PROGRESS TOWARDS NCTEQ24 - A NEW GLOBAL ANALYSIS OF NUCLEAR PARTON DISTRIBUTION FUNCTIONS

Pit Duwentäster

University of Jyväskylä

Heavy Ion physics in the EIC Era, INT, Seattle

August 16, 2024

TABLE OF CONTENTS

- Basics of nuclear PDFs and nCTEQ15
- nCTEQ15WZ Vector boson production
- ▶ nCTEQ15WZ+SIH Single inclusive hadron production
- nCTEQ15HQ Heavy quark production
- ▶ nCTEQ15HIX High-x DIS data
- ▶ nCTEQ15*v* Neutrino DIS data
- nCTEQ24 Road to future nPDFs
- Conclusions and Outlook

INTRODUCTION - COLLINEAR FACTORIZATION

Factorization in case of Deep Inelastic Scattering (DIS)

$$\underbrace{l}_{q^2 = -Q^2}_{X * P} X \qquad \frac{d^2\sigma}{dxdQ^2} = \sum_{i=q,\bar{q},g} \int_x^1 \frac{dz}{z} f_i(z,\mu) d\hat{\sigma}_{il \to l'X}\left(\frac{x}{z},\frac{Q}{\mu}\right) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)$$

Factorization in case of Drell-Yan lepton pair production (DY)

$$\begin{array}{c} \stackrel{p}{\underset{\bar{q}}{\longrightarrow}} \stackrel{\mu}{\underset{\bar{q}}{\longrightarrow}} & \sigma_{pp \to l\bar{l}X} = \sum_{i,j=q,\bar{q},g} \int_{x_1}^1 dz_1 \int_{x_2}^1 dz_2 f_i(z_1,\mu) f_j(z_2,\mu) \\ & \times \hat{\sigma}_{ij \to l\bar{l}X} \left(\frac{x_1}{z_1}, \frac{x_2}{z_2}, \frac{Q}{\mu} \right) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2} \right) \end{array}$$

- $f_i(z, \mu)$ **UNIVERSAL** proton PDFs of parton *i* (non-perturbative).
- *¬*_{ij→ll̄X} − parton level matrix element (calculable in pQCD).

 O (^{Λ_{QCD}}/_{Q²}) − non-leading terms defining accuracy of factorization formula.

Pit Duwentäster

INTRODUCTION - PROPERTIES OF PDFs

Number sum rules – connect partons to quarks from SU(3) flavour symmetry of hadrons; proton (*uud*), neutron (*udd*). For protons:

$$\int_0^1 dx [\underbrace{f_u(x) - f_{\bar{u}}(x)}_{u-\text{valence distr.}}] = 2 \qquad \qquad \int_0^1 dx [\underbrace{f_d(x) - f_{\bar{d}}(x)}_{d-\text{valence distr.}}] = 1$$

Momentum sum rule – momentum conservation connecting all flavours

$$\sum_{i=q,\bar{q},g} \int_0^1 dx \ x f_i(x) = 1$$

- *x*-dependence of PDFs is NOT calculable in pQCD
- μ^2 -dependence is calculable in pQCD given by DGLAP equations

$$\mu^2 \frac{d}{d\mu^2} \begin{pmatrix} f_i(x,\mu^2) \\ f_g(x,\mu^2) \end{pmatrix} = \sum_j \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \begin{pmatrix} P_{q_i q_j} \begin{pmatrix} \underline{x} \\ \underline{z} \end{pmatrix} & P_{q_i g} \begin{pmatrix} \underline{x} \\ \underline{z} \end{pmatrix} \begin{pmatrix} f_j(z,\mu^2) \\ P_{gq_j} \begin{pmatrix} \underline{x} \\ \underline{z} \end{pmatrix} & P_{gg} \begin{pmatrix} \underline{x} \\ \underline{z} \end{pmatrix} \end{pmatrix} \begin{pmatrix} f_j(z,\mu^2) \\ f_g(z,\mu^2) \end{pmatrix}$$

INTRODUCTION – PROPERTIES OF PDFs

Number sum rules – connect partons to quarks from SU(3) flavour symmetry of hadrons; proton (*uud*), neutron (*udd*). For protons:

$$\int_0^1 dx [\underbrace{f_u(x) - f_{\bar{u}}(x)}_{u-\text{valence distr.}}] = 2 \qquad \qquad \int_0^1 dx [\underbrace{f_d(x) - f_{\bar{d}}(x)}_{d-\text{valence distr.}}] = 1$$

Momentum sum rule – momentum conservation connecting all flavours

$$\sum_{i=q,\bar{q},g} \int_0^1 dx \ x f_i(x) = 1$$

- x-dependence of PDFs is NOT calculable in pQCD
- μ^2 -dependence is calculable in pQCD given by DGLAP equations

INTRODUCTION – PDF FITTING PROCEDURE

- PDF x-dependence is extracted from data
- \blacktriangleright Assume a parameterization in x at some input scale Q_0

$$xf_i(x, Q_0) = N(1-x)^{p_{i,1}} x^{p_{i,2}} P(x, p_{i,3}, ...)$$

- Set parameters $p_{i,j}$ to some values, calculate theoretical predictions, compare to data, iterate:

INTRODUCTION - NUCLEAR PDFs

Nuclear PDFs are more than the sum of their parts, i.e. not just the sum of Z proton PDFs and (A - Z) neutron PDFs.

INTRODUCTION - PARAMETERIZATION

▶ The full nPDFs are parametrized in terms of the bound nucleon PDFs:

$$f_i^{A,Z}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

INTRODUCTION – PARAMETERIZATION

▶ The full nPDFs are parametrized in terms of the bound nucleon PDFs:

$$f_i^{A,Z}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

• Bound proton PDF parametrizations at $Q_0 = 1.3 \text{ GeV}$:

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \quad i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}$$
$$\frac{\bar{d}}{\bar{u}} = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x) (1-x)^{c_4}$$

INTRODUCTION – PARAMETERIZATION

▶ The full nPDFs are parametrized in terms of the bound nucleon PDFs:

$$f_i^{A,Z}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

• Bound proton PDF parametrizations at $Q_0 = 1.3 \text{ GeV}$:

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \quad i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}$$
$$\frac{\bar{d}}{\bar{u}} = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x) (1-x)^{c_4}$$

• The dependence of nPDFs on A, Z is parametrized as

$$c_k(A,Z) = p_k + a_k(1 - A^{-b_k})$$

INTRODUCTION - PARAMETERIZATION

▶ The full nPDFs are parametrized in terms of the bound nucleon PDFs:

$$f_i^{A,Z}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

• Bound proton PDF parametrizations at $Q_0 = 1.3 \text{ GeV}$:

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \quad i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}$$
$$\frac{\bar{d}}{\bar{u}} = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x) (1-x)^{c_4}$$

• The dependence of nPDFs on A, Z is parametrized as

$$c_k(A,Z) = p_k + a_k(1 - A^{-b_k})$$

$$\begin{array}{c} \blacktriangleright \text{ Open parameters:} \\ \{a_1^{u_v}, \ a_2^{u_v}, \ a_4^{u_v}, \ a_5^{u_v}, \ a_1^{d_v}, \ a_2^{d_v}, \ a_5^{d_v}, \ a_1^{\bar{u}+\bar{d}}, \ a_5^{\bar{u}+\bar{d}}, \ a_5^{\bar{u}+\bar{d}}, \ a_5^{g}, \ a_6^{g}, \ b_6^{g}, \ b_1^{g}, \ b_4^{g}, \ b_5^{g}, \ a_6^{s+\bar{s}}, \ a_1^{s+\bar{s}}, \ a_2^{s+\bar{s}} \} \end{array}$$

Introduction – The nCTEQ15 baseline

Old main release: nCTEQ15 [Kovarik et al., PRD 93 (2016) 085037]

Introduction – The nCTEQ15 baseline

Old main release: nCTEQ15 [Kovarik et al., PRD 93 (2016) 085037]

Many open problems:

- Gluon huge uncertainties at low-x
- \blacktriangleright Strange quark fixed to a constant fraction of $\bar{u}+\bar{d}$
- \blacktriangleright Considerable uncertainties even for valence quarks at high-x

Pit Duwentästei

NCTEQ15HIX – HIGH-x JLAB DATA

[Segarra et al., PRD 103 (2021) 114015] Goal: Lower kinematic cuts to include more data and constrain high-*x* PDFs

- Old: $Q_{\min} = 2 \text{ GeV}$ and $W_{\min} = 3.5 \text{ GeV}$
 - 708 DIS data points
 - JLab fully excluded

NCTEQ15HIX – HIGH-x JLAB DATA

[Segarra et al., PRD 103 (2021) 114015] Goal: Lower kinematic cuts to include more data and constrain high-*x* PDFs

- Old: $Q_{\min} = 2 \text{ GeV}$ and $W_{\min} = 3.5 \text{ GeV}$
 - 708 DIS data points
 - JLab fully excluded
- New: $Q_{\min} = 1.3 \text{ GeV}$ and $W_{\min} = 1.7 \text{ GeV}$
 - 1564 DIS data points
 - JLab and HERMES contribute significant amounts
 - Requires low-energy corrections

NCTEQ15HIX - THEORETICAL CHALLENGES

Target mass corrections:

[Ruiz et al., arXiv:2301.07715]

Revisited derivation for nuclear DIS

NCTEQ15HIX - THEORETICAL CHALLENGES

Target mass corrections:

[Ruiz et al., arXiv:2301.07715]

Revisited derivation for nuclear DIS

Higher twist effects:

- Independenct of the nucleus
- Using parameterization from the CJ15 analysis [Accardi et al, PRD 93 (2016) 114017]

NCTEQ15HIX - THEORETICAL CHALLENGES

Target mass corrections:

[Ruiz et al., arXiv:2301.07715]

Revisited derivation for nuclear DIS

Higher twist effects:

- Independenct of the nucleus
- Using parameterization from the CJ15 analysis [Accardi et al, PRD 93 (2016) 114017]

Deuteron corrections:

- Lightest bound nucleus
- Considerable differences to heavier targets
- Corrections have been extracted in the CJ15 analysis

NCTEQ15HIX - RESULTING PDFs

Iron PDF ratios to nCTEQ15 (Q = 2 GeV)

- BASE: nCTEQ15 with relaxed cuts + TMC
- HT: BASE + higher twist corrections
- DEU: BASE + deuteron corrections
- nCTEQ15HIX: BASE + higher twist and deuteron corrections

Pit Duwentäster

NCTEQ15WZ - VECTOR BOSON PRODUCTION

[Kusina et al., EPJC 80 (2020) 968]

Goal: Constrain the strange quark (and gluon) PDFs

- Open up strange quark parameters
- Strange quark channel contributes up to 30% of the total cross section
- 120 new data points

Data Overview						
			$\sqrt{s_{NN}}$ [TeV]	Norm σ	No Points	Ref.
ATLAS	Run I	W^{\pm}	5.02	2.7%	10 + 10	[49]
ATLAS	Run I	Z	5.02	2.7%	14	[50]
\mathbf{CMS}	Run I	W^{\pm}	5.02	3.5%	10 + 10	[51]
CMS	Run I	Z	5.02	3.5%	12	[52]
\mathbf{CMS}	Run II	W^{\pm}	8.16	3.5%	24 + 24	[53]
ALICE	Run I	W^{\pm}	5.02	2.0%	2+2	[54, 55]
LHCb	Run I	Z	5.02	2.0%	2	[56]

NCTEQ15WZ+SIH – SINGLE INCLUSIVE HADRON PRODUCTION [Duwentäster et al., PRD 104 (2021) 094005]

Goal: Constrain the gluon PDFs

- Sensitivity to gluon PDFs not only from DGLAP evolution
- Precise new data from ALICE

NCTEQ15WZ+SIH – SINGLE INCLUSIVE HADRON PRODUCTION [Duwentäster et al., PRD 104 (2021) 094005]

Goal: Constrain the gluon PDFs

- Sensitivity to gluon PDFs not only from DGLAP evolution
- Precise new data from ALICE

$\label{eq:nctusive hadron production} \mbox{NCTEQ15WZ+SIH} - \mbox{Single inclusive hadron production} \mbox{[Duwentäster et al., PRD 104 (2021) 094005]}$

Goal: Constrain the gluon PDFs

- Sensitivity to gluon PDFs not only from DGLAP evolution
- Precise new data from ALICE

The most precise data lies in non-perturbative low p_T region

Fragmentation Function dependence

Pit Duwentäster

NCTEQ15WZ+SIH - FF DEPENDENCE

► FF dependence: Boils down to normalization shift → cancels in ratio

NCTEQ15WZ+SIH - FF dependence

- ► FF dependence: Boils down to normalization shift → cancels in ratio
- Scale dependence: $\mu = \mu = \mu = \frac{1}{2}p_T$ gives optimal description

NCTEQ15WZ+SIH - FF dependence

- ► FF dependence: Boils down to normalization shift → cancels in ratio
- Scale dependence: $\mu = \mu = \mu = \frac{1}{2}p_T$ gives optimal description
- Caveat: No combination of FF and scale choice can describe data with p_T < 3 GeV

NCTEQ15HQ - MOTIVATION

[Duwentäster et al., PRD 105 (2022) 114043] Why is heavy-flavour production data interesting for nuclear PDFs?

-16 / 2

$\rm NCTEQ15HQ-Motivation$

[Duwentäster et al., PRD 105 (2022) 114043] Why is heavy-flavour production data interesting for nuclear PDFs?

- Sensitivity to gluon PDFs down to very low x values ($x \approx 10^{-5}$)
- Large available proton-lead data sets from multiple LHC experiments for $D^0, J/\psi, \psi(2S)$ and $\Upsilon(1S)$
- Interesting data-driven approach [A. Kusina et al., PRL 121 (2018) 052004; PRD 104 (2021) 014010]

$\rm NCTEQ15HQ-Motivation$

[Duwentäster et al., PRD 105 (2022) 114043] Why is heavy-flavour production data interesting for nuclear PDFs?

- Sensitivity to gluon PDFs down to very low x values ($x \approx 10^{-5}$)
- Large available proton-lead data sets from multiple LHC experiments for $D^0, J/\psi, \psi(2S)$ and $\Upsilon(1S)$
- Interesting data-driven approach [A. Kusina et al., PRL 121 (2018) 052004; PRD 104 (2021) 014010]
 - Understanding of quarkonium production in pQCD is limited
 - Can quantify theory uncertainties
 - Potentially applicable for many single-inclusive particle production processes
 - Fast calculation

16 / 2

NCTEQ15HQ - DATA-DRIVEN Approach

Derive effective theory from p-p collision data to use with p-Pb data in the nPDF fit

$$\sigma(AB \to \mathcal{Q} + X) = \int \mathrm{d}x_1 \, \mathrm{d}x_2 f_{1,g}(x_1) f_{2,g}(x_2) \frac{1}{2\hat{s}} \overline{|\mathcal{A}_{gg \to \mathcal{Q}} + X|^2} \mathrm{dPS}$$

NCTEQ15HQ – DATA-DRIVEN APPROACH

Derive effective theory from p-p collision data to use with p-Pb data in the nPDF fit

NCTEQ15HQ – DATA-DRIVEN APPROACH

Derive effective theory from p-p collision data to use with p-Pb data in the nPDF fit

NCTEQ15HQ – DATA-DRIVEN APPROACH

Derive effective theory from p-p collision data to use with p-Pb data in the nPDF fit

- \blacktriangleright Fit parameters \rightarrow uncertainties can be determined just like those of PDFs
- 5 parameters per process ightarrow 6imes5 parameters describe pprox 1000 data points very well
- Agrees well with NRQCD predictions for J/ψ and GMVFNS predictions for D^0

Pit Duwentäster

NCTEQ15(WZ, WZ+SIH, HQ) - RESULTING PDFs

Significant reduction in gluon and low-x uncertainties

Strange quark still poorly constrained

Pit Duwentäster

$\begin{array}{l} nCTEQ15\nu - NEUTRINO \ DIS \ revisited \\ [Muzakka et al., PRD 106 (2022) 074004] \\ \textbf{Motivation}: \end{array}$

- Reduce the uncertainty of the strange PDF
- Improve flavour separation
- HUGE data sets

			<u> </u>	
Data set	Nucleus	#pts	Corr.sys.	
CDHSW ν	Г	465	Nia	
CDHSW $\bar{\nu}$	ге	464	INO	
CCFR ν	Ea	1109	No	
CCFR $\bar{\nu}$	re	1098	INO	
NuTeV ν	Ea	1170	Vec	
NuTeV $\bar{ u}$	re	966	res	
Chorus ν	Dh	412	Voc	
Chorus $\bar{\nu}$	FD	412	ies	
CCFR dimuon ν	Fo	40	No	
CCFR dimuon $\bar{\nu}$	Te	38	NO	
NuTeV dimuon ν	Fo	38	No	
NuTeV dimuon $\bar{\nu}$	Te	34	NO	

Neutrino Data used in this analysis:

 $\begin{array}{l} nCTEQ15\nu - Neutrino DIS revisited \\ [Muzakka et al., PRD 106 (2022) 074004] \\ \textbf{Motivation}: \end{array}$

- Reduce the uncertainty of the strange PDF
- Improve flavour separation
- HUGE data sets

Challenge:

- Tensions between ν -DIS data sets
- Tensions within *v*-DIS data sets
- **>** Tensions between ν -DIS and other data

Neutrino Data used in this analysis:

Data set	Nucleus	#pts	Corr.sys.	
CDHSW ν	Fo	465	No	
CDHSW $\bar{\nu}$	re	464		
CCFR ν	Fo	1109	No	
CCFR $\bar{\nu}$	i e	1098	NO	
NuTeV ν	Fo	1170	Voc	
NuTeV $\bar{ u}$	Te	966	res	
Chorus ν	Ph	412	Vec	
Chorus $\bar{\nu}$	10	412	Tes	
CCFR dimuon ν	Fo	40	No	
CCFR dimuon $\bar{\nu}$	Te	38		
NuTeV dimuon ν	Fo	38	No	
NuTeV dimuon $\bar{\nu}$	Te	34	NO	

 $\begin{array}{l} nCTEQ15\nu - Neutrino DIS revisited \\ [Muzakka et al., PRD 106 (2022) 074004] \\ \textbf{Motivation}: \end{array}$

- Reduce the uncertainty of the strange PDF
- Improve flavour separation
- HUGE data sets

Challenge:

- Tensions between ν -DIS data sets
- Tensions within ν -DIS data sets
- Tensions between ν -DIS and other data

Improved methodology:

- Treatment of normalization uncertainties.
- Deuteron correction from CJ15 analysis.
- More PDF parameters to fit.
- New tools for compatibility analysis

Neutrino Data used in this analysis:

Data set	Nucleus	#pts	Corr.sys.	
CDHSW ν	Fa	465	No	
CDHSW $\bar{\nu}$	ге	464		
CCFR ν	Ea	1109	No	
CCFR $\bar{\nu}$	re	1098	NO	
NuTeV ν	Fo	1170	Voc	
NuTeV $\bar{ u}$	re	966	res	
Chorus ν	Ph	412	Vec	
Chorus $\bar{\nu}$		412	165	
CCFR dimuon ν	Fo	40	No	
CCFR dimuon $\bar{\nu}$	Te	38		
NuTeV dimuon ν	Fo	38	No	
NuTeV dimuon $\bar{\nu}$	ie	34	NO	

 $NCTEQ15\nu - NEW FITS$

• nCTEQ15WZSIHdeut = Base: l^{\pm} DIS+DY+SIH+WZ (940 pts)

- **BaseDimuNeuX**: Base + Dimuon + Neutrino, with $x \le 0.1$ data are removed from the dimuon and neutrino data (5584 pts)
- BaseDimuChorus: Base + Dimuon + Chorus (1914 pts)

Pit Duwentäster

Combine nCTEQ15HIX, nCTEQ15HQ and nCTEQ15 $\!\nu$

- relaxed kinematic cuts
- Improved theory: TMCs, deuteron corrections, ...
- Check consistency between all data sets

Combine nCTEQ15HIX, nCTEQ15HQ and nCTEQ15 $\!\nu$

- relaxed kinematic cuts
- Improved theory: TMCs, deuteron corrections, ...
- Check consistency between all data sets

Update data

- ▶ New W/Z data from ALICE and LHCb
- ▶ New π^0 data from LHCb
- ▶ New Heavy quark data from all ALICE, CMS and LHCb

Combine nCTEQ15HIX, nCTEQ15HQ and nCTEQ15 $\!\nu$

- relaxed kinematic cuts
- Improved theory: TMCs, deuteron corrections, ...
- Check consistency between all data sets

Update data

- ▶ New W/Z data from ALICE and LHCb
- New π^0 data from LHCb
- ▶ New Heavy quark data from all ALICE, CMS and LHCb

Possibly new observables (under investigation)

- Dijet production
- Direct photon production

Towards a new $\ensuremath{\mathsf{NCTEQ}}$ global $\ensuremath{\mathsf{NPDF}}$ analysis

Updated parameterization

Based on the new CTEQ-JLAB proton PDF analysis

$$\begin{aligned} xf_i(x,Q_0^2) &= c_0 x^{c_1} (1-x)^{c_2} \left(1+c_3 \sqrt{x}+c_5 \sqrt{x^3}\right) & i = u_v, g, \bar{u} + \bar{d}, \bar{s} + \bar{s} \\ xd_v(x,Q_0^2) &= c_0 x^{c_1} (1-x)^{c_2} \left(1+c_3 \sqrt{x}+c_5 \sqrt{x^3}\right) + c_6 x^{c_7} u_v(x,Q_0^2) \\ x(\bar{d}-\bar{u}) &= c_0 x^{c_1} (1-x)^{c_2} (1+c_3 x) \end{aligned}$$

Updated parameterization

Based on the new CTEQ-JLAB proton PDF analysis

$$\begin{aligned} xf_i(x,Q_0^2) &= c_0 x^{c_1} (1-x)^{c_2} \left(1+c_3 \sqrt{x}+c_5 \sqrt{x^3}\right) & i = u_v, g, \bar{u} + \bar{d}, \bar{s} + \bar{s} \\ xd_v(x,Q_0^2) &= c_0 x^{c_1} (1-x)^{c_2} \left(1+c_3 \sqrt{x}+c_5 \sqrt{x^3}\right) + c_6 x^{c_7} u_v(x,Q_0^2) \\ x(\bar{d}-\bar{u}) &= c_0 x^{c_1} (1-x)^{c_2} (1+c_3 x) \end{aligned}$$

Changing the nuclear A dependence

OLD:
$$c_k \to c_k(A) \equiv p_k + a_k(1 - A^{-b_k})$$

 \downarrow
NEW: $c_k \to c_k(A) \equiv p_k + a_k \ln(A) + b_k \ln(A)^2$

Updated parameterization

Based on the new CTEQ-JLAB proton PDF analysis

$$\begin{aligned} xf_i(x,Q_0^2) &= c_0 x^{c_1} (1-x)^{c_2} \left(1+c_3 \sqrt{x}+c_5 \sqrt{x^3}\right) & i = u_v, g, \bar{u} + \bar{d}, \bar{s} + \bar{s} \\ xd_v(x,Q_0^2) &= c_0 x^{c_1} (1-x)^{c_2} \left(1+c_3 \sqrt{x}+c_5 \sqrt{x^3}\right) + c_6 x^{c_7} u_v(x,Q_0^2) \\ x(\bar{d}-\bar{u}) &= c_0 x^{c_1} (1-x)^{c_2} (1+c_3 x) \end{aligned}$$

Changing the nuclear A dependence

OLD:
$$c_k \to c_k(A) \equiv p_k + a_k(1 - A^{-b_k})$$

 \downarrow
NEW: $c_k \to c_k(A) \equiv p_k + a_k \ln(A) + b_k \ln(A)^2$

<code>nCTEQ15</code> used 16 open parameters; <code>nCTEQ15WZ</code> and following used 19 <code>nCTEQ24</code> will use more than 30

Pit Duwentäster

PRELIMINARY RESULTS - PDFs

- Good agreement with other recent analyses by EPPS [Eskola et al., EPJC 82 (2022) 5,413] and nNNPDF [Khalek et al., EPJC 82 (2022) 6,507]
- Uncertainty bands are subject to significant change as we reevaluate the tolerance criterion

PRELIMINARY RESULTS - PARAMETER SCANS

▶ Valence quark parameters are still mostly constrained by Neutral Current DIS

PRELIMINARY RESULTS - PARAMETER SCANS

- Gluon parameters are constrained by heavy quark and W/Z production
- Strange quark parameters are a compromise between various experiment types
 - Tensions remain between CC DIS and others

SUMMARY

Modern nuclear PDF analyses require a vast number of different components to come together to gain comprehensive understanding

Data

- Vector bosons
- Inclusive hadrons
- Heavy quarks
- Neutrino DIS
- ► High-x DIS
- (Direct photons)
- ▶ (Dijets)

SUMMARY

Modern nuclear PDF analyses require a vast number of different components to come together to gain comprehensive understanding

Data

- Vector bosons
- Inclusive hadrons
- Heavy quarks
- Neutrino DIS
- ▶ High-x DIS
- (Direct photons)
- ▶ (Dijets)

THEORY

- Target mass corrections
- Higher twist corrections
- Deuteron treatment
- FF dependence of single inclusive hadrons
- Data-driven approach for HQ

SUMMARY

Modern nuclear PDF analyses require a vast number of different components to come together to gain comprehensive understanding

Data

- Vector bosons
- Inclusive hadrons
- Heavy quarks
- Neutrino DIS
- High-x DIS
- (Direct photons)
- ▶ (Dijets)

THEORY

- Target mass corrections
- Higher twist corrections
- Deuteron treatment
- FF dependence of single inclusive hadrons
- Data-driven approach for HQ

TECHNICAL

- New CJ proton baseline
- A-dependence parameterization
- Compatibility criteria
- Increasing number of open parameters

Backup slides

Backup -z dependence

BACKUP - FF PARTON DEPENDENCE

HEAVY QUARKS - PROTON-PROTON BASELINE

▶ Impose cuts to remove data with $p_T < 3 \text{ GeV}$ and outside of $-4 \leq y_{\text{c.m.s.}} \leq 4$

	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \to \psi(2S)$
$N_{ m points}$	34		501	375		55
χ^2/N_{dof}	0.25		0.88	0.92		0.77

Pit Duwentäster

4 / 13

BASELINE - COMPARISON WITH GMVFNS

- KKKS08 fragmentation functions
- Base scale $\mu_r = \mu_i = \mu_f = \sqrt{p_T^2 + 4m_c^2}$
- Uncertainties due to individual scale variations by factor 2 or $\frac{1}{2}$

$BASELINE - COMPARISON WITH \ NRQCD$

Calculations by Mathias Butenschoen, Bernd Kniehl [M. Butenschoen et al., Nucl.Phys.B Proc.Suppl. 222-224 (2012) 151-161]

- ► NRQCD Uncertainties due to scale variations: $1/2 < \mu_r/\mu_{r,0} = \mu_f/\mu_{f,0} = \mu_{\text{NRQCD}}/\mu_{\text{NRQCD},0} < 2$
- ▶ Base scale $\mu_{r,0} = \mu_{f,0} = \sqrt{p_T^2 + 4m_c^2}$ and $m_{\rm NRQCD,0} = m_c$

PDF FITS - DATA SELECTION AND SETTINGS

- Include all data from nCTEQ15WZ+SIH
- Use the same open parameters as nCTEQ15WZ+SIH
- ▶ Cut HQ data below $p_T < 3.0 \,\text{GeV}$ and outside $-4 \le y_{\text{c.m.s.}} \le 4$
 - Same as proton-proton baseline.
 - 548 new data points
 - Add Crystal Ball uncertainty to data systematics

NCTEQ15HQ PDFs – Scale variation

Compatibility Analysis S vs \bar{S}

Definition ($\Delta \chi^2_S$ -compatibility)

$$\chi_S^2(\text{after}) - \chi_S^2(\text{before}) \le \Delta \chi_S^2$$

Definition (χ^2 -compatibility)

$$p_S \le 0.9 \quad \text{and} \quad p_{\bar{S}} \le 0.9$$
$$p_S = \int_0^{\chi_S^2} P(\chi^2, N_S) d\chi^2$$

Definition (S_E -compatibility)

$$S_E = \sqrt{2\chi_E^2(N)} - \sqrt{2N - 1} \sim \mathcal{N}(0, 1)$$

TREATMENT OF NORMALIZATION PARAMETERS

► The old way to include normalization uncertainties : $\chi^2 = (D - T)^T C_D^{-1} (D - T)$, $C_{D,ij} = C_{ij} + \sigma_{norm}^2 D_i D_j$ lead to d' Agostini bias. ► Standard solution :

$$\chi^{2} = (D - T/r)^{T} C^{-1} (D - T/r) + \frac{(1 - r)^{2}}{\sigma_{norm}^{2}}$$

- Drawbacks : (1) Additional fitting parameters. (2) Must be taken into account in the Hessian error analysis.
- Another solution :

$$\chi^{2} = (D - rT)^{T} C_{-1} (D - rT) + \frac{(1 - r)^{2}}{\sigma_{norm}^{2}}$$

Advantages : (1) No additional open parameters as the optimal r can be calculated analytically. (2) The Hessian method automatically includes the contribution from r.

10 / 13

TREATMENT OF DEUTERON CORRECTION

- Without deuteron correction, F₂^D is computed as : F₂^D = F₂^p + F₂ⁿ ≡ F₂^N.
- However, $F_2^D \neq F_2^N$.
- How we compute F_2^D :

$$F_{2}^{D} = F_{2}^{p,CTEQ} \times \frac{F_{2}^{D,CJ}}{F_{2}^{P,CJ}}$$

where $F_2^{D,CJ}$, $F_2^{P,CJ}$ comes from CJ15 analysis[Accardi *et al*, Phys.Rev.D93 11,(2016) 114017].

OPEN PARAMETERS IN NEUTRINO FITS

 $\begin{array}{c} a_1^{u_v}, \ a_2^{u_v}, \ a_4^{u_v}, \ a_5^{u_v}, \ b_1^{u_v}, \ b_2^{u_v}, \\ a_1^{d_v}, \ a_2^{d_v}, \ a_4^{d_v}, \ a_5^{d_v}, \ b_1^{d_v}, \ b_2^{d_v}, \\ a_1^{\bar{u}+\bar{d}}, \ a_2^{\bar{u}+\bar{d}}, \ a_5^{\bar{u}+\bar{d}}, \\ a_1^{\bar{u}+\bar{d}}, \ a_5^{\bar{u}+\bar{d}}, \ a_5^{\bar{u}+\bar{d}}, \\ a_1^{g}, \ a_4^{g}, \ a_5^{g}, \ b_0^{g}, \ b_1^{g}, \ b_4^{g}, \ b_5^{g}, \\ a_0^{s+\bar{s}}, \ a_1^{s+\bar{s}}, \ a_2^{s+\bar{s}}, \ b_0^{s+\bar{s}}, \ b_2^{s+\bar{s}} \end{array}$

Combined Fit?

- Important question : issue with the data or incomplete understanding of neutrino interactions in nuclear environment?
- Need new neutrino DIS data.
- ▶ In the mean time, three strategies :
 - \blacktriangleright Issue with experimental uncertainties \rightarrow Ignore correlations, Weight variation, etc.
 - ► Issue with possibly different shadowing mechanism → Restricting Kinematic region → BaseDimuNeuX.
 - ► Select data sets that pass the compatibility criteria→ BaseDimuChorus.