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Outline

Uncovering the statistical properties of EFTs

Why?

(Get well-calibrated uncertainties)

Test EFT convergence (aka power counting)

Do accurate LEC inference (no over-fitting, stability with fit 
region)

(Accurate predictions)

A failure mode: symmetry-protected observables

Summary



General χEFT series for observable to order k: : 

Then cn are “order 1” 

y = yref

k

∑
n=0

cn(ptyp/mπ)Qn

Q =
(ptyp, mπ)

Λb
; Λb ≈ 600 MeV

Generic EFT expansion
Consider χEFT, where we have two light scales, p and mπ 
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Higher-order uncertainties

Exist

Have a characteristic size 

Are correlated across the input space

Have a characteristic correlation length of order the light scale

Can be modeled statistically

∼ Qk+1
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This is what a healthy observable expansion looks like: 
bounded coefficients, that do not grow or shrink with order. 
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This is what a healthy observable expansion looks like: 
bounded coefficients, that do not grow or shrink with order. 

Data for analysis: EFT predictions at different orders across “input space”



Statistica properties of coefficient curves

y = yref

k

∑
n=0

cn(p/mπ)Qn Function cn is not a constant.
But the cn’s at different values of p aren’t 

independent random variables either

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)
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Statistica properties of coefficient curves

Our hypothesis:
EFT coefficients at different orders can be modeled as independent 

draws from a Gaussian Process with a stationary kernel

Gaussian distribution at each point

With correlation structure parameterized by a single   and ℓ at all ordersc̄2

y = yref

k

∑
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cn(p/mπ)Qn Function cn is not a constant.
But the cn’s at different values of p aren’t 

independent random variables either
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A bit more on Gaussian Processes
Non-parametric, probabilistic model for a function

Specify how f(y) is correlated with f(x1), f(x2), …..; don’t specify underlying 
functional form.

But value of f(y) is not deterministic: it’s given by a (Gaussian) probability 
distribution. 

Correlation decreases as points get further away from each other.

Specify correlation matrix of f at x and y, e.g.:

 uniform pr(c̄2 | I) ∼ χ−2(ν0, τ2
0); pr(ℓ | I)

k( f(x), f(y)) = c̄2 exp (−
(x − y)2

2ℓ2 )
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Specify how f(y) is correlated with f(x1), f(x2), …..; don’t specify underlying 
functional form.

But value of f(y) is not deterministic: it’s given by a (Gaussian) probability 
distribution. 

Correlation decreases as points get further away from each other.

Specify correlation matrix of f at x and y, e.g.:

 uniform pr(c̄2 | I) ∼ χ−2(ν0, τ2
0); pr(ℓ | I)

k( f(x), f(y)) = c̄2 exp (−
(x − y)2

2ℓ2 )
Statistical 

model 
choices

ν = ν0 + nc;

ντ2 = ν0τ2
0 + ⃗c2

k



Inferring the next coefficient(s)

Gaussian process “model” for χEFT coefficients, trained on c2 -c5, can be 
used to predict distribution of N5LO corrections 

Learn size of higher-order cn’s based on ones you have

Avoid unintended spurious precision from assumption that model is 
arbitrarily precise to arbitrarily high energy/short distances



Inferring the next coefficient(s)

Gaussian process “model” for χEFT coefficients, trained on c2 -c5, can be 
used to predict distribution of N5LO corrections 

Δσ(E) = σref[c6(E)Q6 + c7(E)Q7 + c8(E)Q8 + c9(E)Q9 + c10(E)Q10]



Model checking Melendez et al. (2019), Millican et al. (2024),  
Bastos & O’Hagan (2009)

https://github.com/buqeye/gsum

https://github.com/buqeye/gsum


Example: E/N for pure neutron matter
Drischler, Melendez, Furnstahl, DP, PRL, PRC (2020) 
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Example: np→dγ
Acharya, Bacca, PLB (2022)

Publicly available package: https://github.com/buqeye/gsum
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Example: np→dγ
Acharya, Bacca, PLB (2022)

Publicly available package: https://github.com/buqeye/gsum
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Example: NN differential cross section
Millican, Furnstahl, Melendez, DP, Pratola (2024)



What about amplitudes?

K =
1
2

(p + p′￼); q = p′￼− p; n = p × p′￼

A: central part
C: spin-orbit M, G, and H: tensor effects

Wolfenstein 
amplitudes

Wolfenstein & Ashkin (1952)

McClung, Elster, DP, submitted to PRC (2025)



Works well for amplitudes at 100 MeV
yref=Im(A)

Q =
max(p, q) + mπ

Λb + mπ
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Works well for amplitudes at 100 MeV
yref=Im(A)

Q =
max(p, q) + mπ

Λb + mπ

See  is constant with energy ℓq



Why: assessing breakdown

pr(Q | y⃗k, ℓ, I) ∝
pr(Q | I)

τν∏i,n |Qn(xi) |

If Q too big then cn will shrink with n 
(and so will error bars)

If Q too small then cn will grow with n
(and so will error bars)

Once we have  we derive pr( ⃗ck |ℓ, I)

Melendez et al., PRC (2019)
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But GP is not 2D stationary

“Warp” input space to account for 1/p effect

ℓθ ∼ 1/p

Millican et al. (2025)

PRELIMINARY

SMS
500 
MeV P =

prel

405 MeV



Results for Λb Millican et al., in preparation (2025)
PRELIMINARY

SMS 
450 
MeV

SMS 
500 
MeV

SMS 
550 
MeV

SCS 
1.0 
fm

SCS 
0.9 
fm

EMN
500 
MeV



Why: LEC inference
yexp = yth + δyexp + δyth
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Why: LEC inference

Predictions for model discrepancy size AND growth with p

δyth = yref(p)[ck+1Qk+1 + ck+2Qk+2 + …]

yexp = yth + δyexp + δyth

yth(p) = yref(p)
k

∑
i=0

ci({aj})Qi

Q =
p, mπ

Λb

δyexp: let’s take normally 
distributed, uncorrelated errors



Parameter estimates: 1S0

Including truncation errors changes 
central values and (esp.) errors 

EKM SCS potential, R=0.9 fm
Epelbaum, Krebs, Meißner, 

EPJA 51, 53 (2015)
O(Q2) 1S0

potential: two 
SD parameters

Wesolowski, Furnstahl, Melendez, DP (2019)



Parameter estimates: 1S0

Including truncation errors changes 
central values and (esp.) errors 

Λb=600 MeV

Uncorrelated

(Σth,uncorr)ij = (yref)2c̄2δij

kmax

∑
n=k+1

Q2n
i

O(Q2) 1S0

potential: two 
SD parameters

Wesolowski, Furnstahl, Melendez, DP (2019)



Emax plots in the 1P1

Can resum truncation error to all orders (under assumptions about its 
correlation across orders): tests validity of FOTA

Wesolowski, Furnstahl, Melendez, DP, J. Phys. G. (2019)

(Σth,uncorr)ij = (yref)2c̄2δij

kmax

∑
n=k+1

Q2n
i (Σth,corr)ij = (yref)i(yref)jc̄2

kmax

∑
n=k+1

Qn
i Qn

j



Calibrating NN LECs with a GP error model
Svennson, Ekstróm, Forssén, PRC (2024)
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Calibrating NN LECs with a GP error model
Svennson, Ekstróm, Forssén, PRC (2024)

 correlations by data indexσtot



All at once: LECs & truncation errors together

This time Q is not obvious: we will actually make it a parameter and sample 
it. We will also sample , the mean-square value of the higher-order 
coefficients. and Q are also constrained by information from the lower-
order calculations. 

NN force refit at O(Q0), O(Q2) and O(Q3); in last case with πN LECs from 
Roy-Steiner analysis

Propagate uncertainties from NN LECs to final result for cD and cE by 
sampling the full 13-dimensional parameter space and marginalizing over NN 
parameters

c̄2

c̄2

yexp = yth + δyexp + δyth

Wesolowski, Svennson, Ekström, Forssén, Furnstahl, Melendez, DP, Phys. Rev. C (2022)
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Wesolowski, Svennson, Ekström, Forssén, Furnstahl, Melendez, DP, Phys. Rev. C (2022)



Posterior and priors

Truncation errors Naturalness



Posterior and priors
pr(a, c̄2, Q |D, I) ∝ exp (−

1
2

rT(Σexp + Σth)−1r) exp (−
a2

2ā2 ) pr(c̄2 |Q, ā, I)pr(Q |a, I)

Truncation errors Naturalness



Posterior and priors
pr(a, c̄2, Q |D, I) ∝ exp (−

1
2

rT(Σexp + Σth)−1r) exp (−
a2

2ā2 ) pr(c̄2 |Q, ā, I)pr(Q |a, I)

We take uncorrelated error model for : .

Experimental errors are negligible in comparison

Can include NN in “fit” by expanding meaning of a to include NN parameters. 
Incorporate NN information by using posterior from that analysis as a prior on that 
aNN, the NN piece of a, here

 is taken to be an inverse-  distribution. Information on the order-to-
order shifts NLO-LO and NNLO-NLO included there

 then also affected by that information. Starts as weakly informative Beta 
distribution before any updating from NLO-LO and NNLO-NLO shifts

Σth (Σth,uncorr)ij = (yref)2c̄2δij

∞

∑
n=k+1

Q2n

pr(c̄2 |Q, ⃗a, I) χ2

pr(Q |a, I)

Truncation errors Naturalness



Results for 3NF parameters, , Q c̄2



Results for 3NF parameters, , Q c̄2

t distributions!



Results for 3NF parameters, , Q c̄2

t distributions! Q inferred from data, 
convergence pattern



Different constraints and truncation errors



Different constraints and truncation errors



Posterior predictive distribution

χEFT can describe all 
these data once 

truncation errors are 
accounted for
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Part 3: an interesting way to fail
Consider GC of the deuteron at Q2=0

Isovector axial-current matrix element for 6He→6Li cf. 8B→8Be

Note that 6He and 6Li are almost completely admixtures of [6] and 
[10] of Wigner’s SU(4), while 8Be is [1], and 8B is mostly [4] of SU(4)

And GT operator is a generator of SU(4) so does not change irrep

SU(4) also explains suppression of nd→tγ at threshold in EFT( /π)

GC(0) = 1 + 0 + 0 + 0 + …

⟨6He |A−
0 |6 Li⟩RME = 2.218 + 0 + 0.044 − 0.034

⟨8B |A−
0 |8 Be⟩RME = 0.118 + 0 + 0.037 − 0.009

King et al., Phys. Rev. C 102, 025501 (2020)

Li Muli, Djärv, Forssén, DP, arXiv:2503.16372

Lin, Singh, Springer, Vanasse, PRC 108, 104401 (2022)



SU(4) decomposition for A=4 to 8
Gamow-Teller operator is a generator of SU(4) with no spatial 
dependence, therefore at LO in χEFT we have 

⟨Ψ′￼| jST
5 |Ψ⟩ = ∑

C2

d′￼(C2)d(C2)⟨C2 | jST
5 |C2⟩
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Implications
β-decay matrix element is 
protected by Wigner’s SU(4)-
symmetry

Cannot expect “regular” EFT 
convergence for symmetry 
protected observables

EFT expansion for SU(4)-
symmetry breaking part? Dual 
expansion?

Why? Unitarity limit, QCD in 
limit of large-NC, ….



Summary
The uncertainty induced in amplitudes—and hence in observables—
by truncation of an EFT series can be modeled using Bayesian 
methods 

The BUQEYE collaboration has modeled the coefficients (≠ LECs) in 
the EFT expansion as Gaussian Processes

The truncation-error model must be tested to ensure its statistical 
properties describes the orders already computed

Benefits: well-calibrated uncertainties, breakdown scale information, 
full uncertainty quantification for LECs, predictions with uncertainties

β-decay in s- and p-shell nuclei needs a different statistical model of 
truncation errors. Wigner’s SU(4) symmetry protects matrix elements 
from corrections and so alters the EFT convergence pattern



3N data

Binding energy of three-nucleon nuclei: 3H

Binding energy of 4He

Charge radius of 4He

Beta-decay half-life of 3H, aka “GT matrix element”

For the moment we stick to bound-state observables

Solve Schrödinger equation for 3He and 4He and compute radii, 
GT matrix element

Done at O(Q0), O(Q2), O(Q3)

Emulation via Eigenvector Continuation make fast evaluation possible


