Building error models in an EFT: how and why. Plus an interesting failure mode.

RESEARCH SUPPORTED BY THE US DOE, THE NSF OFFICE OF ADVANCED CYBERINFRASTRUCTRE, AND THE SWEDISH RESEARCH COUNCIL

Outline

- Uncovering the statistical properties of EFTs
- Why?
 - (Get well-calibrated uncertainties)
 - Test EFT convergence (aka power counting)
 - Do accurate LEC inference (no over-fitting, stability with fit region)
 - (Accurate predictions)
- A failure mode: symmetry-protected observables
- Summary

Generic EFT expansion

Consider χ EFT, where we have two light scales, p and m $_{\pi}$

General χ EFT series for observable to order k: $y = y_{ref} \sum_{n=1}^{\infty} c_n (p_{typ}/m_{\pi}) Q^n$:

k

n=0

$$Q = \frac{(p_{\text{typ}}, m_{\pi})}{\Lambda_b}; \quad \Lambda_b \approx 600 \text{ MeV}$$

Then c_n are "order 1"

Generic EFT expansion

Consider χ EFT, where we have two light scales, p and m $_{\pi}$

General χ EFT series for observable to order k: $y = y_{ref} \sum_{n=1}^{\infty} c_n (p_{typ}/m_{\pi}) Q^n$:

k

n=0

$$Q = \frac{(p_{\text{typ}}, m_{\pi})}{\Lambda_b}; \quad \Lambda_b \approx 600 \text{ MeV}$$

Then c_n are "order 1"

Higher-order uncertainties

- Exist
- Have a characteristic size $\sim Q^{k+1}$
- Are correlated across the input space
- Have a characteristic correlation length of order the light scale
- Can be modeled statistically

• General EFT series for observable to order k: $y = y_{ref} \sum_{n=0}^{\infty} c_n (p_{typ}/m_{\pi})Q^n$

• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

n=0

• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

n=0

• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

This is what a healthy observable expansion looks like: bounded coefficients, that do not grow or shrink with order.

• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

This is what a healthy observable expansion looks like: bounded coefficients, that do not grow or shrink with order.

Data for analysis: EFT predictions at different orders across "input space"

Statistica properties of coefficient curves

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)

 $y = y_{\text{ref}} \sum_{n=1}^{n} c_n (p/m_\pi) Q^n$ n=0

Function c_n is not a constant. But the c_n 's at different values of p aren't independent random variables either

Statistica properties of coefficient curves

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)

$$y = y_{\text{ref}} \sum_{n=0}^{k} c_n (p/m_\pi) Q^n$$

Function c_n is not a constant. But the c_n 's at different values of p aren't independent random variables either

Our hypothesis:

EFT coefficients at different orders can be modeled as independent draws from a *Gaussian Process* with a stationary kernel

Statistica properties of coefficient curves

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)

$$y = y_{\text{ref}} \sum_{n=0}^{k} c_n (p/m_\pi) Q^n$$

Function c_n is not a constant. But the c_n 's at different values of p aren't independent random variables either

Our hypothesis:

EFT coefficients at different orders can be modeled as independent draws from a *Gaussian Process* with a stationary kernel

Gaussian distribution at each point

• With correlation structure parameterized by a single \bar{c}^2 and ℓ at all orders

A bit more on Gaussian Processes

- Non-parametric, probabilistic model for a function
- Specify how f(y) is correlated with f(x1), f(x2),; don't specify underlying functional form.
- But value of f(y) is not deterministic: it's given by a (Gaussian) probability distribution.
- Correlation decreases as points get further away from each other.
- Specify correlation matrix of f at x and y, e.g.:

$$k(f(x), f(y)) = \bar{c}^2 \exp\left(-\frac{(x-y)^2}{2\ell^2}\right)$$

• $\operatorname{pr}(\bar{c}^2 | I) \sim \chi^{-2}(\nu_0, \tau_0^2); \operatorname{pr}(\ell | I)$ uniform

A bit more on Gaussian Processes

- Non-parametric, probabilistic model for a function
- Specify how f(y) is correlated with f(x1), f(x2),; don't specify underlying functional form.
- But value of f(y) is not deterministic: it's given by a (Gaussian) probability distribution.
- Correlation decreases as points get further away from each other.
- Specify correlation matrix of f at x and y, e.g.:

$$k(f(x), f(y)) = \bar{c}^2 \exp\left(-\frac{(x - \frac{x}{2\ell})}{2\ell}\right)$$

Statistical model choices

• $\operatorname{pr}(\bar{c}^2 | I) \sim \chi^{-2}(\nu_0, \tau_0^2); \operatorname{pr}(\ell | I)$ uniform

$$\nu = \nu_0 + n_c;$$
$$\nu\tau^2 = \nu_0\tau_0^2 + \vec{c}_k^2$$

Inferring the next coefficient(s)

- Learn size of higher-order c_n's based on ones you have
- Avoid unintended spurious precision from assumption that model is arbitrarily precise to arbitrarily high energy/short distances

Gaussian process "model" for χ EFT coefficients, trained on c₂ -c₅, can be used to predict distribution of N⁵LO corrections

Inferring the next coefficient(s)

Gaussian process "model" for χ EFT coefficients, trained on c₂ -c₅, can be used to predict distribution of N⁵LO corrections $\Delta\sigma(E) = \sigma_{ref}[c_6(E)Q^6 + c_7(E)Q^7 + c_8(E)Q^8 + c_9(E)Q^9 + c_{10}(E)Q^{10}]$

Model checking

https://github.com/buqeye/gsum

Melendez et al. (2019), Millican et al. (2024), Bastos & O'Hagan (2009)

Diagnostic	Formula	Motivation	Success	Failure
Visualize the function	6 7 52	Does \mathbf{f}_{val} look like a draw from a GP? What kind of GP?	$\mathbf{f}_{\mathrm{val}}$ "looks similar" to draws from a GP	$\mathbf{f}_{\mathrm{val}}$ "stands out" compared to GP draws
$\begin{array}{c} \text{Mahalanobis Distance} \\ D_{\text{MD}}^2 \end{array}$	$(\mathbf{f}_{\mathrm{val}} - \mathbf{m})^{\intercal} K^{-1} (\mathbf{f}_{\mathrm{val}} - \mathbf{m})$	Can we quantify how much the f_{val} looks like a GP?	D_{MD}^2 follows its theoretical distribution (χ_M^2)	$\mathbf{D}^2_{\mathrm{MD}}$ lies too far away from the expected value of M
Pivoted Cholesky \mathbf{D}_{PC}	$G^{-1}(\mathbf{f}_{\mathrm{val}}-\mathbf{m})$	Can we understand why D^2_{MD} is failing?	At each index, points follow standard Gaussian	Many cases (see below)
Credible Interval $D_{CI}(P)$ for $P \in [0, 1]$	$\frac{1}{M}\sum_{i=1}^{M}1[\mathbf{f}_{\mathrm{val},i}\in\mathrm{CI}_{i}(P)]$	Do $100P\%$ credible inter- vals capture data roughly 100P% of the time?	Plot $D_{CI}(P)$ for $P \in [0, 1]$; the curve should be within errors of $D_{CI}(P) = P$,	$D_{CI}(P)$ is far from $100P\%$, particularly for large $100P\%$ (e.g., 68% and 95%).

Variance	Length Scale	Observed Pattern in \mathbf{D}_{PC}
$\sigma_{\rm est} = \sigma_{ m true}$	$\ell_{\rm est} = \ell_{\rm true}$	Points are distributed as a standard Gaussian, with no pattern across index (e.g., only $\approx 5\%$ of points outside 2σ lines).
$\sigma_{ m est}=\sigma_{ m true}$	$\ell_{\rm est} > \ell_{\rm true}$	Points look well distributed at small index but expand to a too-large range at high index.
$\sigma_{\rm est}=\sigma_{\rm true}$	$\ell_{\rm est} < \ell_{\rm true}$	Points look well distributed at small index but shrink to a too-small range at high index.
$\sigma_{\rm est} > \sigma_{ m true}$	$\ell_{\rm est} = \ell_{\rm true}$	Points are distributed in a too-small range at all indices.
$\sigma_{\rm est} < \sigma_{\rm true}$	$\ell_{\rm est} = \ell_{\rm true}$	Points are distributed in a too-large range at all indices.

Example: E/N for pure neutron matter Drischler, Melendez, Furnstahl, DP, PRL, PRC (2020)

Example: E/N for pure neutron matter Drischler, Melendez, Furnstahl, DP, PRL, PRC (2020)

Order-by-order uncertainties for pure neutron matter

Obtained by applying BUQEYETM approach to truncation errors

Example: E/N for pure neutron matter Drischler, Melendez, Furnstahl, DP, PRL, PRC (2020)

- Order-by-order uncertainties for pure neutron matter
- Obtained by applying BUQEYETM approach to truncation errors

Example: $np \rightarrow d\gamma$

Acharya, Bacca, PLB (2022)

Publicly available package: https://github.com/buqeye/gsum

Example: $np \rightarrow d\gamma$

Acharya, Bacca, PLB (2022)

Publicly available package: https://github.com/buqeye/gsum

Example: NN differential cross section

Millican, Furnstahl, Melendez, DP, Pratola (2024)

What about amplitudes?

McClung, Elster, DP, submitted to PRC (2025)

$$\overline{M}(q,\theta) = A(q,\theta)\mathbb{1} \qquad \text{amplitudes} \\
+ iC(q,\theta)(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot \hat{\mathbf{n}} \qquad \text{Wolfenstein \& Ashkin (1952)} \\
+ M(q,\theta)(\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{n}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{n}}) \\
+ [G(q,\theta) - H(q,\theta)](\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{q}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{q}}) \\
+ [G(q,\theta) + H(q,\theta)](\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{K}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{K}}).$$

$$\mathbf{K} = \frac{1}{2}(\mathbf{p} + \mathbf{p}'); \mathbf{q} = \mathbf{p}' - \mathbf{p}; \mathbf{n} = \mathbf{p} \times \mathbf{p}'$$

A: central part
C: spin-orbit M, G, and H: tensor effects

Works well for amplitudes at 100 MeV

yref=Im(A)

 $\theta_{\rm cm}$ [deg]

Works well for amplitudes at 100 MeV

y_{ref}=Im(A)

•
$$Q = \frac{\max(p,q) + m_{\pi}}{\Lambda_b + m_{\pi}}$$

 C_0

C₂

C4

C5

Works well for amplitudes at 100 MeV

yref=Im(A)

Why: assessing breakdown

Melendez et al., PRC (2019)

If Q too big then c_n will shrink with n (and so will error bars)

If Q too small then c_n will grow with n (and so will error bars)

Once we have $pr(\vec{c}_k | \ell, I)$ we derive

$$\operatorname{pr}(\mathbf{Q} | \vec{\mathbf{y}}_{k}, \ell, I) \propto \frac{\operatorname{pr}(Q | I)}{\tau^{\nu} \prod_{i,n} | Q^{n}(x_{i}) |}$$

Why: assessing breakdown

Melendez et al., PRC (2019)

If Q too big then c_n will shrink with n (and so will error bars)

If Q too small then c_n will grow with n (and so will error bars)

Once we have $pr(\vec{c}_k | \ell, I)$ we derive

$$\operatorname{pr}(\mathbf{Q} | \vec{\mathbf{y}}_k, \ell, I) \propto \frac{\operatorname{pr}(Q | I)}{\tau^{\nu} \prod_{i,n} |Q^n(x_i)|}$$

$$Q_{\max} = \frac{(p, m_{\pi})}{\Lambda_b} \text{ or } Q_{\text{sum}} = \frac{p + m_{\pi}}{\Lambda_b + m_{\pi}}?$$

Why: assessing breakdown

If Q too big then c_n will shrink with n (and so will error bars)

If Q too small then c_n will grow with n (and so will error bars)

Once we have $pr(\vec{c}_k | \ell, I)$ we derive

$$\operatorname{pr}(\mathbf{Q} | \vec{\mathbf{y}}_k, \ell, I) \propto \frac{\operatorname{pr}(Q | I)}{\tau^{\nu} \prod_{i,n} | Q^n(x_i) |}$$

$$Q_{\max} = \frac{(p, m_{\pi})}{\Lambda_b} \text{ or } Q_{\text{sum}} = \frac{p + m_{\pi}}{\Lambda_b + m_{\pi}}?$$
 Millican et al., PRC (2024)

But GP is **not** 2D stationary

Millican et al. (2025)

• $\ell_{\theta} \sim 1/p$

"Warp" input space to account for I/p effect

Results for Λ_b

PRELIMINARY

Millican et al., in preparation (2025)

Why: LEC inference

 $y_{exp} = y_{th} + \delta y_{exp} + \delta y_{th}$

Why: LEC inference

$$y_{exp} = y_{th} + \delta y_{exp} + \delta y_{th}$$
$$y_{th}(p) = y_{ref}(p) \sum_{i=0}^{k} c_i(\{a_i\})Q^i$$
$$Q = \frac{p, m_{\pi}}{\Lambda_b}$$

Why: LEC inference $\delta y_{\rm exp}$ $\delta y_{\rm th}$ $y_{exp} = y_{th}$ δy_{exp} : let's take normally $y_{\text{th}}(p) = y_{\text{ref}}(p) \sum_{i=1}^{k} c_i(\{a_i\})Q^i$ distributed, uncorrelated errors $Q = \frac{p, m_{\pi}}{q}$ i=0

Why: LEC inference

 $y_{\exp} = y_{th} + \delta y_{\exp} + \delta y_{th}$

$$y_{\text{th}}(p) = y_{\text{ref}}(p) \sum_{i=0}^{k} c_i(\{a_i\})Q^i \qquad \text{di}_{p}$$

 $Q = \frac{p}{q}$

 δy_{exp} : let's take normally distributed, uncorrelated errors p, m_{π} Λ_b

- $\delta y_{\text{th}} = y_{\text{ref}}(p)[c_{k+1}Q^{k+1} + c_{k+2}Q^{k+2} + \dots]$
- Predictions for model discrepancy size AND growth with p

Parameter estimates: ^IS₀

Wesolowski, Furnstahl, Melendez, DP (2019)

Including truncation errors changes central values and (esp.) errors

Parameter estimates: ^IS₀

Wesolowski, Furnstahl, Melendez, DP (2019)

 $(\boldsymbol{\Sigma}_{\text{th,uncorr}})_{ij} = (\mathbf{y}_{\text{ref}})^2 \bar{c}^2 \delta_{ij} \sum_{ij}^{k_{\text{max}}} Q_i^{2n}$

n=k+1

Including truncation errors changes central values and (esp.) errors

Emax plots in the P

Wesolowski, Furnstahl, Melendez, DP, J. Phys. G. (2019)

Can resum truncation error to all orders (under assumptions about its correlation across orders): tests validity of FOTA

Calibrating NN LECs with a GP error model

Svennson, Ekstróm, Forssén, PRC (2024)

Calibrating NN LECs with a GP error model

Svennson, Ekstróm, Forssén, PRC (2024)

Calibrating NN LECs with a GP error model

Svennson, Ekstróm, Forssén, PRC (2024)

75

100

100

75

1.0

- 0.8

- 0.6

- 0.4

+0.2

1.0

+0.8

0.6

0.4

0.2

All at once: LECs & truncation errors together

Wesolowski, Svennson, Ekström, Forssén, Furnstahl, Melendez, DP, Phys. Rev. C (2022)

$$y_{\exp} = y_{th} + \delta y_{\exp} + \delta y_{th}$$

- This time Q is not obvious: we will actually make it a parameter and sample it. We will also sample c

 ², the mean-square value of the higher-order coefficients. c

 ²and Q are also constrained by information from the lowerorder calculations.
- NN force refit at O(Q⁰), O(Q²) and O(Q³); in last case with πN LECs from Roy-Steiner analysis
- Propagate uncertainties from NN LECs to final result for c_D and c_E by sampling the full 13-dimensional parameter space and marginalizing over NN parameters

All at once: LECs & truncation errors together

Wesolowski, Svennson, Ekström, Forssén, Furnstahl, Melendez, DP, Phys. Rev. C (2022)

$$y_{\exp} = y_{th} + \delta y_{\exp} + \delta y_{th}$$

$$y_{\text{th}}(p) = y_{\text{ref}}(p) \sum_{i=0}^{k} c_i(\{a_i\})Q^i$$

- This time Q is not obvious: we will actually make it a parameter and sample it. We will also sample c

 ², the mean-square value of the higher-order coefficients. c

 ²and Q are also constrained by information from the lowerorder calculations.
- NN force refit at O(Q⁰), O(Q²) and O(Q³); in last case with πN LECs from Roy-Steiner analysis
- Propagate uncertainties from NN LECs to final result for c_D and c_E by sampling the full 13-dimensional parameter space and marginalizing over NN parameters

Posterior and priors

$$pr(\mathbf{a}, \bar{c}^2, Q \mid D, I) \propto \exp\left(-\frac{1}{2}\mathbf{r}^T(\boldsymbol{\Sigma}_{exp} + (\boldsymbol{\Sigma}_{th})^{-1}\mathbf{r})\right) \exp\left(-\frac{\mathbf{a}^2}{2\bar{a}^2}\right) pr(\bar{c}^2 \mid Q, \bar{a}, I) pr(Q \mid \mathbf{a}, I)$$

Truncation errors Naturalness

Posterior and priors

pr(
$$\mathbf{a}, \bar{c}^2, Q \mid D, I$$
) $\propto \exp\left(-\frac{1}{2}\mathbf{r}^T(\mathbf{\Sigma}_{exp} + \mathbf{\Sigma}_{th})^{-1}\mathbf{r}\right) \exp\left(-\frac{\mathbf{a}^2}{2\bar{a}^2}\right) \operatorname{pr}(\bar{c}^2 \mid Q, \bar{a}, I)\operatorname{pr}(Q \mid \mathbf{a}, I)$
Truncation errors
We take uncorrelated error model for $\mathbf{\Sigma}_{th}$: $(\mathbf{\Sigma}_{th,uncorr})_{ii} = (\mathbf{y}_{ref})^2 \bar{c}^2 \delta_{ii} \sum_{i=1}^{\infty} Q^{2n}$.

n=k+1

- Experimental errors are negligible in comparison
- Can include NN in "fit" by expanding meaning of a to include NN parameters.
 Incorporate NN information by using posterior from that analysis as a prior on that analysis as
- $pr(\bar{c}^2 | Q, \bar{a}, I)$ is taken to be an inverse- χ^2 distribution. Information on the order-toorder shifts NLO-LO and NNLO-NLO included there
- pr(Q | a, I) then also affected by that information. Starts as weakly informative Beta distribution before any updating from NLO-LO and NNLO-NLO shifts

Results for 3NF parameters, Q, \bar{c}^2

Results for 3NF parameters, Q, \bar{c}^2

t distributions!

Results for 3NF parameters, Q, \bar{c}^2

t distributions!

Q inferred from data, convergence pattern

Different constraints and truncation errors

Different constraints and truncation errors

Posterior predictive distribution

χEFT can describe all these data once truncation errors are accounted for

Li Muli, Djärv, Forssén, DP, arXiv:2503.16372

Li Muli, Djärv, Forssén, DP, arXiv:2503.16372

Consider G_C of the deuteron at Q²=0

 $G_C(0) = 1 + 0 + 0 + 0 + \dots$

Li Muli, Djärv, Forssén, DP, arXiv:2503.16372

Consider G_C of the deuteron at Q²=0

 $G_C(0) = 1 + 0 + 0 + 0 + \dots$

■ Isovector axial-current matrix element for $^{6}\text{He} \rightarrow ^{6}\text{Li}$ cf. $^{8}\text{B} \rightarrow ^{8}\text{Be}$

 $\langle {}^{6}\text{He} | A_{0}^{-} | {}^{6}\text{Li} \rangle_{\text{RME}} = 2.218 + 0 + 0.044 - 0.034$

 $\langle {}^{8}B | A_{0}^{-} | {}^{8}Be \rangle_{RME} = 0.118 + 0 + 0.037 - 0.009$ King et al., Phys. Rev. C 102, 025501 (2020)

Li Muli, Djärv, Forssén, DP, arXiv:2503.16372

Consider G_C of the deuteron at Q²=0

 $G_C(0) = 1 + 0 + 0 + 0 + \dots$

■ Isovector axial-current matrix element for $^{6}\text{He} \rightarrow ^{6}\text{Li}$ cf. $^{8}\text{B} \rightarrow ^{8}\text{Be}$

 $\langle {}^{6}\text{He} | A_{0}^{-} | {}^{6}\text{Li} \rangle_{\text{RME}} = 2.218 + 0 + 0.044 - 0.034$

 $\langle {}^{8}B | A_{0}^{-} | {}^{8}Be \rangle_{RME} = 0.118 + 0 + 0.037 - 0.009$ King et al., Phys. Rev. C 102, 025501 (2020)

Note that 6He and 6Li are almost completely admixtures of [6] and [10] of Wigner's SU(4), while 8Be is [1], and 8B is mostly [4] of SU(4)

Li Muli, Djärv, Forssén, DP, arXiv:2503.16372

Consider G_C of the deuteron at Q²=0

 $G_C(0) = 1 + 0 + 0 + 0 + \dots$

■ Isovector axial-current matrix element for $^{6}\text{He} \rightarrow ^{6}\text{Li}$ cf. $^{8}\text{B} \rightarrow ^{8}\text{Be}$

 $\langle {}^{6}\text{He} | A_{0}^{-} | {}^{6}\text{Li} \rangle_{\text{RME}} = 2.218 + 0 + 0.044 - 0.034$

 $\langle {}^{8}B | A_{0}^{-} | {}^{8}Be \rangle_{RME} = 0.118 + 0 + 0.037 - 0.009$ King et al., Phys. Rev. C 102, 025501 (2020)

Note that 6He and 6Li are almost completely admixtures of [6] and
 [10] of Wigner's SU(4), while 8Be is [1], and 8B is mostly [4] of SU(4)

And GT operator is a generator of SU(4) so does not change irrep

Li Muli, Djärv, Forssén, DP, arXiv:2503.16372

Consider G_C of the deuteron at Q²=0

 $G_C(0) = 1 + 0 + 0 + 0 + \dots$

■ Isovector axial-current matrix element for $^{6}\text{He} \rightarrow ^{6}\text{Li}$ cf. $^{8}\text{B} \rightarrow ^{8}\text{Be}$

 $\langle {}^{6}\text{He} | A_{0}^{-} | {}^{6}\text{Li} \rangle_{\text{RME}} = 2.218 + 0 + 0.044 - 0.034$

 $\langle {}^{8}B | A_{0}^{-} | {}^{8}Be \rangle_{RME} = 0.118 + 0 + 0.037 - 0.009$ King et al., Phys. Rev. C 102, 025501 (2020)

Note that 6He and 6Li are almost completely admixtures of [6] and
 [10] of Wigner's SU(4), while 8Be is [1], and 8B is mostly [4] of SU(4)

And GT operator is a generator of SU(4) so does not change irrep

• SU(4) also explains suppression of nd \rightarrow t γ at threshold in EFT(π)

Lin, Singh, Springer, Vanasse, PRC 108, 104401 (2022)

SU(4) decomposition for A=4 to 8

Gamow-Teller operator is a generator of SU(4) with no spatial dependence, therefore at LO in χEFT we have

$$\langle \Psi' | j_5^{ST} | \Psi \rangle = \sum_{C_2} d'(C_2) d(C_2) \langle C_2 | j_5^{ST} | C_2 \rangle$$

SU(4) decomposition for A=4 to 8

Gamow-Teller operator is a generator of SU(4) with no spatial dependence, therefore at LO in χEFT we have

$$\langle \Psi' | j_5^{ST} | \Psi \rangle = \sum_{C_2} d'(C_2) d(C_2) \langle C_2 | j_5^{ST} | C_2 \rangle$$

Implications

- β-decay matrix element is protected by Wigner's SU(4)symmetry
- Cannot expect "regular" EFT convergence for symmetry protected observables
 - EFT expansion for SU(4)symmetry breaking part? Dual expansion?
- Why? Unitarity limit, QCD in limit of large-N_C,

Reaction	Eq. (<mark>3</mark>)	ab initio	[7]
${}^{3}\mathrm{H}\left(\frac{1}{2}^{+}\right)\left[1,1,1,0\right] \rightarrow {}^{3}\mathrm{He}\left(\frac{1}{2}^{+}\right)\left[1,1,1,0\right]$	2.449	2.313	//
${}^{6}\text{He}(0^{+}) \ [2,2,1,1] \rightarrow \\ {}^{6}\text{Li}(1^{+}) \ [2,2,1,1]$	2.449	2.260	2.200
${}^{7}\text{Be}\left(\frac{3}{2}^{-}\right) [2,2,2,1] \rightarrow \\ {}^{7}\text{Li}\left(\frac{3}{2}^{-}\right) [2,2,2,1]$	2.582	2.357	2.317
${}^{7}\text{Be}\left(\frac{3}{2}^{-}\right) [2,2,2,1] \rightarrow \\ {}^{7}\text{Li}\left(\frac{1}{2}^{-}\right) [2,2,2,1]$	2.309	2.175	2.157
${}^{8}\text{Li}(2^{+}) [3,2,2,1] \rightarrow \\ {}^{8}\text{Be}(2^{+}) [3,2,2,1]$	0.0	0.093	0.147
${}^{8}\text{He}(0^{+}) \ [3,3,1,1] \rightarrow \\ {}^{8}\text{Li}(1^{+}) \ [3,3,1,1]$	0.0	0.335	0.386

Summary

- The uncertainty induced in amplitudes—and hence in observables by truncation of an EFT series can be modeled using Bayesian methods
- The BUQEYE collaboration has modeled the coefficients (≠ LECs) in the EFT expansion as Gaussian Processes
- The truncation-error model must be tested to ensure its statistical properties describes the orders already computed
- Benefits: well-calibrated uncertainties, breakdown scale information, full uncertainty quantification for LECs, predictions with uncertainties
- β-decay in s- and p-shell nuclei needs a different statistical model of truncation errors. Wigner's SU(4) symmetry protects matrix elements from corrections and so alters the EFT convergence pattern

3N data

For the moment we stick to bound-state observables

- Binding energy of three-nucleon nuclei: ³H
- Binding energy of ⁴He
- Charge radius of ⁴He

Beta-decay half-life of ³H, aka "GT matrix element"

Solve Schrödinger equation for ³He and ⁴He and compute radii, GT matrix element

Done at $O(Q^0)$, $O(Q^2)$, $O(Q^3)$

Emulation via Eigenvector Continuation make fast evaluation possible