python +
PyTorch/TensorFlow, what have changed?

High-Performance Scientific Computing: Not Just Coding

17

Paper & Pen

Physics Models

Math Models

Numerical Models

Solution Schemes

Parallel Algorithms

Code Development

Implementations

Optimizations

Code & Solution
Verification

Packaging/Deployment

End-Users

Runtime System
Configuration

Solution Verification &
Validation

Design of Experiments

Given a problem we want to solve:

Past
More Self-Contained: All are important, so let's take everything

into our own hands and control it ourselves.

Past vs. Now

18

ALL tasks are critical to the performance/efficiency of computation

Now
More Professionalized: All are important, so we must

outsource each task to experts in each specific discipline.

● Don't know if we are doing it right or not
● Don't know if others are doing it right or not

19

Third-Party Dependencies

Past Fewer | Slower Releasing | Shallower |
More Centralized Development

Now Tremendous | Faster Releasing | Deeper & Nested |
More Community Contributions

● What's the vendor/versions of BLAS/LAPACK in your NumPy?

● What's the hardware configurations for OpenBLAS or MKL?

● What are the CUDA runtime configs of the PyTorch being used?

● What are the compilation flags of the Python packages?

● Are 64bit floats being used throughout all dependencies?

20

How many people know that their numerical library
is using another library that had a long-standing

bug, which was fixed only in 2021?

This is from SciPy… one of the most used Python packages now

40+ year old Fortran
library

21

Hardware

Past Homogeneous &
Simpler

Now Heterogeneous &
Complicated

Programming Framework

Past Unified

Now Diverse

● Heterogeneous & complicated hardware:
○ more code to develop
○ more code to maintain
○ more architecture-oriented coding
○ more prone to bugs
○ more V&V to do

● Diverse programming frameworks:
○ more context switches
○ less skilled with each framework
○ more prone to bugs
○ more V&V to do

22

Some Real-Life Cases/Stories

None of these stories could be
prevented by unit tests

Story 1: Plastic Injection Molding (2012)

23

Loss

$1M

Cause

Forgot to update the
version on the cluster
after a local bug fix.

Story 2: Memory Leak & Out-of-Memory (2024)

24

Just two weeks ago, May 29th, 2024

Cause

Forgot to update the version on the cluster after a local bug fix.

Loss

About 12k CPU hours of the allocation

Exactly the same cause of the incident 1. Nothing
there to prevent the same accident after 12 years?

Story 3: Irreproducible MPI Simulations

25

Cause: non-associativity of floating-point number in parallel
reduction

Diethelm, K. (2011). The limits of reproducibility in
numerical simulation. Computing in Science &
Engineering, 14(1), 64-72.

Cause: Exaggeration
Projection without

Validation.

Story 5: AI-Predicted Impossible Cylinder Flow

26

● We showed his "novel method" could not solve flow over a cylinder

● He was extremely angry… and showed us "working" videos and plots

● And we found apparent errors in these videos and plots

Story 6: Neutron Cross-Section—Python vs. C++ Code

27

log10(x)

log10(Q
2

)

O(10-3)

O(10-6)

Relative Difference in
Neutron Cross-Section

● Prototyped in Python

● Re-implemented in C++

● Relative diff. in [10-6, 10-3]

● Engineers: "It's a nuance due
to compiler floating-point
optimizations"

● Physicists: "This looks good."
But there was actually a bug.

What's missing?

28

How Should We Continue On Research w/ Distrust?

I am scared to fly on my students' airplane, but I still have to.

"scared"—it's all about CONFIDENCE

● Start talking reproducibility—GOOD
○ Easy for computational works: Docker, Singularity, Apptainer, etc

● Start talking open-science—GOOD
○ Stopped "code available upon request"

29

● They're showing honesty rather than correctness.

● It is the 21st century now. When can we move on to increasing
confidence in calculation correctness?

BUT

30

Acknowledging and facing the problem is always the
first step towards solving it.

