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Generalized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributions

e

e′

p

x+ ξ x− ξ

q

p′

Deeply virtual Compton scattering

H(ξ, t;Q2)

p

x+ ξ x− ξ

p′

Generalized parton distribution

H(x, ξ, t;Q2)

I Generalized parton distributions are 4-variable functions.
I Probed in processes such as deeply virtual Compton scattering (DVCS).
I Exciting because they encode spatial distributions of quarks and gluons.
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The GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variables

e

e′

p

x+ ξ x− ξ

q

p′

x =
(k + k′) · n
(p+ p′) · n

ξ =
(p− p′) · n
(p+ p′) · n

t = (p′ − p)2

Q2 = −q2

n defines the reference frame

I x is average momentum fraction of struck parton.

I 2ξ is the skewness: momentum fraction lost by struck parton.

I t is the invariant momentum transfer.

I GPDs also depend on resolution scale Q2.
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Evolution equationsEvolution equationsEvolution equationsEvolution equationsEvolution equationsEvolution equations

I GPDs obey evolution equations for Q2 dependence:

dH(x, ξ, t, Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I KernelK(x, y, ξ,Q2) known theoretically.

I Only need 3D GPD at one scale Q2
0 to fix 4D GPD at all Q2.

I This is what we (via neural network) parametrize.

I Need fast and differentiable code to perform evolution.
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PixelationPixelationPixelationPixelationPixelationPixelation

I GPD is pixelated in x-space.

I Per (ξ, t, Q2) value is effectively column matrix.

Hi =


0

−3.50688094× 10−8

−2.23178870× 10−6

...

2.93122078× 10−5


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Evolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matrices

I GPD at (ξ, t, Q2) and (ξ, t, Q2
0) are both column matrices.

I An Nx ×Nx square matrix connects them.
I Evolution matrix (or transfer matrix)
I Solve evolution equation by constructing these matrices!

I Evolution matrices fit our needs:

I Matrix multiplication is fast (especially with GPUs).
I Matrix multiplication is differentiable.
I Can easy be implemented via torch.einsum

Hi(ξ, t, Q
2) =

Nx∑
j=1

Mij(ξ,Q
2
0 → Q2)Hj(ξ, t, Q

2
0)
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Two code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. Fortran

I We have two code bases for making evolution matrices, in PyTorch and Fortran.

I Can explore different algorithms & strategies.

I Different codes serve as a cross-check.

I Ideas developed in one can also be applied to the other.

PyTorch implementation

�3 All operations are matrix multiplication

�3 Conceptually straightforward

�3 Runs on (and leverages) GPUs

�3 Still fast on CPUs

�7 Can’t use adaptive integration/interpolation

�7 Numerically noisy

�3 Seamlessly integrated into PyTorch

codebase

Fortran implementation

�7 Uses some non-matrix methods

�7 Conceptually complicated

�7 CPU-only

�7 Slower than PyTorch code

�3 Leverages adaptive methods

�3 Numerically well-behaved

�3 Python wrapper allows integration into

codebase



PyTorch implementationPyTorch implementation
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Integral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretization

I First step is to discretize the integral:

S(x, ξ, t, Q2) =

∫ +1

−1

dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I Kernel made up of three distributions; must be integrated separately:

K(x, y, ξ,Q2) = KR(x, y, ξ,Q
2) + [KP (x, y, ξ,Q

2)]+ +KC(Q
2)δ(y − x)

I Regular piece—just a normal integral:∫ +1

−1

dy KR(x, y, ξ,Q
2)H(y, ξ, t, Q2)

I Plus distribution piece:∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) ≡

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
+H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Constant piece (or delta distribution piece):∫ +1

−1

dy KC(Q
2)δ(y − x)H(y, ξ, t, Q2) ≡ KC(Q

2)H(x, ξ, t, Q2)
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Regular pieceRegular pieceRegular pieceRegular pieceRegular pieceRegular piece

I Regular piece approximated using Gauss-Legendre quadrature:

SR(x, ξ, t,Q
2) =

∫ +1

−1
dy KR(x, y, ξ,Q

2)H(y, ξ, t, Q2)

≈
Ng∑
g=1

wgKR(x, yg, ξ, Q
2)H(yg, ξ, t, Q

2)

I yg are roots of Ngth order Legendre polynomial.
I wg are Gaussian weights at these roots.
I Need Ng ∼ 1000 for good accuracy.
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cubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolation

I Quadrature grid and pixelation grid are not the same.

I Must interpolate to quadrature grid.

I Use cubic-turbo method by Daniel Adamiak.

I Modified cubic Hermite polynomials (except at endpoints).
I “Modified”: numerical derivative computed using values at adjacent points.
I Ordinary cubic interpolation used for endpoints.
I Parallelized code leverages GPUs for massive speedup—hence “turbo”.

I Interpolation done via matrix multiplication:

H(yg, ξ, t, Q
2) =

Nx∑
j=1

LgjH(yj , ξ, t, Q
2)

I Interpolation matrix Lgj constructed via cubic-turbo.
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Regular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulation

I Using cubic-turbo and Gauss-Legendre quadrature:

SR(xi, ξ, t, Q
2) ≈

Nx∑
j=1

 Ng∑
g=1

gwKR(xi, yg, ξ, Q
2)Lgj


︸ ︷︷ ︸(

KR(ξ,Q
2)
)
ij

Hj(ξ,t,Q
2)︷ ︸︸ ︷

H(yj , ξ, t, Q
2)

I Right-hand side is now matrix multiplication:

SR(xi, ξ, t, Q
2) ≈

Nx∑
j=1

(
KR(ξ,Q

2)
)
ij
Hj(ξ, t, Q

2)

I The matrix
(
KR(ξ,Q

2)
)
ij
is independent of the GPD.

I Can be computed once, stored in memory.
I Doesn’t need to be re-computed for each trial GPD during fit/training/etc.
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Plus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piece

I Plus distribution piece is a sum of two integrals:

SP (x, ξ, t, Q
2) ≡

∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) = S

(1)
P (x, ξ, t, Q2) + S

(2)
P (x, ξ, t, Q2)

S
(1)
P (x, ξ, t, Q2) =

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
S

(2)
P (x, ξ, t, Q2) = H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Presents numerical difficulties because of 1/(y − x) factors inKP .
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Plus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integral

I Do first integral using Gauss-Legendre quadrature and cubic-turbo:

S
(1)
P (xi, ξ, t, Q

2) =

∫ +1

−1

dy KP (xi, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(xi, ξ, t, Q

2)
)

≈
Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)

(
Nx∑
j=1

LgjH(yj , ξ, t, Q
2)−H(xi, ξ, t, Q

2)

)
I Matrix implementation:

S
(1)
P (xi, ξ, t, Q

2) ≈
Nx∑
j=1

Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)
[
Lgj − δij

]
︸ ︷︷ ︸(

K
(1)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I Current implementation numerically noisy.
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Plus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integral

I Second integral gives diagonal matrix:

S
(2)
P (xi, ξ, t, Q

2) =

Nx∑
j=1

(∫ +1

−1
dy

(
KP (xi, y, ξ,Q

2)−KP (y, xi, ξ, Q
2)
))

δij︸ ︷︷ ︸(
K

(2)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I Current PyTorch implementation does integral with torch.trapz
I Surprisingly smooth result, despite singularity at y = x.
I Numerical issues for x ∼ ξ; fixed by interpolating from adjacent points.

I Alternate Fortran implementation uses adaptive integration—more accurate result.

I Could do integral analytically (only feasible at leading order).
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Numerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementation

I Numerical noise in S
(1)
P .

I The term that integrates H(y)−H(x)…
I …and has 1/(y − x) in the integrand.

I Cause unclear.

I Noise not present in Fortran code.

I Noise disappears in overall solution.

I Maybe don’t worry about it?

I Suggestions welcome
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Constant pieceConstant pieceConstant pieceConstant pieceConstant pieceConstant piece

I The constant piece (delta distribution piece) is trivial.

SC(xi, ξ, t, Q
2) =

∫ +1

−1
dy KC(Q

2)δ(y − xi)H(y, ξ, t, Q2)

=

Nx∑
j=1

(
δijKC(Q

2)
)

︸ ︷︷ ︸(
KC(Q

2)
)
ij

Hj(ξ, t, Q
2)



Fortran implementationFortran implementation
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Regular pieceRegular pieceRegular pieceRegular pieceRegular pieceRegular piece

I Regular piece approximated using Gauss-Kronrod quadrature.
I The domain [−1, 1] is broken into six pieces with boundaries:

−1 < min(−ξ,−|x|) < max(−ξ,−|x|) < 0 < min(ξ, |x|) < max(ξ, |x|) < 1

I x and ξ grids must be misaligned.
I Interpolation done differently for every x and ξ point.
I 15-point quadrature used inside each region.

SR(x, ξ, t, Q
2) ≈

Ng=6×15∑
g=1

wgKR(x, yg, ξ, Q
2)H(yg, ξ, t, Q

2)

≈
Nx∑
j=1

 Ng∑
g=1

wgKR(xi, yg, ξ, Q
2)Lgj(xi, ξ)


︸ ︷︷ ︸(

KR(ξ,Q
2)
)
ij

Hj(ξ, t, Q
2)

I I use (piecewise) sixth-order Newton polynomials to interpolate.
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Plus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piece

I Reminder: plus distribution piece is a sum of two integrals:

SP (x, ξ, t, Q
2) ≡

∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) = S

(1)
P (x, ξ, t, Q2) + S

(2)
P (x, ξ, t, Q2)

S
(1)
P (x, ξ, t, Q2) =

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
S

(2)
P (x, ξ, t, Q2) = H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Still presents numerical difficulties because of 1/(y − x) factors inKP .
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Plus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integral

I Do first integral via Gauss-Kronrod rule still.

I Break into same six integration regions.
I Use same sixth-order Newton interpolation.

I Matrix implementation:

S
(1)
P (xi, ξ, t, Q

2) ≈
Nx∑
j=1

 Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)
[
Lgj(xi, ξ)− δij

]
︸ ︷︷ ︸(

K
(1)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I The Fortran implentation is not noisy.
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Plus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integral

I Second integral gives diagonal matrix:

S
(2)
P (xi, ξ, t, Q

2) =

Nx∑
j=1

(∫ +1

−1
dy

(
KP (xi, y, ξ,Q

2)−KP (y, xi, ξ, Q
2)
))

δij︸ ︷︷ ︸(
K

(2)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I I get most accurate results using adaptive quadrature and three regions, with boundaries:

−1 < −|x| < |x| < 1

I Can get analytic results, & thus benchmark different integration methods.
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Second integral: three-region methodSecond integral: three-region methodSecond integral: three-region methodSecond integral: three-region methodSecond integral: three-region methodSecond integral: three-region method

I Relative error compared to analytic result for QQ kernel.
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Second integral: six-region methodSecond integral: six-region methodSecond integral: six-region methodSecond integral: six-region methodSecond integral: six-region methodSecond integral: six-region method

I Relative error compared to analytic result for QQ kernel.
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Second integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid method

I Relative error compared to analytic result for QQ kernel.
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InterpixelsInterpixelsInterpixelsInterpixelsInterpixelsInterpixels

I Adaptive quadrature incompatible with fixed interpolation matrices.

I Interpixels (interpolated pixel): interpolation basis functions.
I Exploit linearity of Newton interpolation:

N [y1 + y2](x) = N [y1](x) +N [y2](x)

I GPD pixelation is a sum of pixels:

H =


h1

h2

...

hn

 = h1


1
0
...

0

+ h2


0
1
...

0

+ . . .+ hn


0
0
...

1

 ≡ h1ê1 + h2ê2 + . . .+ hnên

I Interpolated pixelation is a sum of interpixels!

N [H](x) = h1N [ê1](x) + h2N [ê2](x) + . . .+ hnN [ên](x)

I Get kernel matrix by putting H[êj ](x) into integrals.
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Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 8

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 40

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 100

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 300

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 1000

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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Reasons for interpixelsReasons for interpixelsReasons for interpixelsReasons for interpixelsReasons for interpixelsReasons for interpixels

I Don’t need to store big interpolation matrices in memory.

I More flexible (adaptive or (x, ξ)-dependent) interpolation allowed.

I Allows sampling kernels arbitrarily finely in a controlled way.
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Accuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singlet

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.
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Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 40
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Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 100
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Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 300
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Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 1000
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Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 40

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.



29/36

Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 100

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.
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Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 300

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.
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Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 1000

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.



Solving the evolution equationsSolving the evolution equations
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Differential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equation

I Combining pieces gives a matrix form of the evolution kernel:

Kij(ξ,Q
2) =

(
KR(ξ,Q

2)
)
ij
+
(
K

(1)
P (ξ,Q2)

)
ij
+
(
K

(2)
P (ξ,Q2)

)
ij
+
(
KC(Q

2)
)
ij

I Turns evolution equation into a matrix differential equation:

dHi(ξ,Q
2)

d log(Q2)
=

Nx∑
j=1

Kij(ξ,Q
2)Hj(ξ,Q

2)

I This can be solved using Runge-Kutta.
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Evolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matrices

I Solution to the evolution equation, via RK4:

Hi(ξ, t, Q
2
fin) =

Nx∑
j=1

Mij(ξ,Q
2
ini → Q2

fin)Hj(ξ,Q
2
ini)

I Evolution matrix:

Mij(ξ,Q
2
ini → Q2

fin) = δij +
1

6
log

Q2
fin

Q2
ini

(
M

(1)
ij (ξ) + 2M

(2)
ij (ξ) + 2M

(3)
ij (ξ) +M

(4)
ij (ξ)

)
I Build using RK4:

M
(1)
ij (ξ) = Kij(ξ,Q

2
ini)

M
(2)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(1)
lj (ξ)

)

M
(3)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(2)
lj (ξ)

)

M
(4)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
fin)

(
δlj + log

Q2
fin

Q2
ini

M
(3)
lj (ξ)

)
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Numerical solutionNumerical solutionNumerical solutionNumerical solutionNumerical solutionNumerical solution

Q2
0 = 1 GeV2

Q2 = 25 GeV2

t = 0

ξ = 0.5

I Slight discrepancy
between codes.

I Noise gone in
PyTorch code?
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Crude timing benchmarksCrude timing benchmarksCrude timing benchmarksCrude timing benchmarksCrude timing benchmarksCrude timing benchmarks

I Ran code to make evolution matrices at 10 Q2 values from 1 GeV2 to 25 GeV2.

I PyTorch code:

I on GPU (JLab farm): 10.8 s
I on CPU (JLab farm): 19.7 s

I Fortran code

I on CPU (JLab farm): 26.3 s
I on CPU (my laptop): 54 s

I Caveats (comparison is not apples-to-apples):

I PyTorch code uses Nx = 200 and Nξ = 100. (This is hard-coded.)
I Fortran code uses Nx = 100 and Nξ = 50. (Segfaults at Nx = 200.)
I PyTorch only computes helicity-independent kernels, Nf = 3.
I Fortran computes helicity-independent & -dependent kernels, Nf ∈ {3, 4, 5}.

I Overall seems PyTorch code is faster.



Remaining issuesRemaining issues
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Memory issuesMemory issuesMemory issuesMemory issuesMemory issuesMemory issues

I Fortran RK4 solver segfaults for nx > 180.

I Cause possibly from arithmetic operations on stack?

I Fails on the following line:

1 MV_NS(:,:,ixi,iQ2) = MV_NS(:,:,ixi,iQ2) + &
2 & rk4_NS(nx, nxi, Q2_cache(iQ2-1), Q2_cache(iQ2), &
3 & K_NS_0(:,:,ixi,4), K_zero(:,:))

I Failure mitigated if MV_NS(:,:,ixi,iQ2) + is removed; why?



35/36

InteroperabilityInteroperabilityInteroperabilityInteroperabilityInteroperabilityInteroperability

I There’s a mismatch in discretization strategies.

I PyTorch codebase assumes x and ξ are discretized the same way.
I Fortran code requires x 6= ξ, so grids are misaligned.
I Need interpolation matrices to wrap Fortran evolution matrices.

I May be technical difficulties deploying Fotran code.

I I did create a Python wrapper via f2py around Fortran code.
I Compilation requires CMake version ≥ 3.12; not all systems have.
I Jupyter Notebooks can’t locate the compiled .so file, no matter what I do to environment

variables. (I’ve been running Fortran code via IPython instead.)
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Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)

I Daniel Adamiak

I Ian Cloët

I Chris Cocuzza

I Adam Freese

I Nobuo Sato

I Marco Zaccheddu

Thank you for your time!


