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QCD Lagrangian and event structure

QCD Lagrangian is very simple:
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However, QCD is very complicated:

® Analytical calculations can be be performed only in high-energy
limit where coupling is small

® Has a lot of open questions (e.g. the origin of confinement,
CP-violation, collective behavior etc)

® Despite significant improvements in the accuracy of analytical
Image credit: 2203.11601 calculations and lattice simulations, a lot still has to be done. 1



https://arxiv.org/pdf/2203.11601

Jets and their connections to QCD

Gets are collimated clusters of particles
which connect physics at the

microscopic (much smaller than 1 fm)
\and the macroscopic scales (1 -10m) )
| anti-k,, R=1 1




Observable definition: jet angularity

4 .
ﬁet angularity is defined as \ ® L HA (Les Houches Angularity): o = 1/2

. N Pu &R,:Jm.)“ | ® Jet Width: o =1
)\—Zpr( R oa=0

® Sum runs over all particles inside the jet

\® Jet Thrust: oo = 2

® Jet radius ?

® Rapidity-azimuth distance AR, et

® |IRC (infrared and collinear) safe “Quark jet” “Gluon iet”
observable! J J

CMS: 1808.07340, 2109.03340; ALICE: 2107.11303; ATLAS: 1702.00674 3



https://arxiv.org/abs/1808.07340
https://arxiv.org/abs/2109.03340
https://arxiv.org/abs/2107.11303
https://arxiv.org/abs/1702.00674

Observable definition: energy-correlation functions

ﬁergy correlation functions (ECFs) are \
similar to jet angularities

pepy ARy “
=25 (R) - o
i#)

® Sum runs over all pairs of particles inside
the jet

® Unlike jet angularity, does not depend on
definition of the jet axis

® As a consequence, ECFs are recoil-
insensitive

/

® |f o = 2 both ECF and Jet Thrust are
proportional to jet mass

® ECFs are also related to
N-subjettiness however ECFs are
easier to use (do not require jet
definition of jet axis

“Quark jet” “Gluon jet”

CMS: 1808.07340, 2109.03340; ALICE: 2107.11303; ATLAS: 1702.00674

4



https://arxiv.org/abs/1808.07340
https://arxiv.org/abs/2109.03340
https://arxiv.org/abs/2107.11303
https://arxiv.org/abs/1702.00674

Impact of Multiple Partonic Interactions
[

several (semi-)hard partonic

collision!

\_

K Protons are composite objects so\

interactions can occur per one pp

/
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Impact of Multiple Partonic Interactions

K Protons are composite objects so\

several (semi-)hard partonic
interactions can occur per one pp
collision!

® Such processes generally know as
Multiple Partonic Interactions (MPI)

® MPI cause multiple uniform soft

emissions which “contaminate” jet
\ substructure /




SoftDrop algorithm:

[ SoftDrop removes soft radiation! ] ﬁoftDrop can be used to remove \
soft radiation from MPI:

\
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[Jet cone and jet clustering tree]




SoftDrop algorithm:

[ SoftDrop removes soft radiation! ] ﬁoftDrop can be used to remove \
soft radiation from MPI:

1 Recluster jet into two subjets

[Jet cone and jet clustering tree]




SoftDrop algorithm:

[ SoftDrop removes soft radiation! ] ﬁoftDrop can be used to remove \
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) A
min (g, i) _ (i\Rf;@)
Pri T Pty o R

[Jet cone and jet clustering tree]




SoftDrop algorithm:

[ SoftDrop removes soft radiation! ] ﬁoftDrop can be used to remove \
soft radiation from MPI:

1 Recluster jet into two subjets

2 Check if one branch is much softer
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and repeat; otherwise stop
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[Jet cone and jet clustering tree] intensity of grooming
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SoftDrop algorithm:

[ SoftDrop removes soft radiation! ]

[Jet cone and jet clustering tree]
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Fixed order (FO) jet substructure calculations

ﬁ A “standard” 2-to-2 QCD process \

cannot be used for jet substructure
calculations (no substructure!)

So one needs to take 2-to-2 process
and add more emissions to it

Jet substructure can be studied
already for the 2-to-3 processes

It is called fixed-order (FO) calculation.

However, higher order corrections

e.g. 2-to-4, 2-to-5 etc. in general are
\difﬁcult to calculate /




Resummation: Kinoshita—Lee—Nauenberg (KLN) theorem

Kndistinguishable final states \

(containing soft and/or collinear
particles) are degenerated
which causes singularities

Sum over all final states
removes singularities

2-10-3 cross section gets a
di-log enhancement:

\dg ~ d(log 6%) d(log 2:)/8




Resummation: leading log (LL)

ﬁ-to-B Cross section gets a \
di-log enhancement:

do ~ d(log ) d(log z)

Let’s define a simple IRC safe
jet substructure observable:

T = 267

In case of multiple emissions:




Resummation: leading log (LL)

multiple gluon emissions \

exponentiate:

P,(x < T)=exp (—%% log” 7‘)

T 2

Similar expression can be
obtained for quark emissions:

P,(x < T)=exp (

Note that both expressions

are finite if + — 0 whereas FO
kesult diverges! /
For more details see: 1709.06195 10



https://arxiv.org/pdf/1709.06195

Resummation: next-to-leading log (NLL)

mgeneral: \ mjltiple gluon emissions \

exponentiate:

Pyg =1+ as (el +cenl +..)
+ ﬂig (624L4+C23L3—|—”+) + ... Pq(x < T) = exp (

Similar expression can be

obtained for quark emissions:

Both LL and NLL resummation can be Pz < 7) = ex _@_% loo? 7~
performed separately for quark and gluon g - OXp &

production channels!
Note that both expressions

Therefore, resummed expressions can be are finite if 7 — 0 whereas FO
ws.ed to define “quark” and “gluon” jets! / Q‘SU“ diverges! /11
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Resummation and matching to fixed order (FO) results

[
FO calculations Resummation

Q+Q—Q+Q+9 Q+0Q—0+0Q+

soft, collinear




Resummation and matching to fixed order (FO) results

A

[ Resummation ]

[ FO calculations J

Natching to FO results: \

® Excludes double counting
between overlapping phase space
regions.

® Provides finite results at small
values of observable of interest

® Matching “guark” and “gluon” jet
contributions can be done

separately which leads to NLL
\accuracy level /




CAESAR approach by Banfi, Salam and Zanderighi

CAESAR allows to automate resummation for each
observable that can be parametrized as

P resl E Em (v), with

(1) = / 4857 exp [— S wa] PBs (L)S (L) F5 (LYK (Bs)

dB;

® Born cross section ——2

[
® Soft function s dBs CAESAR = Computer Automated Expert
® Ratio of PDFs p _ Semi-Analytical Resummer, see the
® Multiple emission function r original paper by A.Banfi, G.Salam

® Collinear radiator R, and G. Zanderighi 0407286
® Kinematic cuts % \_

[ed
dﬂ"{i



https://arxiv.org/pdf/hep-ph/0407286
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dos
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: 4
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CAESAR approach by Banfi, Salam and Zanderighi

CAESAR allows to automate resummation for each
observable that can be parametrized as

l'f“'l E : Ercﬂa ' ‘

. with

res /dﬁgif

=

=) _R*(L) }DE“(L}SEH (L)FB (LYH (By) .

® Born cross section —2
® Soft function g
® Ratio of PDFs p

dﬂ"{i

dBjs

® Multiple emission function r

® Collinear radiator R,
® Kinematic cuts %

CAESAR = Computer Automated Expert
Semi-Analytical Resummer, see the
original paper by A.Banfi, G.Salam

and G. Zanderighi 0407286

.
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Impact of the quark mass: Dead cone effect

[
ag (2sin/2)%d(2sin0/2)* dz ~ O 08 0?do?  dz
T [(2sing/22+ 627 w2+ 2

Op = éill}{j(?ﬂ?@ /V's) =mg/Eg

o\ [0\
do ~ d(log 6%) d(log z) do ~ (ﬂ_) d (—) d(log z)

do = (-YF'

0

Dead cone is a general property of gauge theories (e.g. it also exist in\
QED)

1

The QCD predictions were made a long time ago Dokshitzer et al 91,
Ellis et al 96

The direct observation was made only a few years ago 2106.05713 by
ALICE

Credit: CERN

Jet substructure observables can be used to probe the dead cone eﬁey 16



https://inspirehep.net/literature/323755
https://inspirehep.net/literature/328604
https://inspirehep.net/literature/1867966

Impact of the quark mass: Dead cone effect

B ALICEData === PYTHIA 8 LQ / inclusive

no dead-cone limit
— PYTHIA 8

SHERPA no dead-cone limit

0.37 0.22 0.14 0.08

- .. SHERPA LQ/ inclusive

pp Vs =13 TeV
charged jets, anti-k;, A=0.4

C/A reclustering

0.22 0.14 0.08

cr'{.leadi!wg l‘rack >28 GEVfG
T,inclusive jet

k> 200 MeV/c

|nlab| < 0.5 6 (rad)

0.22 0.14 0.08 0.05

5 < Epagir < 10 GeV

10 < Ep,giator < 20 GeV

20 < Egagiater < 35 GeV

2 25

ALICE measurements, from 2106.05713

1.5 2 2.5

1.5 2 2.5 3
In(1/6)



https://inspirehep.net/literature/1867966

Collinear and quasi-collinear limits

ﬁtandard ECFs is defined as

PEPEJ ARy “
J_Z pt ( Ry )

7]

An alternative definition can be written as
a dot product

e — Pt Pt ( 2pi - p; )nfj
—~ pi \pupy RS

In soft and collinear limit both definitions
@ncide

N/

AN

In our case we work in quasi-collinear
limit (hep-ph/0201036) where we
keep ratio mi/p. fixed

Pi - pj = my my; cosh(y; —

Y;) = P Prj cos(d; — @)

In the quasi-collinear limit one gets
E ~ Zpr?pfj ( T i:-2 'T”.:_? + .&Rfj)ﬂjz
2oy \pR R R

Hence the dead cone transition must

happen around / 1 \©
(ptj?{i) /

18
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e Z p:‘?pfj '&Rz
g Y pf pEzHﬂ p!_a HJ

Hence the dead cone transition must

happen around / 1 \©
( tf?ﬂ) /

19
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Five definitions of jet angularities:

ﬁtandard jet angularity is defined aﬂ

o= S (Q‘Rf)a
— D Ry

One can define reference axis in two
different ways

ng = (cosh y, cos ¢, sin ¢, sinh y) ,

n = (ﬁ cosh i, cos ¢, sin ¢, U sinh -y) :
P yoi
which coincide in case of massless

ﬁo we get

- Pei { 2pi -\ ? : :
=) P (ZP270) 7 massless axis, all particles
P i R

i

ﬁﬁ_ pj
=y

iEn

o=y

i

@rticles /

N Pti

A= ]
K izn 1

four-more definitions \

2p; - ny
Pri R%

(2;1?_ ' -n..) :

Pti Hﬁ

(2@ : ﬂ-)
Pti Rﬁ

) massless axis, no alignment

massive axis, all particles

massive axis, no alignment

20




Jet angularities in quasi-collinear limit:

ﬁo we get four-more definitions

Ay =

Dii (2;}1 ng\ 2 quasi-collinear limit
- v s b >
P Pri Hﬁ )

: P {2pi 1m0\ 2 quasi-collinear limit .
}g(’ p— E —_— [ /",lltlf —
0 Pt ( PR ) —

i¥#n

—

Dsi (2;3 _.n__)% quasi-collinear limit

Pri H%

o Pei [ 2pi-n

N 5 qguasi-collinear limit J
) ctemem

A = — ,
\ in Pt (I}thﬁ




Jet angularities MC-simulations:

angularities, ungroomed

I T I T T T T T T T
L m
e LHC, vS = 13.6 TeV
PR anti-k,(R, = 0.4)

A§ . P>T750GeV, ly| <25 |
— A° Pythia8, hadron level
: ]

. =1
0 a
—_— ,\a

——_—— AT




ECFs MC-simulations:

energy correlatlons ungroomed

a % CLHC, vE=136Tev | /7 _ R\
| anti-ki(Ro = 0.4) Since ECFs do not depend on the
: pr=>750 GeV, |y| <2.5 | .y . .
Pythia8, hadron leve! definition of the jet axis, they do not
a=1 acquire “pathological” terms caused

by particles aligned to the jet axis
ti -t &
%= ZPL:J ( REJ)

( .rni? N ’.I"H-_-.‘? +&R$j)r:r;2
I piRs  PRG R;




The role of the decay of B-hadrons

My Mg
PeRo PeRo
T T | : : T

A4 LHC, Vs =13.6 TeV ® Since b-quark mass differs from\

anti-k(Rg = 0.4)
pe>750 GeV, |y| <25 | masses of B-hadrons we expect

Pythiad, hadron level dead-cone transition to change its

a=1 .
. position.
— parton

—— hadron, stable B

. - 111 M L
hadron B-decays | Decays of B-hadrons “spoil

analytical calculations.

® B-hadrons must be reconstructed
(kept stable in Pythia) to avoid
drastic modifications, our
observation agree with
Lee, Shrivastava, Vaidya



https://arxiv.org/abs/1901.09095

Fix-order analysis (an example)
[

M)st of the ingredients (radiators) needed for resummation can be obtained by \
performing fix order calculations

In quasi-collinear limit matrix elements The splitting functions now depend on
factorize as the quark mass

8ragz(l — z)

M|~ ————
M kE + z2m?

. . . 1+(1—2)?% 2m2z(1 — z
Poal k2| My . qu(z,krf)ﬂp( Q-2 2m=(-2)

z k? 4 z2m?2

The master equation for the radiator is given by
- 2 Q? dﬁi‘z 1 ,
RE) (p, ) = “5 ) / e f dzP,,(z, k:f)[e(w —V(ken)) — 1]

z2m?

_ ¢ {ﬂ-) O dk? /l R
K B 27 -/D k? 4+ 222 0 ddpﬁq(""? k’t}a(b (l’:i..t.l ??:] ']'__}




Fix-order analysis (an example)

/he master equation for the radiator is given by

o) p?) [ dik? ! ,
t‘ (v f} _ _ﬂ',s )/ £2+ f dngq z,kf [8(7_1_‘,z(,lghn))_1]

z?m? J,

@ .2 .
:=%“)f fj%_T/dﬂwﬁﬁﬁﬁﬂam—ﬂ
0

2 1 2.2
ki + 22m? Jy

2
ol —i

where V(k:.n) is observable parametrization, e.g. V = *W and ¢ = Qz
which gives

o)y ¢y = O8W) Cr (1, o 0 3 3_a _e
Ry (v,&) = - ulD:, v 41{::@; (14 x) + o log v + 173 log (1 + z) 2 "~ Li,

o — 2 e} (v T 7
z F(l,l ®.9 —;—.:) Fill+ @24 a—2) + —
K + _+2r21 —|—2_ —|—2 a +4(a+1)21( +ard + o r)+4a)




Fix-order analysis (an example)
[

ol 12 ' :
//;ﬁ”@£)—ﬁﬂH)CF(lb§vzkE%l+ﬂ+3k%“+(3g)bgﬂ+x}3Lb( ; )ﬂ\\\
¥

T 20y 4 1+

o —2 T

o v 7
z oF, (1 14+ 200 —;—.;) Fr(ll+a:24 a:—2) + —
ZTE I ‘|‘2_ —|‘2 1 +4(Ct‘+1)2 1 ( +aj2+ o r)—i_ﬁlﬂ) where

v




Fix-order analysis (an example)

Giﬂ,){ﬂqg} _ ﬁ'S(Hg) Cr

4
¥

2
L]

o —2

+ 2

T

I gF] (1, 1 +

1

¥

(

¥ ()
2 + 2

. 3
log® v — %lcugg (1+a)+ —logv+

—.T) +

3«

4 2

c x
log (1 + x) —Ek Li; T

(i-3) (

7
2P (114 ai2+ a;—x) + E) where

20x

e+ 1)

without mass dependence we get a “standard” result

(1*)Cr

m

1. 3
—log“v+ —logv +
v 20

% + O(m})

) )




Fix-order analysis (an example)

ol 142 : :
G,&EJ(%S) _ asl) Cr (1 log® v — %logg(l +z) + i11:-511:—}— (§ - %) log (1 + =) —% Liz( . )\

w a 20 4 1+
+&_2-r F(11+&~2+a+ «r)+ ! Fr(l,14a:24a;—z) + !
oot h 5" 51t o+ 1) 261 (1 : TS where
— ¢ mass dependence introduces additional logs

(1*)Cr

1 3 7
(— log? v + — logv + — + O(:r})
il o 200

dav

2
u)lugr—n?lr—z+1+(ﬂ(j:_%)) /
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Fix-order analysis (an example)

T E 20x 4 2

-2
+ﬂr ;HgF1(1,1—|—

ot Q T
—: 24+ =; —:1:) +
o+ 2

2'7 2
— ¢ mass dependence introduces additional logs

(1*)Cr

m

. ! 2 .
KR;&'DI}(H’ ‘S) = M (l lngz o E h’}g2 5
T Y 4

1 3 T
“loetv 4+ —logv+ — + Ox
(angi—i_?cr & +4ﬂ'+ (}

(2 , __
ﬂzﬁ”’){v,g) = M(l log® v — %logg(l + ) + il4:ug1t:+ (§ — ﬁ) log (1 + ) — - Lig( !

2 1+

F : : !
Ha+1) 7 LI+ e2+ai—a) + o ) where

) )




Fix-order analysis for groomed jets (an example)

/In case of the groomed jets one gets additional phase

Space constraints

2
. ag(p®)Crp
RE__) } = (2 )

T

_ as(p?)Crp
2m

QZ
/

QI
1/ﬂ‘

dk2

dk?
k2 + 22m?

1—zeut
[ dzPpy(z, k7)O(V (ke,m) — v)

1
f dzPyy(z, k7 )O(V (K, m) — )0 (min(z. 1 — 2) — zey)

2 | 2,02
ki + z*m? J,

~




Fix-order analysis for groomed jets (an example)
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NLL resummation
[

At our accuracy level Ry (v,&) 22 R(v,€) so we can reuse our fixed-order results!

req ) = Z Ere% "' . with

Vres(v) = / 185270 exp —ZRF“{L)] PO (L)S® (L)YF (L)H(Bs).  where

dB lcd

dﬂ'ﬁ
® Born cross section——

® Soft function S dB;

® Ratio of PDFs P

® Multiple emission function F
® Collinear radiator R;

® Kinematic cuts H
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NLL resummation
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NLL resummation

At our accuracy level Ry (v,&) 22 R(v,€) so we can reuse our fixed-order results!

However there are additional complications due to the running coupling.
For example,

2 ! i
v, €) = / d= /Q dkfp - zzmz) f‘fgliw(kf}
gq

2

Where we use Catani-Marchesini-Webber (CMW) scheme
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https://inspirehep.net/literature/298129

NLL resummation

At our accuracy level Ry (v,&) 22 R(v,€) so we can reuse our fixed-order results!

However there are additional complications due to the running coupling.
For example,
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The threshold effects are implemented as
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NLL resummation vs. MC (ungroomed)
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NLL resummation vs. MC (groomed)
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Summary

L ]
We explored 7 different observable definitions (2 ECFs and 5 jet angularities).

Corresponding calculations are available as fix order results and NLL
summation.

NLL predictions show clear transition around the dead-cone boundary,
however, for MC simulations the transition happens much earlier.

Non-perturbative corrections have large impact which, however, can be
somewhat reduced by SoftDrop grooming.

B-hadrons must be reconstructed in order to get meaningful results.

Our results show behavior similar to SCET result by Lee, Shrivastava, Vaidya
arXiv:1901.09095 .



https://arxiv.org/abs/1901.09095

Next steps:

Implement our results into CAESAR plugin to SHERPA (which allows
automated usage similar to “standard” MC).

Perform detailed phenomenological study (currently we were considering
high-pT jets, however, one may consider jets with lower-pT to enhance the
dead-cone contribution).

Incorporation of non-perturbative effects into our framework (e.g. by using
parton-to-hadron transition matrices as in 2404.04168 , 2112.09545,
2104.06920).



https://inspirehep.net/literature/2774547
https://inspirehep.net/literature/1993727
https://inspirehep.net/literature/1858240

THANK YOU FOR LISTENING!
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