Introduction	Deblurring f/Nuclei?	Side Focus in Ar+KCl	More on Deblurring	Conclusions o

Deblurring for Nuclei:

Triple-Differential Yields in Heavy-Ion Collisions

Pawel Danielewicz

Facility for Rare Isotope Beams, Michigan State University, USA

Inverse Problems and Uncertainty Quantification in Nuclear Physics Institute for Nuclear Theory Workshop 24-88W

Seattle, Washington, July 8-12, 2024

Paradigm: Triple-Differential Yields from Data

Distributions for Fixed Direction of Reaction Plane from Theory and Experiment

no control over plane

What is it?!

Danielewicz

Side Focus in Ar+KC

Paradigm: Triple-Differential Yields from Data Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment

some control, v_n

Still not clear what the system is...

3D Yields

Side Focus in Ar+KC

More on Deblurring

Conclusions

Paradigm: Triple-Differential Yields from Data Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment

no control over plane

full control, $\frac{d^3N}{dp^3}$

Claim: You can go from center to right panel through deblurring

Deblurring by Example

Budd, Crime Fighting Math, plus.maths.org magazine

Blurred Photo of Moving Car

Deblurred

Photo of Parked Car

Fast Moving

Deblurring in Optical Microscopy Before and After Nearest Neighbor Deconvolution Analysis

Danielewicz

Introduction

Correcting f/Distortions Due to Apparatus or Method

Detector efficiency ϵ , *n* measured ptcle number, *N* actual number

 $N \simeq \frac{1}{\epsilon} n$

Typical energy loss in thick target $\overline{\Delta E}$ for detected particle

 $E_{\rm prod} \simeq E_{\rm det} + \overline{\Delta E}$

General problem stated probabilistically, with $P(\zeta|\xi)$ - probability to measure ptcle characteristic to be ζ when it is actually ξ

 $n(\zeta) = \int \mathrm{d}\xi \, P(\zeta|\xi) \, N(\xi)$

For small distortions, *P* finite only when ζ little different from ξ . Optical terminology: P - blurring or transfer function.

00000

Bayesian Deblurring

Distorted $n(\zeta)$ measured, while pristine $N(\xi)$ sought:

 $n(\zeta) = \int \mathrm{d}\xi \, P(\zeta|\xi) \, N(\xi)$

 $P(\zeta|\xi)$ - probability that ptcle with ζ' detected while it really has characteristic ξ , understood given the method/apparatus, can be simulated (Geant4) & can depend on N

 $Q(\xi|\zeta)$ - unknown complementary probability that ptcle has characteristic ξ while measured at ζ

Bayesian relation: number of times ptcle has characteristic in d ξ while measured in d ζ is

 $P(\zeta|\xi) N(\xi) d\xi d\zeta = Q(\xi|\zeta) n(\zeta) d\xi d\zeta$

Hence
$$N(\xi) = \frac{\int d\zeta \ Q(\xi|\zeta) \ n(\zeta)}{\int d\zeta' \ P(\zeta'|\xi)}, \quad Q(\xi|\zeta) = \frac{P(\zeta|\xi) \ N(\xi)}{\int d\xi' \ P(\zeta|\xi') \ N(\xi')}$$

Richardson-Lucy method solves eqs iteratively till stabilization $_{\rm con}$

Introduction

Side Focus in Hydrodynamic Calculations

Matter dispersed in the final stage, but most likely direction of motion away from the beam, e.g., in the calculations by Buchwald for Nb + Nb at 400 MeV/nucl Stöcker&Greiner Phys Rep. 137(86)277

Can this be seen experimentally??

3D Yields

1984 Claim

Gustafsson *et al.* PRL 18(84)1590 Plastic Ball Group claims to see preferential emission away from the beam axis, in $d^3N_{ch}/dy d^2p^{\perp}$ for 400 MeV/nucl Nb + Nb collisions, when determining reaction plane from flow tensor, $\mathbf{S}^{\perp z} = \sum_{\nu} \mathbf{p}_{\nu}^{\perp} p^z/2m_{\nu}$

1984 Claim

Gustafsson *et al.* PRL 18(84)1590 Plastic Ball Group claims to see preferential emission away from the beam axis, in $d^3N_{ch}/dy d^2p^{\perp}$ for 400 MeV/nucl Nb + Nb collisions, when determining reaction plane from flow tensor, $\mathbf{S}^{\perp z} = \sum_{\nu} \mathbf{p}_{\nu}^{\perp} p^z/2m_{\nu}$

TRUE DIRECTION

OF REACTION

D₂ D_2 D1

Plane direction f/particle $\boldsymbol{\mu}$ estimated with

$$\mathbf{q}_{\mu} = rac{1}{N}\sum_{
u
eq\mu}\omega_{
u}\,\mathbf{p}_{
u}^{\perp} \qquad \omega_{
u} = egin{cases} +1, & ext{if}\, oldsymbol{p}_{
u}^{z} > 0 \ -1, & ext{if}\, oldsymbol{p}_{
u}^{z} < 0 \end{cases}$$

N - measured particle multiplicity; other ptcles in the event used as reference for μ

PD&Odyniec PLB157(85)146 PLANE Problem: Reference vector \mathbf{q}_{μ} Gaussian fluctuates around true plane direction, blurring features

 \mathbf{q}_{μ}

Current Solution: Angular Moments of Distributions

Solution: average angular moments (azimuthal Fourier coefficients) $v_n = \langle \cos n\phi \rangle$

 ϕ - angle relative to true reaction plane Voloshin&Zhang ZfPhC70(1996)665

 v_n derived from average scalar products/contractions, e.g.,

 $\langle {f p}_{\mu}^{\perp} \cdot {f q}_{\mu}
angle \simeq {m
ho}^{\perp} \left< {m q}^{m x}
ight> \left< \cos \phi
ight>$

for different p^{\perp} , *y* and ptcle ID Problem: unclear physics in v_n especially for higher *n*

1.23 GeV/nucl Au + Au $b \simeq 6$ fm HADES PRL125(2020)262301

FRIB

Schematic 1D Model

Proposition: Carry out as good determination of 3D info as you can

& refine with deblurring. First 1D deblurring test. Projectile at unknown velocity V deexcites emitting N = 10 ptcles distributed with box-like dN/dvin projectile cm. <u>Task</u>: Measuring ptcles in lab, determine dN/dv. Cm velocity V' estimated from remaining ptcles, so V' & dN/dv' smeared:

$$\frac{\mathrm{d}N}{\mathrm{d}v'} = \int \mathrm{d}V' \, \frac{\mathrm{d}P}{\mathrm{d}V'} \, \frac{\mathrm{d}N}{\mathrm{d}v}$$

PD&Kurata-Nishimura PRC105(2022)034608

3D Model for Collisions

Customary thermal model with flow, N, d, t, ³He, ⁴He. $\langle Z_{Tot} \rangle = 50$ Rapidity dstr, temperature & flow typical for semicentral collisions at 300 MeV/nucl

Triple differential spectrum in reaction plane:

3D Yields

Ar + KCl @ 1.8 GeV/nucl

Ströbele PRC 27(83)1349

495 events from Streamer Chamber, $b \lesssim$ 2.4 fm

PD&Odyniec PLB 157(85)146

Reminder: Hydrodynamic Calculations

Matter dispersed in the final stage, but most likely direction of motion away from the beam, e.g., in the calculations by Buchwald for Nb + Nb at 400 MeV/nucl Stöcker&Greiner Phys Rep. 137(86)277

Can this be seen experimentally??

Danielewicz

Side-Focus in Ar + KCl 1.8 GeV/nucl?

Particles in the forward hemisphere, $y^* \sim 0.5 y^*_B$

PD, Ströbele, Nzabahimana PRC108(23)L051603 _ _

Particles in the forward hemisphere, $y^* \sim 0.5 y_B^*$

-0.2

-0.6 -0.4

PD. Ströbele. Nzabahimana PRC108(23)L051603

p^x/A(GeV/c)

0.2 0.4 0.6

-0.6-04-0.20 0.2 0.4 0.6

deblurred

p^x (GeV/c)

PD, Ströbele, Nzabahimana PRC108(23)L051603

Side-Focus: Experiment vs Theory

()

Side-Focus: Experiment & Theory

Danielewicz

What's Behind Deblurring's Success?

Singular value decomposition f/forward conditional probability:

$$\boldsymbol{P}_{ij} = \sum_{n} \sigma_{n} \boldsymbol{U}_{ni} \boldsymbol{V}_{nj} \qquad \Rightarrow \qquad \boldsymbol{Q}_{ji} \stackrel{?}{=} \sum_{n} \sigma_{n}^{-1} \boldsymbol{V}_{nj} \boldsymbol{U}_{ni}$$

i - measurement, *j* - reality, *Q* - backward conditional probability.

Plain Reaction-Plane Deblurring:

$$U_{n}(\varphi) = V_{n}(\varphi) = \begin{cases} \frac{1}{\sqrt{2\pi}}, & n = 0\\ \frac{\cos(n\varphi)}{\sqrt{\pi}}, & n > 0 \end{cases}$$
$$\sigma_{n} = \langle \cos(n\Delta\Phi) \rangle$$

with ΔΦ estimated-true reaction plane deviation Detector effects yield more complicated vectors Positivity + regularization stabilize restoration! Hansen *et al. Deblurring Images* 2006; Mamba&PD arXiv:2407.03458 (math.NA)

Instability??

Restoration with Inefficiencies

SIRIT@RIKEN Time-Projection Chamber

Sn + Sn @ 270 MeV/nucl

Proton distribution in lab angles

Strong

azimuthally-asymmetric inefficiencies for slow particles and at small polar angles

Simulated Restoration f/SIIRIT TPC in Backward CM Hemisphere

Preliminary (minimal statistics)

Flow model ran forward through efficiency simulator for the SIIRIT TPC: not only particles lost but also reaction-plane effects

Simulated Restoration f/SIIRIT TPC in Backward CM Hemisphere

Preliminary (minimal statistics)

Flow model ran forward through efficiency simulator for the SIRIT TPC: not only particles lost but also reaction-plane effects - restored through deblurring

Conclusions

- Reaction-plane fluctuations made us concentrate at intermediate energies on azimuthal moments w/unclear physics content for higher orders
- Deblurring, common in optics, enables accessing 3D distributions associated w/true reaction plane, when reaction-plane effects are strong enough
- Side focus in Ar + KCl collisions at 1.8 GeV/nucl with $v^x \sim 0.1 c$, visible with just ~ 500 collision events, is just an example of what may be achieved!
- Other nuclear problems where deblurring started producing results: ${}^{26}O \rightarrow {}^{24}O + n + n$ decay, source-imaging from 2-particle correlations in HIC

PD&Kurata-Nishimura PRC105(22)034608; Nzabahimana *et al.* PRC107(23)064315; PD *et al.* PRC108(23)L051603; Adamczewski-Musch *et al.* PRL125(20)262301 - *v_n* reconstruction Berkowitz Physics 15(22)s26 https://www.energy.gov/science/np/articles/deblurring-can-reveal-3d-features-heavy-ion-collisions

Supported by US Department of Energy under Grant US DE-SC0019209

• • = • • = •

FRIB

Blurring Function & Singular-Value Spectrum

•000

3D Yields

Danielewicz

FRIB

Singular Vectors, Ordered by Singular Values

3D Yields

Danielewicz

Expansion-Coefficient Relaxation w/Iterations

FRIB

Danielewicz

3D Yields

Regularization Works w/Low Contrast

