Crust breaking and limiting rotation rate of NS

Jorge Morales and Chuck Horowitz INT Dec. 2024

Why don't NS spin faster?

- Fastest observed star spins at 716 Hz. This is about 1/2 of Kepler frequency (where centrifugal force balances gravity).
- Hypothesis: Accretion spins up neutron stars until the crust *breaks*. This broken crust is *deformed* with a nonzero quadrupole moment so gravitational wave radiation prevents the star from spinning up further. arXiv:2410.19111 with **Jorge Morales**.
- Note Lars Bildsten suggested GW radiation limits spin but said quadrupole moment is from asymmetric electron capture layers. [Need very deep electron capture layers in inner crust.]

Finite element simulations

- Finite element simulation models crust as \bullet lots of tetrahedrons and satisfies all boundary conditions at crust core and crust ocean/ surface interfaces.
- Elements are of order 100m in size. lacksquare
- Stress crust with increasing centrifugal forces.
- Nonrel. star with polytope EOS.
- Also compare to fully relativistic calculations • of shape of rapidly rotating fluid stars.

Simulation Mesh

- Crust breaks first at crust/core interface (bottom) and at equator.
- A breaking strain of 0.1 (suggested by molecular dynamics simulations) is reached at rotation rates 0.6 of Kepler.

Maximum crust strain

Crust breaks first here

Rotational frequency when crust breaks

- Example, for a breaking strain of 0.05 crust breaks at 700 +/- 100 Hz depending on radius. Compare to 716 Hz observed.
- Qualitatively expect crust to break when change in equatorial radius ΔR/R ~ breaking strain. Relativistic fluid calculations of Konstantinou & Morsink find similar rotational speeds of ~ 600+/- 100.
- Still significant uncertainty from incompletely known breaking strain.

R	Ω_K	Ω^r_K	$\Delta R_e/R$		$arepsilon_{ m vm}^{ m max}$	
(km)	(Hz)	(Hz)	0.05	0.1	0.05	0.1
11	1890	1300	690	940	790	11(
12	1650	1130	600	810	690	960
13	1470	1000	530	720	620	850

- Deformation of crust could be large when it breaks because crust has large strain and the crust breaks at base where density is high.
- Maximum ellipticity e=(I₁-I₂)/I₃ crust can support ~ 10⁻⁶. Only need ~10⁻⁸ for torque balance.

00 0 0

LIGO observations of Scorpius X-1

Gravitational waves from accreting NS

- Finite element simulations find crust breaks at about 700 Hz (depending on crust breaking strain and NS radius).
- Broken crust may have a large quadrupole moment because (1) crust was strained near maximum (2) breaking happens at large densities and (3) strong NS crust can support large quadrupole moment.
- Only need about 1% of maximum quadrupole moment for GW torque to balance accretion torque.
- Can probe scenario with present and next generation GW observations.
- ArXiv:2410.19111 with Jorge Morales.