First-order nucleon-to-quark phase transition: Thermodynamically-consistent constructions other than Maxwell and Gibbs

C. Constantinou

INT Workshop INT-24-89W EOS Measurements with Next-Generation Gravitational-Wave Detectors Seattle, August 26, 2024 - September 6, 2024

Collaborators: M. Guerrini (UNIFE), S. Han (TDLI), T. Zhao (OU), M. Prakash (OU)

nar

C. Constantinou [First-order nucleon-to-quark phase transition: Thermodynamically-consistent constructions other than Maxwell and Gibbs](#page-10-0)ell and Gibbsell and Gibbsell and Gibbsell and Gibbsell and Gibbsell and Gibbsell and Gi

- \triangleright The size of nucleons (uncertain as it may be) implies that deconfined quark matter can exist in the cores of NSs.
- ▶ However, such a possibility lacks observational and theoretical support:
	- ▶ Measurements of M, R, Λ cannot differentiate normal and hybrid stars.
	- ▶ LQCD and PQCD not applicable to NS conditions.
- \triangleright Possible solution: identify an observable with strong dependence on composition. (Here: g-modes)

イタト イミト イミト

 Ω

Hybrid Matter: 1st Order Transitions

- \blacktriangleright Maxwell ("strong", "stiff", ...)
	- \blacktriangleright Infinite interface tension
	- \blacktriangleright No phase mixing
	- ▶ Local charge neutrality
	- $\triangleright \varepsilon = \gamma(\varepsilon_{\mathsf{H}} + \varepsilon_{\mathsf{e}} \mathsf{H}) + (1 \gamma)(\varepsilon_{\mathsf{e}} + \varepsilon_{\mathsf{e}} \mathsf{e})$
- \blacktriangleright Gibbs ("weak", "soft", ...)
	- ▶ Zero surface tension
	- \blacktriangleright Complete phase mixing
	- \blacktriangleright Global charge neutrality
	- $\triangleright \varepsilon = \gamma \varepsilon_H + (1 \gamma) \varepsilon_O + \varepsilon_{\text{eM}}$

\blacktriangleright Intermediate case

- \blacktriangleright Some phase mixing
- \blacktriangleright Charge neutrality is partially local and partially global
- $\triangleright \varepsilon = \chi(\varepsilon_H + \eta \varepsilon_{eH}) + (1 \chi)(\varepsilon_Q + \eta \varepsilon_{eQ})$ $+(1-\eta)\varepsilon_{\text{eM}}$

 QQQ

Hybrid Matter: 1st Order Transitions (cont'd)

▶ Constraints

- ▶ Barvon number conservation $1 = \chi(y_n + y_0) + (1 - \chi)(y_u + y_d + y_s)/3$
- \blacktriangleright Lepton number conservation $0 = y_e - \chi \eta y_{eH} - (1 - \chi) \eta y_{eQ} - (1 - \eta) y_{eM}$
- \blacktriangleright Local charge neutrality $0 = (y_p - y_{\rm eff}) = (2y_u - y_d - y_s)/3 - y_{\rm eff}$
- \blacktriangleright Global charge neutrality $0 = \chi y_p + (1 - \chi)(2y_u - y_d - y_s)/3 - y_{eM}$

- **Equilibrium** (= minimization of ε wrt χ , y_i , η)
	- \triangleright Mechanical, $P_H + nP_{eH} = P_Q + nP_{eQ}$
	- **D** Quark weak, $\mu_d = \mu_s$
	- **Neutral strong,** $\mu_n = \mu_n + 2\mu_d$
	- $▶$ Charged strong, $\mu_p = 2\mu_q + \mu_d \eta(\mu_{eH} \mu_{eQ})$
	- Beta $\mu_d = \mu_u + \eta \mu_{eQ} + (1 \eta) \mu_{eM}$ $u_p = u_p - n u_{pH} - (1 - n)u_{pM}$
	- *n* optimization, $\varepsilon_{eM} = \chi \varepsilon_{eH} + (1 \chi) \varepsilon_{eQ}$

(ロトラ風) マラトマラト

 QQQ

Equation of State

▶ Nucleons: Zhao - Lattimer

$$
\epsilon_B = \sum_{h=n,p} \frac{1}{\pi^2} \int_0^{k_{Fh}} k^2 \sqrt{M_B^2 + k^2} \, dk + n_B V(u, x)
$$

$$
V = 4x(1-x)(a_0u + b_0u^{\gamma})
$$

$$
+ (1-2x)^2 (a_1u + b_1u^{\gamma_1})
$$

▶ Quarks: vMIT

$$
\mathcal{L} = \sum_{q=u,d,s} \left[\bar{\psi}_q \left(i\partial - m_q - B \right) \psi_i + \mathcal{L}_{int} \right]
$$

$$
\mathcal{L}_{int} = -G_v \sum_q \bar{\psi} \gamma_\mu V^\mu \psi + \left(m_V^2 / 2 \right) V_\mu V^\mu
$$

$$
\epsilon_0 = \sum \epsilon_{FGE} \epsilon_0 + \frac{1}{2} \left(\frac{G_v}{\rho} \right)^2 n_O^2 + B
$$

$$
\epsilon_{Q} = \sum_{q} \epsilon_{FG,q} + \frac{1}{2} \left(\frac{2V}{m_{V}} \right) n_{Q}^{2} + B
$$

 \blacktriangleright Leptons: noninteracting, relativistic fermions

$$
\epsilon_L = \sum_{l=e,\mu} \frac{1}{\pi^2} \int_0^{k_{Fh}} k^2 \sqrt{m_L^2 + k^2} \ dk
$$

 \equiv

Ξ \rightarrow OQ

 \leftarrow

Θ

$$
\sum_{i} \frac{\gamma}{2\pi^{2}} \int_{0}^{k_{Fi}} k^{2} \epsilon_{ki} dk \longrightarrow \sum_{i} \frac{\gamma}{2\pi^{2}} \int_{0}^{\infty} k^{2} \frac{\epsilon_{ki}}{\exp\left[\frac{(\epsilon_{ki} - \mu_{i})}{T}\right] + 1} dk
$$

where $\epsilon_{ki} = (k_{i}^{2} + m_{i}^{2})^{1/2} \frac{\delta \epsilon}{\delta \tau_{i}} + \frac{1}{n_{B}} \frac{\delta \epsilon}{\delta y_{i}}$

▶ For ZL and vMIT, $\epsilon_{ki} = (k_i^2 + m_i^2)^{1/2} + U(n_B, \{y_i\})$

 \Rightarrow Thermal effects of an ideal gas with $m_i^* = (k_{Fi}^2 + m_i^2)^{1/2}$

$\triangleright \epsilon \longrightarrow \mathcal{F}$ (inclusive of antiparticle contributions)

Minimization leads to the same equilibrium conditions as in the $T = 0$ case (except for η optimization where $\epsilon \to \mathcal{F}$).

Additionally, $\mu_i = -\mu_{\overline{i}}$.

 $A \cap A \rightarrow A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Finite Temperature: Some Results

- \triangleright Increasing T shifts the phase coexistence region to lower densities; width decreases.
- \blacktriangleright Increasing Y_e leads to weaker sensitivity on η .
- \triangleright Nonmonotonic behavior of S as a function of n_B in the mixed phase. Similar traits exhibited by C_V and C_P .

- \blacktriangleright The conversion rate between hadronic and quark matter in the mixed phase is unknown.
- \blacktriangleright If it is sufficiently fast such that no type of reaction can reach equilibrium, then all Y_i are free variables and must be held constant when taking derivatives (equilibrium conditions imposed afterwards).
- $▶$ If it is slow enough then only β -reactions can be out of equilibrium and thus the only independent particle fraction to be held constant is Y_e (equilibrium conditions imposed before taking the derivative).
- \triangleright 1st derivatives (e.g. P, S, ...) are not affected by this distinction. This is not the case for 2nd derivatives (c_{ad} , C_V , C_P , ...) and higher.

C. Constantinou [First-order nucleon-to-quark phase transition: Thermodynamically-consistent constructions other than Maxwell and Gibbs](#page-0-0)ell and Gibbsell and Gibbsell and Gibbsell and Gibbsell and Gibbsell and Gibbsell and Gi

Ξ

 Ω

- \triangleright Global, long-lived, nonradial fluid oscillations resulting from fluid-element perturbations in a stratified environment.
- ▶ Slow chemical equilibration generates buoyancy forces to oppose dispacement.
- \blacktriangleright In stably-stratified systems the opposing force sets up oscillations with a characteristic frequency [Brunt-Väisälä, $N^2 = g^2 \Delta(c^{-2}) \mathrm{e}^{\nu - \lambda}$] which depends on both the equilibrium and the adiabatic sound speeds $[\Delta(c^{-2}) = c_{\text{eq}}^{-2} - c_{\text{ad}}^{-2}]$.

$$
\triangleright c_{\text{eq}}^2(n_B) = \frac{dP}{d\varepsilon} = \frac{dP_\beta}{dn_B} \left(\frac{d\varepsilon_\beta}{dn_B}\right)^{-1}
$$

 $\frac{d_{eq}(B)}{dt} = \frac{d_{eq}(B)}{dt} + \frac{d_{eq}(B)}{dt}$
mechanical equilibrium restored instantaneously.

- $\rho \, c_{\rm ad}^2(n_{\rm B},x) = \left(\frac{\partial P}{\partial \epsilon}\right)_x = \left.\frac{\partial P}{\partial n_{\rm B}}\right|_x \left(\left.\frac{\partial \epsilon}{\partial n_{\rm B}}\right|_x\right)^{-1}$ ² (*O_B*) = c_{ad} [n_B, x_β(n_B)]

slow restoration of chemical equilibrium because $\tau_\beta \gg \tau_{\text{oscillation}}$.
- \triangleright g-mode oscillations couple to tidal forces; they can be excited in a NS merger and provide information on the interior composition.
- \triangleright Detection remains a challenge; but within sensitivity of 3rd generation detectors.

 $(1 + 4\sqrt{3}) + 4\sqrt{3} +$

g-mode Signals

▶ $\Delta(c^{-2}) = c_{\text{eq}}^{-2} - c_{\text{ad}}^{-2}$ drives the restoring force for g-mode oscillations. In npe matter,

$$
c_{\rm ad}^2 = c_{\rm eq}^2 + \left[n_B \left(\frac{\partial \tilde{\mu}}{\partial n_B} \right)_x \right]^2 \left[\mu_n \left(\frac{\partial \tilde{\mu}}{\partial x} \right)_{n_B} \right]^{-1}
$$

$$
\tilde{\mu} = \mu_e + \mu_p - \mu_n \stackrel{\beta - \text{eq.}}{\rightarrow} 0
$$

- \blacktriangleright g-modes in 1st-order hybrid matter have larger frequency range compared to pure nucleon matter $\widehat{=}$ the behavior of $\Delta(c^{-2})$ in the mixed phase.
- **EXECUTE:** Dramatic changes in $\nu_{\mathcal{E}}$ require new DOFs not just a smooth change in composition.

▶ Discontinuity g-modes

- Generated by the flatness of $P(n_B)$ in a Maxwell mixed phase that leads to a density jump in the core of a hybrid star.
- \blacktriangleright Characterized by discontinuous g-mode frequencies.
- \blacktriangleright A special case of a compositional g-mode in the limit $\eta \to 1$.

 Ω

- ▶ Construction of a thermodynamically-consistent framework for the treatment of 1st-order phase transitions intermediate to Maxwell and Gibbs at zero and finite temperature.
- ▶ Beware of the Maxwell construction!
- \triangleright The assumption of slow or fast conversion between hadronic and quark matter in the mixed phase, affects second derivatives of the free energy (e.g. c_{ad} , C_V , C_P) at the \sim 10 % level.
- \triangleright g-modes can detect nonnucleonic matter in the cores of NS; assuming quark matter (by some other means), g-modes can distinguish between a first-order phase transition and a crossover.
- ▶ Discontinuity g-modes as a special case of compositional g-modes in the Maxwell limit.
- ▶ (Near) Future:
	- ▶ Applications to protoneutron stars (cooling, superfluidity) and binary mergers.
	- \triangleright Construct EOS that uses the same underlying description for quarks and hadrons.

 $(0,1)$ and $(0,1)$ and $(1,1)$ and $(1,1$

 \equiv Ω