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R-Process Abundances

Blah, blah . . .



Nuclear Landscape

To convincingly locate the
site(s) of the r process, we
need to know reaction
rates, particularly β-decay
rates, in many
neutron-rich nuclei.
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Eventually, we will be able to compute all these rates in an ab initio
way (or ask ChatGPT v. 17 for them).

For now we still need approximate and phenomenological
methods, based on density-functional theory, a fancy name for
mean-field theory with a tailored interaction.
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Mean-Field Theory
Ex: Hartree-Fock
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Sophisticated Mean-Field Theory
HFB with Skyrme Interactions

Gives you ground state density, pair density, etc. This is where
Skyrme interactions have made their living.
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Zr-102: normal density and pairing density  

HFB, 2-D lattice, SLy4 + volume pairing 
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005) 
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QRPA
Self-consistent QRPA is time-dependent HFB with small harmonic
perturbation. Decay matrix elements obtained from response of
nucleus to harmonic perturbation F (t).

F (t) = Fe−iωt + F†eiωt

F = fkla†kal
Response of density to perturbation given by response function
R(ω) :

δρ (ω) ∼ R(ω)f

R contains information about transitions to excited states:

S(ω) = Im
(
f†R(ω)f

)
= −π

∑
ν

|⟨ν |F |0⟩|2 δ (ω − Ων) .

S is the “strength function.”
In our case F is one of the operators that cause β decay:
Gamow-Teller operator or a forbidden operators.



Initial Skyrme Application: Spherical QRPA
Even Isotopes Only

Traditional matrix formulation of QRPA
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Closed shell nuclei are spherical.



2014: Skyrme QRPA in Deformed Nuclei
Finite-Amplitude Method (FAM) — Nakatsukasa et al.

Strength functions
computed directly from
linear response, in orders
of magnitude less time
than with matrix QRPA.

Beta-decay rates obtained
by integrating strength
with phase-space
weighting function in
contour around excited
states below threshold.
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Beta-decay rates obtained
by integrating strength
with phase-space
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Global Skyrme Fit for Even Nuclei
Mika Mustonen

Fit the charge-changing time-odd functional

H c.c.
odd =Cs1 s

2
11 + C

∆s
1 s11 · +2s11 + CT1 s11 · T11 + Cj1 j

2
11

+ C+j1 s11 · + × j11 + CF1 s11 · F11 + C+s1 (+ · s11)2 + V0 × pn pair.

Included 7 GT resonance energies, 2 spin-dipole resonance
energies, 7 β-decay rates in selected spherical and well-deformed
nuclei from light to heavy.



Results

10-4

10-3

10-2

10-1

100

101

102

103

104

 0  2  4  6  8  10  12  14

t c
om

p.
/t e

xp
.

Qcomp. [MeV]

uncertainty
SkO' refit, exp. Q values

bias



Results with All Nuclei
Evan Ney

Figured out how to adapt
FAM to treat odd-A and
odd-odd nuclei. 10-4
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sample the un-normalized Bayesian posterior distributions of
β = tan−1 b and σq, with priors,

P(βc) = P(βq) = 1
2π

, P(σq) ∝ log(σq). (28)

The sampling probability distribution is a multivariate Gaus-
sian with a variance of (0.02)2 for all three parameters.
Following a burn-in period of 200 000 steps, we retain every
100th iteration from the next million steps to reduce auto-
correlation. From Gaussian kernel density estimates of the
resulting distributions we estimate the most likely values, for
Q > 2 MeV, to be bc = 0.088, bq = −0.163, and σq = 1.984.
Figure 6 shows the resulting confidence regions on top of our
entire data set. We find hardly any bias, indicating that our
half-lives are equally likely to be over- and underpredicted.
The model is not reliable for very small Q values, but for
moderate to large Q values it predicts that the majority of our
calculated half-lives will differ from experiment by less than
one order of magnitude. The data is slightly non-Gaussian,
with the one and two standard deviation bands capturing 76%
and 94% of the 718 data points, respectively.

One may wonder whether the discrepancies between our
computed rates and the experimental rates are due primarily
to errors in the HFB Q values or to errors in the FAM strength
distributions. The two are entangled in the expression for the
rate, and so the question is not easy to answer in general.
When the Q value is very small, however, the few daughter
states that contribute to the decay have an energy that is very
close to that of the endpoint. The fifth power of the difference
between these two energies enters the decay rate, and so a
slight error in the Q value has a large effect on the rate. When
Q is larger, many states contribute to the rate and their energies
are far from the endpoint, so that errors in the Q value have
less of an effect on the rate than errors in excitation energies
or strengths.

C. Comparisons

To evaluate our data where experimental values are un-
available, we compare our results to those of other global
β-decay calculations. The authors of Ref. [17] (labeled
“Homma” in Fig. 7) conducted a microscopic pnQRPA cal-
culation with schematic allowed and unique first-forbidden
interactions, and treated odd nuclei perturbatively. Reference
[10] (labeled “Nakata”) carried out a macroscopic calculation
within the semigross theory. Reference [11] (labeled Möller)
combined microscopic and macroscopic approaches, using
the finite-range droplet model for ground-state properties,
the pnQRPA with an empirical spreading for Gamow-Teller
strength, and the gross theory for first-forbidden contributions.
More recently, Ref. [46] (labeled “Costiris”) applied a neural
network to predict half-lives. Finally, Ref. [12] (labeled “Mar-
ketin”) conducted a fully self-consistent covariant pnQRPA
calculation with local fits to the isoscalar pairing strength,
treating odd nuclei as if they were fully paired even nuclei
with an odd number of nucleons on average.

To compare our results to those of the other papers, we use
the quality measures outlined, e.g., in Ref. [11]: the mean (Mr )

FIG. 7. Comparison of error-evaluation parameters among re-
sults of Refs. [12] (Marketin), [11] (Möller), [46] (Costiris), [10]
(Nakata), and [17] (Homma).

and standard deviation (σr ) of the error parameter in Eq. (20),

Mr = 1
n

n∑

i=1

ri, σr =
[

1
n

n∑

i=1

(ri − Mr )2
]1/2

. (29)

We present these measures for the set of nuclei with exper-
imental half-lives less than 1000 s, 100 s, 1 s, 0.5 s, 0.2 s,
and 0.1 s. For Refs. [10,17,46] we take the measures directly
from the corresponding paper. References [11,12] supplied
their data set as Supplemental Material, and we recompute
the quality measures with the more recent 2019 ENSDF ex-
perimental half-lives [5]. Figure 7 summarizes the results. The
differences in experimental data sets considered in each paper
can be seen in part by noting the number of data points used
to compute the quality measures. The errors for Ref. [12] are
somewhat larger for long-lived isotopes than the values given
in that paper because we include all the calculations in odd
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In short, none of this is good enough.
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What’s at Stake Here?
Significance of Factor-of-Two Uncertainty

See Kelsey’s
talk, too!



Improvement I: Two-Body Current
Evan Ney
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Quenching in the sd and pf Shells
Resolving the quenching puzzle of ! decays: medium-mass nuclei

IMSRG calculation, Gysbers et al

Some quenching from correlations omitted by the shell model.
But a lot comes from the two-body current.

In these A < 50 nuclei, β-decay quenching doesn’t much depend
on Z and N. But what about in heavier nuclei?



Z- and N-Dependence of Quenching from Currents
Integrated GT Strength

Three sets of chiral parameters, no contact
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gA = 1 −→ q = .79



Effect on β-Decay Rates

Difference from rate with one-body operator, with gA = 1.0

Focus on green squares
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Two-body current quenches rates less in neutron-rich nuclei, and
can even increase them near the drip line.

Why?



Enhancement of Low-Lying Strength
Can occur in neutron-rich isotopes
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Two body currents do the most
when density is large. Have little
effect beyond the nuclear surface.

Typical transition in 134Sn

Unusual (and lowest-lying)
transition in 174Sn



Improvement II: Beyond QRPA
Quasiparticle-Vibration Coupling

RPA response function

(again for r-process simulations) in a rea-
sonable amount of CPU time. Second
QRPA was my first choice. I have already
worked a little with second RPA, with-
out the “Q” [63]; it reproduces resonance
widths better than the ordinary RPA with-
out violating the usual sum rules. But
I could not find a good way to handle
its large and complex four-quasiparticle
space in deformed nuclei. I have thus

settled on a version of the time-blocking
approximation (TBA) [64, 65, 66, 67] that
is also known as the quasiparticle-phonon
model [68, 69, 70, 71]. To make a dia-
grammatic representation easier to under-
stand, I will now discuss how it extends
the RPA (no collective pairing) rather than
the QRPA; the generalization to pairing
and the QRPA is straightforward.
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The strength of an operator X̂ to an ex-
cited state at energy ~! is proportional to
the imaginary part of the RPA linear re-
sponse ⇧ to a perturbation by X̂. The re-
sponse function⇧ can be viewed as a bub-
ble sum, with the action of X̂ at each end,
as in the top line (a) of the figure above
(The dashed line between bubbles is the
Skyrme interaction.) From a related sum,
one can also extract a core-polarization

correction, represented by the series of di-
agrams in the second line (b), to the two-
body Skyrme interaction VSk. The squig-
gly line represents a “phonon-exchange
potential,” corresponding to the excita-
tion, propagation, and de-excitation of a
set of collective phonons. The TBA calcu-
lation of the response repeats the bubble
sum for ⇧ in the top line, but includes
within the bubbles all terms in which at
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Modification of particle-hole bubble by QVC
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Has been applied in spherical nuclei, but never deformed
ones. We figured out how to build it into the FAM.
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QVC Results
Called pnFAM* Here

Phonon-exchange diagrams:
phonons are like-particle
excitations
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β Decay, No “Isoscalar Pairing”

Isotope β tExp.
1/2 (s) tpnFAM

1/2 (s) tpnFAM*
1/2 (s)

78Zn 0.12 1.47 408 3.77
168Gd 0.31 3.03 381 37.1
152Ce 0.29 1.40 93.1 19.0
156Nd 0.32 5.49 470 53.5
164Sm 0.33 1.42 142 17.2
154Ce 0.30 0.30 19.2 7.26
112Mo -0.18 0.15 1.92 2.47
94Kr -0.22 0.21 1.48 3.23
112Ru -0.21 1.75 93 27.0

106Mo -0.20 8.73 62.8 38.0
100Zr -0.19 7.1 124 41.9
96Sr -0.21 1.07 23.8 20.0



Next

All these developments will require us to refit pieces of the Skyrme
functional and constants in the current, and to do UQ.

They also increase computation time a lot, and we will need more
efficient calculations.

Fortunately, Nobuo Hinohara is developing a FAM “emulator:” the
fast construction of a very small QRPA matrix (50 × 50 or so) that
reproduces full strength distributions quite well.

We hope to have much better lifetimes before long.

Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.



Next

All these developments will require us to refit pieces of the Skyrme
functional and constants in the current, and to do UQ.

They also increase computation time a lot, and we will need more
efficient calculations.

Fortunately, Nobuo Hinohara is developing a FAM “emulator:” the
fast construction of a very small QRPA matrix (50 × 50 or so) that
reproduces full strength distributions quite well.

We hope to have much better lifetimes before long.

Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.



Next

All these developments will require us to refit pieces of the Skyrme
functional and constants in the current, and to do UQ.

They also increase computation time a lot, and we will need more
efficient calculations.

Fortunately, Nobuo Hinohara is developing a FAM “emulator:” the
fast construction of a very small QRPA matrix (50 × 50 or so) that
reproduces full strength distributions quite well.

We hope to have much better lifetimes before long.

Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.Thanks for Listening.


