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[] 3N forces play a crucial role in describing nuclear properties

[] Even at the 2-body sector, there are tensions 2n scattering length

[] Traditionally, nuclear properties and nuclei formation have been described using
phenomenological models and /or EFTs

A New Class of Three Nucleon Forces and their Implications

Vincenzo Cirigliano,’* Maria Dawid,’> T Wouter Dekens,'¥ and Sanjay Reddy!'$

! Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA
(Dated: November 4, 2024)

We identity a new class of three-nucleon forces that arises in the low-energy effective theory of
nuclear interactions including pions. We estimate their contribution to the energy of neutron and
nuclear matter and find that it can be as important as the leading-order three-nucleon forces previ-
ously considered in the literature. The magnitude of this force is set by the strength of the coupling
of pions to two nucleons and is presently not well constrained by experiments. The implications for
nuclei, nuclear matter, and the equation of state of neutron matter are briefly discussed.

[[] Motivation: Constrain two- and three-body forces directly from Standard Model

Crucial also for probing
BSM physics, e.g., in 0vj3[



outline

[_] relativistic integral equations [4D — 3D]

[] angular momentum projection of OPE

[] angular momentum projection of amplitudes
[(JLSZ for 3Body — 2Body

[] toy models for 3pi [including isospin in the OPE]
[[] Numerical solutions / / Unitary check
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Two-hadron systems

- Sum over all 2 * 2 amputated diagrams

e = XA KOO
N |

All 2-PI s-channel
diagrams

- The goal: Isolate all the singularities of the scattering amplitude!
- Kernel is not singular in the kinematic region of interest

- Singularities are due to intermediate particles going on-shell
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Two-hadron systems

- Isolate singularities from two particle on shell states in bubble diagrams
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Two-hadron systems

- Isolate singularities from two particle on shell states in bubble diagrams

H K
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Two-hadron systems

- Isolate singularities from two particle on shell states in bubble diagrams

— @( —|— “smooth”

d3k [iB(k. P)]?
./ (27)3 : (z(u; )2)] mo(E — 2wy) + “PV integral”
k

iBon]p [iBon] + “PV integral”

_ P . .
P = Q[ ~ \/ S — Sth  “Square root singularity”
v
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Three-hadron systems

- Sum over all 3 * 3 amputated diagrams
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Reducing 4D to 3D

- Reducing from 4D to 3D while preserving singularities
- Remember, physical singularities are due to on-shell intermediate particles

- Let’s consider a useful example:

(

4D integral QPole piece

_ + smooth

S

3D integral



Reducing 4D to 3D

- Reducing from 4D to 3D while preserving singularities
- Remember, physical singularities are due to on-shell intermediate particles

- Let’s consider a useful example:

+ smooth

place the vertex on shell
but not the pole...i.e. it’s still a 3D integral.
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Reducing 4D to 3D

- Reducing from 4D to 3D while preserving singularities
- Remember, physical singularities are due to on-shell intermediate particles

- Let’s consider a useful example:

+ smooth

RE s %

Dynamlcally generated
Short distance vertices



Three-hadron systems

- After some more work, one can show that the full amplitude satisfies a 3D integral equation

oo Xt P 1 o sce-e

3D mtegrals with all vertices on-shell..

Scheme -dependent 3body K matrix will generally require a cutoff



Three-hadron systems

- After some more work, one can show that the full amplitude satisfies a 3D integral equation

iMs = *—%+I&+%+)§,+;&

— 1D + Z'./\/lg,df

Sum over all ladder diagrams % - W 4.



Three-hadron systems

- After some more work, one can show that the full amplitude satisfies a 3D integral equation

iMsz = *‘%*&*%*W+;&

The rest [df = “divergence free”]



Three-hadron systems

- After some more work, one can show that the full amplitude satisfies a 3D integral equation

iMs = *—%+I&+%+)§,+;&

— 1D + Z../\/lgjdf

- Satisfies integral equation

D:—MQGMQ_/MQGD

Jackura et al (2020)
M. Dawid et al (2023)
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- After some more work, one can show that the full amplitude satisfies a 3D integral equation
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Three-hadron systems

- After some more work, one can show that the full amplitude satisfies a 3D integral equation

IMs = *—%+I&+%+)§r+;&
=i+ My

- Satisfies integral equation

D:—MQGMQ_/MQGD

1
Ms qe (P, k // (p,p’) - T(p’, K’ - L(k’, k) L = 3 F Mop — Dp



Three-hadron systems

- Sum over all 3 * 3 amputated diagrams

Need to numerical solve these equations

ng — * = % : Note: D and 7 are 3D integrals equations

Need to project to to definite angular momentum

and parity
=D + Integration kernel generally singular
- Singular behavior mainly driven by the OPE

- Satisfies integral equation propagator,

P G, /MQGD

1
M3 at(p, k / / (p,p’) - T(p’, k%) - L(k’, k) L = 3 F Mop — Dp

/

T8 =Ka(p 19 = [ [ Koo B8 2,10) - 700,10



OPE Partial wave projection

- Assuming s-wave two-body scattering

k

1
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- After partial wave projecting to total ] = O:

™~ G(pv k) —

1 1
~ G(p, k) = = dcosO0 G(p, k) = l



Non-zero angular momentum

- In general...assuming spinless particles

8 S
S O

- /Cg .1’s’. s and o L/ S’ LS (p, K ) are know kinematic functions that need
to be generated for each channel

k) = Kg 15,05 (D ) +Ciis 5P, k) QolCpr)

Jackura, Briceno (2023)



Partial wave projections

- In general:




Partial wave projections

- Partial wave projected amplitude

Mgp(pv k) :Djp(p7 )_I_MSdf(pa )

DJP (pv k) — DE)]P (p> k) o MQ(UP) ' // gJP (p7 k/) ' Djp(klv k)

- Two classes of K matrix are possible

1. Symmetric K matrix =P Mg ar(p, k / // LJP (p.p') - T/ (P’ k) - ij(k, k)

2. Asymmetric K matrix == Msdf P,k // E]P (p.p') - TJP(Z? k') - RJP(/‘C/ k)



Partial wave projections

- Two classes of K matrix are possible

2. Asymmetric K matrix —l MSdf n. k // LJP (p,p') - TJP(p k') - RJP(k’ k)

-~ 7P 27
2700 = 1= Mas(0,) 3(0,) ] 8ndss T 6 — k) — Moo (0,)0 w150 b)
P
o Di’S’,LS(p7 k) / DL’S’ LS p? ) gL”S” LS( /7 k)
L// S//
-~ 7P ~ 27‘(’ W
R b)) = 1= Pl Mas (] Sundors L 60 K) = Gl 1.5(p, k) Ma,s(on)
JP
_ /O(O-p) DL/S’ LS p) Z L’S’ LS p P ) DL”S”,LS(p/7 ]{)
L' S p’

77 (p,k) = K3 (p, b // KL (p,p) - B W k) - T (k) | T k)= o) £ / G(p. k') - L7 (K, K



Separable K matrix

- We consider a parametrization for which the kinematic dependence factorizes:

K 00| =m0 (K76 R0

118 LS 118 Ls




Separable K matrix

- We consider a parametrization for which the kinematic dependence factorizes:

K 00| =m0 (K76 R0

1L'S" LS 1L'S" LS

leads to an also factorizable 7A’J "

1

T7 (s) = 1+ K" (s) - FI¥ () K (s) F(s) = // R (s,p) - T (p, k) - h(k)
3 P

07" (5. k) = ZE L 5~ 1) o) + 67 (9. k)




From 3body =» 2body

2 _/\/lg 7 s effectively described as a 2-body system (pair+spectator)

pair can become bound: bi. + P — bp T Pp

92
MQ(UZC) = x ~ H ~ OF —k’l;kzb

- Bound-state spectator amplitude:

JE 9p,b
M ( e )
D p,b

./\/l‘]P = lgn ’
O O
b OOy Z 9p,bJk b
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T(JF) =2(17) channel with stable p

S<land L <2




Toy models for 37T systems  s<imdrz<>

[W?T]é—l— ™ — [ﬂ'ﬂ']g + T

T(JF) =2(17) channel with stable p

([r7]gm)p, ([x7]pm)s, ([77]pm)D



Toy models for 37T systems ~ s<imar <>

[W?T]é—l— T — [7777]5 4+

T(J") =2(17) channel with stable p

([r7]m)p, ([an]pm)s, ([a7]

Can couple to the rho



Bound state model

- Can get a two-body bound state for S- and P-waves by parametrizing M, via the phase
shift:

Ma 1s(07) = 167\/0; (QZ = /o) /4 — mz)

q; cot 051 — 1q;

- For a S-wave 2 body amplitude, we can use a LO ERE:

1

o, 1

qr cot 0g 1 =
() For a P-wave bound state, LO ERE leads to unphysical poles

- Instead, for P-waves, we use

g N
(m123w - Uk) L (k) = o %2

Vor T (o)

q]: cot 51,1 —



Solving integral equations

[[] Detform contour to miss singularities and discretize momenta
[ ] sometimes useful // sometimes critical

dmax d 2
[] Discretize momenta: d(p’, s,p) = —G(p', s,p) — / (zj)gw G(p',s,q)Mal(q, s)d(q, s, p)
0 q

G(p',s,p) — » K(p',s.q)d(gs,p)

[contains pole, logarithmic and square root cuts‘\/
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[[] Use linear algebra:
1+ K] - dsoi(s,p) = —G(s.p)



Solving integral equations

[[] Detform contour to miss singularities and discretize momenta
[ ] sometimes useful // sometimes critical

dmax d 2
[] Discretize momenta: d(p’, s,p) = —G(p', s,p) — / (zj)gw G(p',s,q)Mal(q, s)d(q, s, p)
0 q

G(p', s,p) ZKp s,q) d(q, s, D)

[[] Use linear algebra:
[1 T K] dsol(S p) é(S,p)

[[] Use integral equation to interpolate or extrapolate:

—

d(p/7 Sap) ~ _G(p/v S7p) - E(p/7 8) ' dsol(svp)



T(J7) =2(17) channel with stable p

dpw,,mr (35*1 |3‘91) d
d2(1+) _ p

o CS1PDy) d (PSP
"Di[°D1) d (D1l Pr)
dtw,tw(lpl‘lpl)

pw,pw(

s

T(J7) = 2(17) | M e (CS1280)|

301




T(J7) =2(17) channel with stable p

- Setti ago = 0 /
eting 40,2 M(zs +1L/1‘25+1L1)
50 - 351%351]'
M, (3Si3S1) M, (3SiPD)\
MQ(bl*) _ pm,pm\ P11 M pm,pm\ P11 30-
2
M, (°D1]°Dy) 20
10 -
O T T T T
3.0 8.5 8.0 3.D

- Satisfy 2-body unitarity condition

T(J") =2(11) L0- "Dy = °D,

mm TeCal
== 1MAag

- Satisfy threshold behavior:

M e CLYP L) ~ g th




T(J") =1(17) channel with stable o and p

s m)p, ([r7]pm)s, ([r7]pm)D
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0(17) channel with stable p

~

T(JP) = 0(17) Mz (PP P)
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Summary & Perspectives

[ Overview on 2- and 3-body scattering amplitudes

[ Integral equations for PW projected 3-body amplitudes
[A Factorizable K-matrices

[ Toy model calculations for 3pi-systerms

To do:

[] Generalization to particles with spin, including 3N
[[] Checks on the finite-volume formalism (see Raul’s talk)
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Reducing 4D to 3D

- Reducing from 4D to 3D while preserving singularities
- Remember, physical singularities are due to on-shell intermediate particles

- Let’s consider a useful example:

+ smooth

+ smooth
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