

erc

**European Research Counci** tablished by the European Cor

## Searching for dark matter with long duration GW signals



Philippa (Pippa) Cole, University of Milano-Bicocca

Based on *Phys.Rev.D* 107 (2023) 8, 083006 arXiv:2207.07576 [astro-ph.CO] with Adam Coogan, Bradley Kavanagh and Gianfranco Bertone.

Dark Matter 'spike'

## Vacuum or non-vacuum

- So far, all LIGO/Virgo/ KAGRA binary black hole mergers have been detected and measured assuming that they occurred in vacuum
- OK for short duration signals (seconds - minutes for current detectors), but looking towards future interferometers, long duration signals may be affected by their environment



#### Higher frequencies = smaller masses

- respect to vacuum case
- binary's inspiral

Change in separation of the binary

$$\dot{r} = \dot{r}_{\rm GW} + \dot{r}_{\rm env}$$

$$\int \int \frac{1}{\pi} \sqrt{\frac{GM}{r(t)^3}}$$

#### Frequency evolution

#### Environmental effects can cause inspiral to either speed up or slow down with

# A dephasing accumulates, which alters the gravitational waveform from the Phase evolution $\Phi(f) = \int_{f}^{f_{\rm ISCO}} \frac{\mathrm{d}t}{\mathrm{d}f'} f' \,\mathrm{d}f'$ $=\frac{1}{2}\frac{4\pi^{2/3}G_N^{5/3}\mathcal{M}^{5/3}f^{2/3}}{c^4}\sqrt{\frac{2\pi}{\ddot{\Phi}}}$

Gravitational wave strain (amplitude)



## Hunting for the phase difference which accumulates over the course of the inspiral







### One environment we could look for: cold collisionless dark matter

#### Power law density profile

 $\rho(r) = \rho_6 \left(\frac{r_6}{r}\right)^{\gamma_s}$ 

Eda et al. 2013, 2014 Gondolo, Silk 1999 Kavanagh et al. 2020 Coogan et al. 2021

Key impact on binary dynamics from dynamical friction

5



Dark Matter 'spike'

 $8\pi G_N^{1/2} m_2 \log \Lambda r_2^{5/2} \rho_{\rm DM}(r_2, t) \xi(r_2, t)$ 

 $Mm_1$ 

Kavanagh, Nichols, Bertone, Gaggero 2020





### **Time-dependence of dark matter** distribution is important $10^{22}$



#### HaloFeedback



## Need to observe many cycles + small mass ratio\*

 $10^{-17}$ 

- dephasing accumulates over thousands or millions of cycles
- small mass ratio  $q = \frac{m_2}{-10^{-2.5}}$  so that  $M_1$ environment survives\*
- systems possible sources for LISA and Einstein Telescope/ **Cosmic Explorer**

 $10^{-19}$ Characteristic strain  $10^{-20}$  $10^{-21}$  $10^{-22}$ 

 $10^{-23}$ 

 $10^{-24}$ 





## Small mass ratio\*

• small mass ratio  $q = \frac{m_2}{-10^{-2.5}}$  so that  $m_1$ environment survives\*



Aurrekoetxea et al. Phys. Rev. Lett. 132 (2024) 21, 211401



## Future ground-based detectors most likely to tell us about dark matter spikes around primordial black holes

- 1. For small mass ratio systems, at least one black hole must be sub-solar -> primordial!
- 2. Even if primary mass is super solar, no known matter

mechanism for forming spike around 1-100 solar mass astrophysical black holes, whereas primordial black holes must have a dark matter spike if not 100% of the dark



## **PBH constraints**

What is a PBH?

- A black hole that formed in the very early universe.
- Can theoretically have any mass
- Satisfies the conditions for being a dark matter candidate.
- **Not** generically produced from standard inflationary mechanisms





![](_page_9_Figure_8.jpeg)

## Future ground-based detectors most likely to tell us about dark matter spikes around primordial black holes

- 1. For small mass ratio systems, at least one black hole must be sub-solar -> primordial!
- 2. Even if primary mass is super solar, no known mechanism for forming spike around 1-100 solar mass astrophysical black hole, whereas primordial black holes must have a dark matter spike if not 100% of the dark matter

To search for such light, small mass ratio systems, MUST include the presence of the dark matter spike

![](_page_10_Picture_5.jpeg)

#### Using realistic formation mechanisms for PBHs and spikes, we can understand the prospects for measuring these effects

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_4.jpeg)

#### Using realistic formation mechanisms for PBHs and spikes, we can understand the prospects for measuring these effects

![](_page_12_Figure_1.jpeg)

Adamek et al. 2019

![](_page_12_Picture_4.jpeg)

#### Effects measurable with template-based parameter estimation with Einstein Telescope and Cosmic Explorer

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)

## Conclusions

- We can search for signatures of dark matter with future GW detectors
- With future ground-based detectors, small mass ratio PBH binaries are our best bet
- These systems MUST be accompanied by a specific dark matter spike profile
- Can't search the data for these systems without including the dark matter presence
- With 1 week signals, this effect should be measurable but can we detect them with current data analysis techniques?

Thank you for listening!

![](_page_15_Picture_8.jpeg)