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Summary: Re-visiting the Third Pillar of Science

|. The third pillar of science is simply COMPUTING,
encompassing simulating physical reality and

computing on the data.

... for the technical layperson

2. Synergistic co-design of algorithms, software, and

hardware can massively accelerate discovery.

3. Don’t fool yourself and, in turn, fool the masses.

(David H. Bailey, NASA & LBL, 1991)

64-bit results.

12 Ways to Fool the Masses

I. Quote only 32-bit performance results, not

‘ -

2. Present performance figures for an inner
kernel and then represent these figures as the
performance of the entire application. @@

Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU

Victor W Lee', Changkyu Kim', Jatin Chhugani', Michael Deisher’,
Daehyun Kim', Anthony D. Nguyen', Nadathur Satish’, Mikhail Smelyanskiy',
Srinivas Chennupaty*, Per Hammarlund-, Ronak Singhal* and Pradeep Dubey

victor.w.lee @intel.com

Throughput Computing Lab,

“Intel Architecture Group,
Intel Corporation

Intel Corporation
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mber of
his fact

fo a full

Etems.

... for computer scientists

7.

When direct run-time comparisons are
required, compare with an old code on an
obsolete system. @

If Mflop/s rates must be quoted, base the

operation count on the parallel [version],
not on the best sequential [version].

Mutilate the algorithm used in the parallel
implementation to match the architecture.

... for scientific collaboration
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http://www.youtube.com/watch?v=zPBFenYg2Zk
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If all else fails, show pretty pictures and

videos, and don't talk about performance.
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Serial Performance

(SPECintCPU)

Performance vs. VAX11-780

End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)
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End of the Line = 2X/20 years (3%/yr) ¢
Amdahl's Law = 2X/6 years (12%/year) ¢

¢ CISC 2X/2.5 years T RISC 2X/1.5 years
(22%/year) (52%/year)

I. How did single-threaded
performance improve!
2. Why did it plateau?

1980 1985 1990 1995 2000 2005 2010 2015




40 Years of Microprocessor Trend Data
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Cumulative Number of Human Genomes

Growth of DNA Sequencing

1Zbp

B Double every 7 months (Historical growthrate)} L
@O Double every 12 months (lllumina Estimate)
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Can a similar growth trend be
constructed for quantum physics?

1e+06

Worldwide Annual Sequencing Capacity

[=%
&
8
®
[=%
2
S
®
2000 2005 2010 2015 2020 2025
VIRGINIA W. Feng, wieng@vt.edu, 540.231.1192 SgNeRQ?

TECH. QCD at the Femtoscale in the Era of Big Data synergy.cs.vt.edu



5%

ATLAS Distributed Computing today TLAS

EXPERIMENT

e A few numbers showing the scale of ATLAS data FELAS cllaiaREd 1D Bildio |
o 1B+ files, 7560+ PB of data, 400+ Hz interaction 750 © b TEA 7D 508365 217000 Lo
o 120 data centres, 5 HPCs, 3 clouds, 1000+ users
o 1.2 Exabytes/year transferred 5009
o 2.7 Exabytes/year uploaded & downloaded

250P

e Expect an increase of at least one order of magnitude

for the HL-LHC e = e i
5+ PB/day data access for computation 2+ PB/day data transfers between storage
o
ww“ L —— W Vol bl k
JJJJJ R W Bl H\Huh il H\ il
;w ::::: This implicitly points to the absolute numbers and trends . o
i NEED A MORE EXPLICIT VISUAL for quantum phyS|cs‘ okl

D. South. ATLAS Distributed Computing Evolution. CHEP 23, Norfolk, VA, USA. May 2023 4




Challenge \1

* The rate of growth in big data is far outstripping the rate
at which computing can (brute-force) compute on the data.

W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRQ
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Challenge \l

* The rate of growth in big data is far outstripping the rate
at which computing can (brute-force) compute on the data.

Approach v

* Synergistic co-design of architecture, software, and in
particular, algorithms to more efficiently and intelligently
compute on the data.
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Importance of Trend Graphs: Compute, Data, Compute/Data

- Impacts how programs should be written, e.g., 2004: BLAST > mpiBLAST

3000 | | | | | — 6000
NCBI-BLAST execution time —— s soane i KT
2750 - Average blocks read/s --—-— el - 5500
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0 2250 / 4 4500 -8
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Standard BLAST pairwise S ! e [0 %)
: = 170 @ - 3500 <
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( ) S 1250 hen the d d + 2500 "
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Computational Science (= OpenDwarfs = Berkeley Dwarfs)

Computational Computational
Geoscience Chemistry
Computational Computational
Medicine Modeling
Computational jz Computational
Physics Biology
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Figure 3. The color of a cell (for 12 computational patterns in seven general application areas and five Par Lab applications)

indicates the presence of that computational pattern in that application; red/high; orange/moderate; green/low; blue/rare.
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Molecular Dynamics = Cosmology = ???

- Primary computational dwarf! N-body method => particle method

- A computational dwarf (or pattern) describes a program’s machinery, flow of
resources, and outputs.

A Software
4x

Awesome for the domain scientist!

— Can run “what-if’ simulations for rational

Algorith
gorithms drug design on a GPU server in his office, but

216x

80,000x relative to serial. What if “level playing field?”

— 80,000/216 =37l (algo. refactor)
— 371/ 16-core CPU =23 (I = 16 cores)
88x 0.47
HOURS Hardware SECONDS - 23/2=1l (DP - SP)
- 11/%2”=5 (calc = lookup)

http://www.youtube.com/watch?v=zPBFenYg27Zk

12 Ways to Fool the Masses

. W i -ti i
(David H. Bailey, NASA & LBL. 1991) 7 hen direct run-time comparisons are

required, compare with an old code on an

. j s ance results, not obsolete system. T
;: ; 2; Debunking the 100X GPU vs. CPU Myth: " T 8. If Mflop/s rates must be quoted, base the

An Evaluation of Throughput Computing on CPU and GPU

es for an inner operation count on the parallel [version],



Race to Sequence the Human Genome

e Theory & Experiment (Collins@NIH) ¢ Computing (Venter@Celera) Pl

— Goal: Complete in 3 years & cheaper
1998 - 2001

— Cost: $300M (1998-2000/2003)

— Goal: Complete in |5 years
1990 — 2005 &
— Cost: $3,000M (1990-2000/200:3) " T

v

“String matching” 2>
dynamic programming
dwarf

June 26, 2000
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Pairwise Sequence Alignment (Smith-Waterman Algorithm)

Performs local sequence alignment by identifying similar regions between
two strings of nucleic acid sequences or protein sequences.

Algori’{hm [ edit ]

Let A = ajas...a, and B = by ba. .. b, be the sequences to be aligned, where Fill the scoring matrix

n and m are the lengths of A and B respectively. T & T T A € @ 6
1. Determine the substitution matrix and the gap penalty scheme. . ‘ : 0/]01j0/]0]0]10]01]0 - 0
« s(a,b) - Similarity score of the elements that constituted the two Hi-1,j1 ey ik, j = Wij 61919 R 3iprL|ojo0]o0 R 3 % 3
sequences 15 (ay.b; )\ Glojol3d1|0/0|0]3]s
« W}, - The penalty of a gap thathaslength 6 —_— T| O T 3 -it‘ 6242220 t ?l'
2. Construct a scoring matrix I and initialize its first row and first column. The max {Hg’j'_g - W{} Hi’J‘f\ T 0 T 31 ‘t 937353 g
size of the scoring matrix is (n -+ l) * (m -+ l). The matrix uses 0-based 0 clo ‘1'3 64 ?3 € 34 ke 8 36

indexing. Y- ¥a Y
Hkg e Hgg =0 fOT 0 < k <n and 0 < l <m Scoring method of the Smith—-Waterman g = L iﬁi 3 1'.*0:8 e coal e
) ) o ' algorithm clojO0}]2]|]1]|3] 8]13911P9

3. Fill the scoring matrix using the equation below. S 3% L AN & e |
T|O0O|391|5]|4] 6|11] 1098
Hivjo1 + s(aisb), Ao T ISTIT 31T

maxy>1 {Hir; — Wi}, . .
H;; = max = J (1<i<n,1<j<m)

max;=1{H; ;1 — Wi}, Source: Wikipedia sgNeRG@
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Wavefront Loops

« Update each entry of a grid based on already-updated values from its neighbors
- Used in many scientific applications, e.g., PDE solver, sequence alighment tools, etc.

Example: a wavefront loop (2D matrix)

Neither loop can be parallelized.
for(int 1 = 0; 1 < m; 1++)

for(int 4 = 0; 39 < n; J++)
[2ti105) Flria -1« 0.5 +[ati-1113] « 0.5;

Data Dependence (lteration Space) Memory Access (Memory Space Aly][x])

> X

j o= -
T v v v
1" L\

i*+ ¥ &
N W

W :' ! ] ' W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRG
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Wavefront Loops

- Update each entry of a grid based on already-updated values from its neighbors

- Used in many scientific applications, e.g., PDE solver, sequence alignhment tools, etc.

Example: a wavefront loop (2D matrix) -- Tr

J-loop can be parallelized.

for(int I = 0; I < m+n-1; I+
for(int J = max(0, I-n+l); J < min(m, I+1); J++)
A[J][I-J] = A[J][I-J-1] = 0.5 + A[J-1][I-J] * 0.5;

Data Dependence (lteration Space)

J _yHyH

A

-

nce J‘

Memory Access (Memory Space Aly][x])

> X

ccess

Clpied

> |

W. Feng, wfeng@vt.edu, 540.231.1192
QCD at the Femtoscale in the Era of Big Data
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Existing Parallel Solutions

Tiling-based solutions and their limitations
— Problem |: Wasted memory and computing resources

Square Tiles Diamond Tiles

|.OOCOO'
'OOQOO.I
'0.00QQ.

;l

Tiles with same color can be executed in parallel

Non-contiguous memory Much memory space will be wasted

access still exists (The rate of effective memory usage =n/(n+h))

VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ@
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Existing Parallel Solutions

- Tiling-based solutions and their limitations
— Problem |: Wasted memory and computing resources

Uniform access pattern

3 ()
Padding D) O pos-4 pos-4
pos pos
Diverged access pattern
@O 3
No padding olo pos-2 (1) pos-3
pos (4) pos

Padding-free strategy may greatly increase the complexity of indexing

and lead to more branches in GPU kernels

W VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SSNeRQ
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Existing Parallel Solutions

- Tiling-based solutions and their limitations
— Problem |: Wasted memory and computing resources
— Problem 2: Layout transformation overhead
— Problem 3: Task scheduling

For some workloads, sufficient For other workloads, insufficient
parallelism can be exposed parallelism will be met

Y £

/£
Y £
Vv L LT 4 &y

l For some workloads, tiling-based
solution may lose efficiency

Y £
y £

because of the small amount of
Tiles with same color can be executed in parallel tiles along anti-diagonals

VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ@
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Existing Parallel Solutions

* Compensation-based solutions and their limitations
— Problem |: Global synchronizations

— Problem 2: Limited usage in sequence alignment algorithms

0 Compute partial 9 Compensate the 6 Combine the results

results by ignoring partial results from @) and @
horizontal dependency

Je-{ 3» nlﬂﬂ ]» | N | “» |

D90 DO D 222%2 B A Aa

Multiple expensive global synchronizations are required for processing each row;

the compensation-based solution works well for string-matching operations

VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ@
TECHL QCD at the Femtoscale in the Era of Big Data synergy.cs.vt.edu



Our Highly Efficient Wavefront Parallelism

—=

ial
‘ Wasted Memory \ sﬁ?‘edu\ing

Memory Access Optimization

@ Locality
tiling [3,4,5] | ® [Our Work] _
Computation

®pi leli (3Comput. Refactoring optimization

| Irect Para:c ellszm (domain-specific solution)

oop transf. [1,2] compensation[6,7]

W VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRQ
TECH. QCD at the Femtoscale in the Era of Big Data synergy.cs.vt.edu



Outline

. Our MethOd “luhua“ e
— Compensation-based Method NN -------------
—  GPU Implementation _”q J 3
— Hybrid Parallel Strategy =

W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRQ
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Compensation-based Method

«  Wavefront Pattern
A@',j = (Aﬂ,;?jfl Obo)o(ﬂifl,j Ob1)<>(ﬂif1,jf1 Obg) @ @

o generic distribution operator (for adding weights) & O Y
& generic accumulation operator (for adding neighbors) @ \ \ @

- Compensation-based Method

Step 1: zzi@'?j = (Aiflyj O bl) < (Aaifl,jfl @) bQ)

T—o(Aiu o [T)Z, bo) when o # o
Step2: B;; = {Zi—t(}'iw o bo) when o = ¢
Step3: A;; = Ai o By This is valid when (1) o has the distributive

property over <; (2) © is same with <. *

* The mathematical proof is included in our paper.

W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRQ
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Compensation-based Method

«  Wavefront Pattern

Aij = (Aij—10bo) o (Ai—1,50b1) 0 (Ai—1,j-100b2) @ Q\

o generic distribution operator (for adding weights) 7o,
& generic accumulation operator (for adding neighbors) \’ @ '\;' @

| :\Qﬁ\

Step 1: fzii,j = (Aiilijbl)O(Ai—l,jfl Ob?) /‘ | ‘ )

A7 u © b when o & /_;’ e .
Step2: Bi; ={ ol Hfu w bo) + ; ’

z

—l /. y AV

J (A1 u© bo) when o = ¢ @J\ '/‘o 'l\?l?:(o 'OL@

~7 \“\ \\‘\ il \\\\ bl

st Ay = A< B ® 00606

W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRG
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Compensation-based Method

Wavefront loops can be expressed as compensation-based parallelism patterns

SOR (Successive Over-Relaxation) Solver:
( ©¢,0 )mapsto (+, ")

A[i1][3] = (A[1][J] + A[i]([]J-1] + A[i-1]1([3]] +
A[i+1][3] + A[i][3+1]) / 5;

SW (Smith-Waterman):

( ©,° )maps to (max, +)

A[i][j] = max(A[i][]j-1] -
Ali-1][3-1]

SAT (Summed-Area Table):
(<,©° )mapsto (+, +)

2! A[l_l][j] - 2!
+ s(i,3), 0);

Afi][3] = p[i](3] + A[i]([J-1] + A[i-1][]J] - A[i-1][J-1];

W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ
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GPU Implementation

- Step 2 of the compensation-based method is the critical part: “Weighted Scan’*

Weighted Scan | — lhs ==* rhs Weighted Shift — > opd

AO Al A A3 -~ 0 Zbo AO ° 3b0
~ T~ g Ay | Aocbo 'R, oy | Ao 2bo
{ [ (hs © (2Dby)  (rhs) |} 1| A, | Aepho
; V \i N ~ ~ I\ 3
7 + | Ago2by|Ayo2b N, opdo (1)by [N,

Ag A OAZ 0 1A3 0 A ~a ~a -
1 N\ N i - o2b 40 ° 3bg
i | (lhs o (20by) o (rhs) |t ¢ | Aoebo j’ o b | A1 2bg
1 1 1 \!l e AZ o bO
v

_ I, 0 2by| 40 ° 3P0 B, B, B, B,

A"O Aof bO A" o b 1 o Zbo

Al A’ A2~° bo
A;

* which also includes a weighted shift operation

W _ - W. Feng, wieng@vt.edu, 540.231.1192 SgNeRQ
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GPU Implementation

- Step 2 of the compensation-based method is the critical part: “Weighted Scan”
«  Our algorithm handles the changing weights during each stages of the operations
- A hierarchical design is used for GPUs

— Register level: compute how the preceding neighbor affects the current one via data
shuffle instructions

—  Shared memory level: compute how the preceding ‘“warp”’* of neighbors affect the
current one via shared memory access

—  Global memory level: compute how the preceding “block’* of neighbors affect the
current one via global memory access

* which are thread organization units in NVIDIA GPU terminology

W W. Feng, wieng@vt.edu, 540.231.1192 SgNeRQ
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Hybrid Parallel Strategy

- Is the compensation-based method sufficient for any types of workloads?

« Observations
B tile-based comput. (p2p sync)

= lcompensation comput. (global sync)
le3 1

3.0 \. D .
I 1
2.5- |
£ Global sync. preferred P2P sync
g 2.0 / preferred
'g: 1.5 A :
§ 1.0 - :
¢ I
0.5 - ]
I

28)(222 29)(221 210)(220 211X219 212)(21 213)(217Ir 214)(216 215)(215
dimensions (m x n)

VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192
TECEL QCD at the Femtoscale in the Era of Big Data
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Hybrid Parallel Strategy

»  Our hybrid design switches to the appropriate parallel method, based on the
input workload

« All the computation follows the compensation-based parallelism pattern

Proposed hybrid method

Different wavefront problems ( Compensation-based Comput. + Global Sync.
& workspace matrices 000 009000000
90 C-9:0-€C- =00 -0 =0:)>
5 90 ®-9:0-€C- =00 -0 =0-)D
N
Nl foee oo === ———————---
|::> © ¢->p|®->-p|[®-2p]| Switching
< ‘_% ol | R §_L§_/ point
o+
3 ¢:&p|o-&-p|e-&-p
c o 2-p|o-g-p|eo-g-p
= =8 — =5 =&
<+— Data dependency || WP | BB
Comput. direction -0 | ®-0p|®=-0 =P
O Spin-lock \ Compensation-based Comput. + P2P Sync.
W. Feng, weng@vt.edu, 540.231.1192 SgNeRQ
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Outline

-------------

NN.! R -

npus Analyzer

[ o

“— Data dependan
Compul. direclion
O Spin-lock

T
Compensation-based Comput. + P2P Sync.

- Evaluation
— Weighted-scan Kernel Performance

—  Wavefront Kernel Performance

W. Feng, wfeng@vt.edu, 540.231.1192

v ja QCD at the Femtoscale in the Era of Big Data
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Experimental Platforms

- nVidia Tesla K80 (Kepler-K80), 2496 CUDA cores @ 824 MHz,
240 GB/s bandwidth

- nVidia Pascal P100 (Pascal-P100), 3584 CUDA cores @ 405
MHz, 720 GB/s bandwidth *

«  Our Weighted Scan vs. other tools

a. Thrust v.|.8.1 (thrust::exclusive_scan w/ custom comparator)

b. ModernGPU v.2.0 (mgpu::scan w/ custom comparator)
« Using ID array of data to mimic different rows

- Our Hybrid Wavefront kernel vs.
a. Tile-based methods ['15] (incl. square & diamond tiles)

b. Compensation-based methods [ 12, " |6, this work] ¥ We only show the

« Using 2D array of data to mimic different workloads performance results
of P100 GPU here.

VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SQNQRQ
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Weighted-scan Kernel Performance

« Processing a row of data with variable sizes

|—-— w-scan (this work)  —e— thrustscan —=— mgpu scanl Higher is better

723 PLOON(H.) | 1e£100: Gnar ) | ,1eaP100{(+ +)

6l T T T T T eeeed LT R
3 0.8} R
g2 ' ] . | E f % E
Q . . . . . . . 0.8 """" Do ;
sA /08 L L

: L o : : o 0.6L
C 3k : : Lo : : :
s/ aeedoa A I
S 2t o PEieeced | o/ 1 1 104 A
Bl P | 02 g fEeEesY ol S A
02]_4 216 21|8 22|0 22‘2 22I—1 22‘6 258 0'0214 26 218 22I(] 22t2 254 226 22‘8 0024 216 18 22I(] 2212 22|4 22IG 22|8

input size input size input size
For o #¢, our method delivers significant performance benefit (mainly because
we can calculate the distance-related weights more efficiently in the kernel)

For o=¢, our method reduces to an ordinary scan kernel

W. Feng, wieng@vt.edu, 540.231.1192 SgNeRG
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Woavefront Kernel Performance

« Using SOR, SW, and SAT as representative wavefront kernels

«  Processing 2D matrices of data with variable dimensions

4.0l€3 | quo: SIOR |

3.5
3.0
2.5F
2.0
1.5
1.0F
0.5F {la

@
o
!

.. ~5.3k ]
~8.9k

T

T

exec. time (ms)

T

0.0

L Y a0 A9 AD A Ab AD
240 o4 o+ A v o o o d
G P PO PE PR PR

dimensions (m X n)

hyb(this work)
compen-lib-thrust
compen-lib-mgpu
square-tile
diamond-tile(comput.)
diamond-tile(transf.)

Lower is better

— Our method always delivers better performance than previous solutions
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Woavefront Kernel Performance

» Using SOR, SW, and SAT as representative wavefront kernels
»  Processing 2D matrices of data with variable dimensions

30 le3 P100: SW
' e m==  hyb(this work)
@ 25 B compen-lib-thrust
...E.. 2.0k N compen-lib-mgpu
g sl B square-tile
= : B diamond-tile(comput.)
g’ 1.0 : 1 B diamond-tile(transf.)
X _ :
© 0.5 : ' Hm”mm‘m‘ Lower is better
0.QL Ik L] | 1 B L

T o1 o oo ot o a o o
oP ok 0 \ 9 % 5 %
DR R\ L) L S L)

dimensions (m x n)

— The transformation overhead becomes non-negligible for the diamond-tile method
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Woavefront Kernel Performance

» Using SOR, SW, and SAT as representative wavefront kernels
»  Processing 2D matrices of data with variable dimensions

4.51e3 P100: SAT mam hyb(this work)

aol M~ . UL 1| - W compen-lib-thrust
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dimensions (m X n)

— Our hybrid method exhibits superior performance regardless of the workloads
and wavefront types
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At the Synergistic Intersection
of Parallel Computing, Data
Analytics, and Machine Learning

Analytics Learning

Data
Wu Feng
—

wfeng@vt.edu

Machine

P
FRONTIER Y

Parallel
Computing
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Challenge \l

* The rate of growth in big data is far outstripping the rate
at which computing can (brute-force) compute on the data.

Approach v

* Synergistic co-design of architecture, software, and in
particular, algorithms to more efficiently and intelligently
compute on the data.
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«  Systems-Oriented

At the Synergistic Intersection of Parallel Computing,
Data Analytics, and Machine Learning

Sequence Molecular
Automated GPU Blocksize Tuning via Iterative Machine Learning (Cui) A"g”meﬁt Dynamics

Scalable I/O for Deep Learning (Pumma)

- Applications-Oriented Farthquake ~ Neuro-

Modeling informatics

SparkLeBLAST: High-Productivity DNA Sequence Search (Youssef)
Visual Data Analytics (Dash, in collaboration with C. North CS@VT)
Data-Oriented Computational Fluid Dynamics (Cui)

CFD for Cyber-

Understanding Carcinogenesis (Dash, in collaboration with VCOM) Mini-Drones ~ Security
Graph Analytics (Wanye, in collaboration with MIT LL) %
Biomedical Imaging (Goel et al., in collaboration with BEAM@VT) &
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Automated GPU Blocksize Tuning via Iterative ML

« Problem

Many parameters to tune to achieve best performance

v Thread block size
v’ # streams
v" Register usage

v Compiler optimization flags

v’ ... and so on

O(millions) potential software configurations

for the same code

« Our Focus
v' Thread block size

- Example

blockDim.y
[ N w B & w L=)]
(2] = N o [+2] (=] =
1 |

[+4]
L

v Lid-driven cavity (LDC) code with o
varying GPU thread block size (NVIDIA K20m GPU)

| <= {blockDim.x, blockDim.y} <= 1024
| <= blockDim.x * blockDim.y <= 1024

Avg GFLOPS

103
l 100
97
-94
-91
- 88
-85

- 82

79
76
73
<70

Default for LDC

8

16

24

32 40 48 56 64
blockDim.x

\7/a
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Automated GPU Blocksize Tuning via Iterative ML

- Challenge: Huge search space | <= {blockDim.x, blockDim.y} <= 1024
(even when considering only one parameter, | <= blockDim.x * blockDim.y <= 1024
i.e., thread block size) 64

AvglggLOPS
56 100
R 97
- What should | set my thread block size to? . "o
48 ] -91
— Brute-force search (7262 runs) 2
«  Takes more than a day to search o %
. " u 76
— Reliance on developer experience!? 5= 3
] 70

« Recommended block size :
— 8x8, 8x16, 16x8, 16x16 8

16

N
Sy
|
1

(See next Sllde) : : Default fqr LDC
8 r T =
00 8 16 24 32 40 48 56 64
blockDim.x
W VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ
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Automated GPU Blocksize Tuning via Iterative ML

« Parameter tuning the GPU

— Reliance on end-user experience (or intuition) ek
*  Typically chosen block sizes? 64, 128, and 256 B
— Best parameter setup varies ...

*  Between applications

*  Between different devices

Ideal: 8x8
1.00
nomJan L V100
0.751 g GPU

Ideal: 4x32

©

(S

o
f

1Al 4
1aedl. aXoZ

Normalized Performance
o
(4]
o

e

o

o

S
"

2dconv 2mm  3dconv 3mm ep'cc ger'nm gesu'mmv Idc mvt syf2k S);rk
Benchmark T
VIRGINIA LDC code from upper right EE I " sgNeRQ
TECH. and from previous slide synergy.cs.vt.edu



Automated GPU Blocksize Tuning via Iterative ML

- Parameter tuning the GPU
— Reliance on end-user experience (or intuition)
— Statistical methods
*  Build a model a priori based on a (required) large training set
*  Predict the best parameter(s) based on real-time profiling data and model

*  May perform poorly for new algorithms on new devices or systems

[ New Appiication |1

input

Pretrained
Model Best

Parameters

VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 sgNGRG@
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Automated GPU Blocksize Tuning via Iterative ML

« Parameter tuning the GPU

— Reinforcement learning methods
* Requires no prior knowledge of the target system
*  Run continuously to adapt and dynamically update parameters

*  May take the decision system significant time to converge

Observation Increase/
Reward Action< decrease
(Performance) parameters

Agent

Example: SC17 : CAPES: Unsupervised Storage
Performance Tuning Using Neural Network-

Based Deep Reinforcement Learning e.g. DQN, VPG, Actor-Critic, PPO
8. , VPG, ,

VIRGINIA W. Feng, wieng@vt.edu, 540.231.1192 sgNGRG@
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Automated GPU Blocksize Tuning via Iterative ML

Our Cha”enge: HOW to dePIOY X. Cui and W. Feng, “Iterative Machine Learning (lterML)

. . for Effective Parameter Pruning and Tuning in
- New appllcatlons Accelerators,” | 6th ACM International Conference on

new algorithms Computing Frontiers, April-May 2019.
. hew systems
. new hardware accelerators (e.g., GPUs, FPGAs, etc.)
and tune the multi-dimensional search space of
hardware/software/algorithmic parameters to optimize applications

Our Goal

— Intelligently tune parameters with no prior knowledge and no pre-trained model

« Deliver near-optimal performance with the least amount of effort and domain
knowledge.

W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRQ
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Automated GPU Blocksize Tuning via Iterative ML

- Iterative Machine Learning (IterML)

— Uses samples from one iteration to then look for
potentially better samples in subsequent iterations.

Pick ratio:
* sample ratio in each iteration

Pick samples

Cut ratio: Pick ratio
* ratio of the space pruned each Q | build
iteration

Prune the residual

models

Cut ratio

X. Cui and W. Feng, “Iterative Machine Learning (IterML) for Effective
Parameter Pruning and Tuning in Accelerators,” |6th ACM International
Conference on Computing Frontiers, April-May 2019.

W VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 sgNQRQ
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Automated GPU Blocksize Tuning via Iterative ML

Non-Iterative vs. lterative Machine Learning (lterML)
With no prior knowledge or pretrained model

[terML

Search space

Non-iterative

Search space

drop

* X. Cui and W. Feng, “Iterative
Machine Learning (IterML) for
Effective Parameter Pruning and
Tuning in Accelerators,” |6th

> \ ACM Int’l Conf. on Computing
Frontiers, April-May 2019.
SYNeRG?

synergy.cs.vt.edu
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Classification & Regression Trees Random Forest T

K-Nearest Neighbors

[)’es ] sex male? [no ]

[ Age>95 |
d

died
survive

Machine Learning <
M Od e I S Inpuit Layer Hidden Layer OutputLayer

sibsp>2.5

Input 2
—_—

fron

Input Space Feature Space

Figure from Jeremy Jordan
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Takeaway:
Automated GPU Blocksize Tuning via Iterative ML

- Iterative machine-learning (IterML) approach 2
Avg GFLOPS
... to prune the massive parameter search space o
56 e
— Performance evaluation of traditional >
non-iterative ML vs. our IterML * e
— Empirical demonstration that IterML 4 ' e
with the random forest (RF) model E i §
232 HHHH
reduces search effort by 40%~80% 8 - 'y
— Random forest (RF) produces 2o
better and more stable results than I
other popular ML models
8
X. Cui and W. Feng, “Iterative Machine Learning (IterML) for Effective
Parameter Pruning and Tuning in Accelerators,” [ 6th ACM % 8 16 24 32 40 48 56 64
International Conference on Computing Frontiers, April-May 2019. blockDim.x
W VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 S(JNGRQ
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Challenges: Scalable 1/O in Large-Scale Deep Learning

Not all Iarge-scale deep Iearning File 1/0-bound Semi'superVised Bounding Box

1 - Prediction?
is compute-bound... Large per batch data size & .

DNN with non-dense weight

Extreme weather detection
Input size: 768 x 768 x 16

layers By NERSC, LBNL, DOE, Stanford, Intel

1Kurth et al. Deep learning at 15pf: Supervised

and semi-supervised classification for scientific
Image Classification Compute-bound data. SC'17.
Lung cancer detection ] o
Input size: 253x235x240 High-resolution input data

From Kaggle Data Science Bowl 2017
Network I/O-bound (Unsupervised Image Feature
Extraction?

Large number of trainable parameters LLLNL’S DNN with 15 billion parameters

2Ni et al. Large-scale deep learning on the YFCC100M
dataset. arXiv preprint arXiv:1502.03409, 2015.

VZ? | NIA W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ
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Dataset: CIFAR10-Large (50M images, 10 classes, 190 GB)
DNN: AlexNet (13 layers, 89K parameters)

M M Batch size: 18,432 Training iterations: 512
I/O Scaling of Deep Learning Framework: Caffe  Testbed/Storage: LCRC Bebop/GPFS
(Each node: 36 cores Intel Broadwell, 128 GB memory)
Overall Training Time oo Training Time Breakdown
—-=p I
100000 oo ijii Illl
° c
®e 80%
10000 3
o 2 0%
1000 £ 0%
— g 50%
= T 0%
g 100 .EQQX worse _§ 2o
= than,ideal o
10 .. ..% 20%
10%
1 0%
= ™M M~ Q0 M™~ 1N [=
Number of Cores
Number of Cores mRead time m Transform time
m Total forward time Total backward time
Caffe/LMDB eeeee|deal m /0 skew time W Param sync time
m Param calculation time m Param update time
VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 sgNGRG@
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Scalable I/O in Deep Learning: Parallel Data Reading

- Lightning Memory-Mapped Database (LMDB)

— Widely used in deep-learning frameworks, e.g., Caffe (default), Caffe2, TensorFlow,
Keras-TensorFlow

— Uses mmap internally (memory-mapped file 1/O)
— Database layout: B+ tree
- No collaboration between readers

— Each reader opens the LMDB database in its virtual memory space

— In each iteration, each reader reads B/NP samples of data via LMDB’s APl in a
strided manner (B = batch size, NP = number of processes)

DB in memory DB in memory

24
%

DB in memory
3568... 01 314 |67

+

Itey

X
)

g ° e Example of 3 processes performing
strided data access
W VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ
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Scalable I/O In Deep Learnlng S. Pumma, M. Si, W. Feng, and P. Balaji

Our Solution: LMDB-IO (Lightning Memory-Mapped Database — I/O) :rf;';ﬂeafja'ﬁ:;:i o

imi _ H Transactions on Parallel Computing
An optlmlzec.:l I./O.subsyste.m. for.large scale deep learning TOPCY 6 (2 61634, Juby 2015,
LMDB-IO optimizations are divided into three classes

/ Intra-node 1/0 \ @peculative Distributeh / Direct I/O \

Problem /O (Inter-node) Problem
High inter-process contention _ Problem mmap is highly inefficient.
in multi-reader environment _ High l/(_) .skgw due to The user has no control
due to mmap indeterministic DB layout over 1/O operations
(direct DB access is not allowed)
Solution Solution Solution
* Localizing mmap (using * Collaborating between * Replacing mmap with
one reader per node) reader processes to Posix 1/0O (direct 1/0)
* Using MPI-3 shared buffer reduce I/0 skew * Using several techniques
to share data between * Speculatively reading to improve direct I/0
\ processes / K reading data in parallel j K performance /
W W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ
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100000 Dataset: CIFAR10-Large (50M 3KB images, 10 classes, 190 GB)
T taI Execution Tim DNN: AlexNet (13 layers, 89K parameters)

0 e 0 € Batch size: 18,432 Training iterations: 512

Framework: Caffe Testbed/Storage: LCRC Bebop/GPFS

10000 (Each node: 36 cores Intel Broadwell, 128 GB memory)
——LMDB CIFARI[0-Large &

< 1000 g

GJ L] - M

£ LMDBIO-LMM AlexNet Scaling

|_

100 —LMDBIO'LMM'Dlo o0 o00000
10
1 2 4 8 16 36 72 144 288 576 11522304 46089216
70.0 64.4
a
S 60.0
S m LMDBIO-LMM
g w00 - LMDBIO-LMM-DIO Factor of Improvement over LMDB
2 = LMDBIO-LMM-DM 26.9
g 400 LMDBIO-LMM-DIO-PROV '
3 130.0 ® LMDBIO-LMM-DIO-PROV-COAL
3 B LMDBIO-LMM-DIO-PROV-COAL-STAG
= 20.0 15.5
2
[=]
+ 10.0 46 35 | I
o 1.7 2.7
I I I T || ||| 1R
1 2 1 8 16 36 72 144 288 576 1152 2304 4608 9216
Number of Cores
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Time (s)

10000 ,
H H Dataset: ImageNet-Large (6M 192KB images, 1000 classes, 1.1 TB)
TOtaI Executlon TI me DNN: CaffeNet (22 layers, 60M parameters)

Batch size: 18,432 Training iterations: 32
= Framework: Caffe Testbed/Storage: LCRC Bebop/GPFS
(Each node: 36 cores Intel Broadwell, 128 GB memory)

10&WIDB M ImageNet-Large &

CaffeNet Scaling

e | MDBIO-LMM

100
576 1152 2304 4608 9216
= >0 Factorof Improvement over LMDB ® LMDBIO-LMM
(]
e 4.0
T ®m LMDBIO-LMM-DIO
3 0 3.0
=S
£ = 2.0 1.5 1.6
S >
(@]
2 ||| || TR
@ _
1152 2304 4608 9216
Number of Cores
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Conclusion

* Synergistic co-design of algorithms, software, and hardware can massively
accelerate discovery.
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What’s Next!?

- Case Studies on Synergistic Co-Design of Algorithms, Software, and Hardware
— Brain Tomography on GPU. Carcinogenesis: Weighted Set Cover vs. Graph Cluster. [...]

- HPC Systems
— lterML: Iterative Machine Learning (AFOSR & DOD)
» Context: Computational fluid dynamics (CFD) =
OpenDwarfs, i.e., fundamental “DNA” building blocks for scientific computing
— CoreTSAR: Core Task-Size Adapting Runtime System (DOE & NSF)
* Context: Initially, discrete CPU+GPU systems w/ discrete memory
Now, also “fused” co-located CPU+GPU systems w/ shared memory
See Aurora @ ANL with PVC & El Capitan @ LLNL with MI-300a
— Scalable Deep Learning (with ANL = Meta & Llama-3)
 Context: Caffe, Caffe2, and Tensorflow
» Takeaway: Large-scale multi-node DL does NOT scale.

VIRGINIA W. Feng, wfeng@vt.edu, 540.231.1192 SgNeRQ@
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An (Intra-Node) Ecosystem for Heterogeneous Parallel Computing

Sequence Molecular Earthquake Neuro- CFD for Biomedical Cybersecurity
Dynamics

informatics =~ Mini-Drones Imaging

Modeling

X
-l

& T

Design & Compile Time
Source-to-Source

Computational & Translation &

Communication Optimization
Patterns: 13 Dwarfs Framework Architecture-Aware

Software Optimizations ... inter-node with
Ecosystem T tEn applications to BIG DATA
(StreamMR)

Performance &

Affinity Cost Task Scheduling Power Models

Models System
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