o

Deeply virtual Compton scattering Generalized parton distribution

H(E Q%) H(z,&, Q%)

» Generalized parton distributions are 4-variable functions.
» Probed in processes such as deeply virtual Compton scattering (DVCS). 2/36

_(k+K)n
~(p+p)n
E:(p—p’)“n
L, aa (e
= (' —p)°
QQZ_QZ

n defines the reference frame

» 1 is average momentum fraction of struck parton.

» 2¢ is the skewness: momentum fraction lost by struck parton.
» { is the invariant momentum transfer.

» GPDs also depend on resolution scale Q2.

3/36

b
.

Byolution aquations

» GPDs obey evolution equations for Q> dependence:
dH(z,£,6,Q%) _ [t

s 2 9
leg(Q2) he3 _il dyK($7ya£>Q)H(y7€,t,Q)

» Kernel K(z,y, &, Q%) known theoretically.
» Only need 3D GPD at one scale Q2 to fix 4D GPD at all Q.
» This is what we (via neural network) parametrize.

» Need fast and differentiable code to perform evolution.

4/36

Pixalation

» GPD is pixelated in z-space.

» Per (£,t, Q?) value is effectively column matrix.

Ground trluth
Pixelation
0.25
020 i p
e 0
«<0.15 —3.50688094 x 1078
i H, = | —2.23178870 x 107°
% 0.10 :
0.05 (B 0027 iR
0.00
—i0 —0.5 0.0 0.5 1.0

5/36

1 >

Byolution meiric

(12
(4]

» GPD at (¢,t,Q?) and (&, ¢, Q3) are both column matrices.

» An N, x N, square matrix connects them.

» Evolution matrix (or transfer matrix)

P Solve evolution equation by constructing these matrices!
» Evolution matrices fit our needs:

» Matrix multiplication is fast (especially with GPUs).

» Matrix multiplication is differentiable.

» Can easy be implemented via torch.einsum

N
Hi(¢,,Q%) = Y My;(6, Q5 — Q1) H;(¢,t, Q%)

=1

6/36

Tyo cods pasas: PylToren v, Foriran 24

» We have two code bases for making evolution matrices, in PyTorch and Fortran.
» Can explore different algorithms & strategies.
» Different codes serve as a cross-check.

» Ideas developed in one can also be applied to the other.

PyTorch implementation Fortran implementation
¥ All operations are matrix multiplication Uses some non-matrix methods
f Conceptually straightforward Conceptually complicated
¥ Runs on (and leverages) GPUs CPU-only
¥ Still fast on CPUs Slower than PyTorch code
Can’t use adaptive integration/interpolation f Leverages adaptive methods
Numerically noisy f Numerically well-behaved
uf Seamlessly integrated into PyTorch o Python wrapper allows integration into
codebase codebase

7/36

Intagral diseratization

» First step is to discretize the integral:

+1
(e, 6,1, Q%) = / dy K (2, ,€, Q) H(y, £, 1, Q%)

=il
» Kernel made up of three distributions; must be integrated separately:

K(z,y,£,Q%) = Kr(2,y,£,Q%) + [Kp(z,4,£ Q)]+ + Kc(Q*)d(y — x)

» Regular piece—just a normal integral:

+1
/ dy Kn(z,y,€, Q) H(y,£,t, Q)

il
» Plus distribution piece:

Eil!

+1
/ dy [Kp(2,5,£, Q)]+ H(y, £,1,Q%) = /

=1 =k

dy Kp(@,5,6, Q") (H(y,€,t,Q%) — H(w,6,,Q%))

+1

+ 16007 [dy (Ke(e.0,6,Q°) - Ke(y2.6,0))

-1

» Constant piece (or delta distribution piece):

+1
/ dy Kc(Q*)d(y — 2)H(y, &, 1, Q%) = Kc(Q*)H(x,&,,Q%) 836

alt

» Regular piece approximated using Gauss-Legendre quadrature:
+1

S p2h- / dy Kr(z, 9,6, Q1) H(y, &, Q?)

=1

Ny
~ Z ’ngR(l', Yg, f, Q2)H(y97 57 t7 Q2)

g=1

» 1y, are roots of N,th order Legendre polynomial.
» w, are Gaussian weights at these roots.
» Need N, ~ 1000 for good accuracy.

9/36

cupic-iurpo intarpolation

» Quadrature grid and pixelation grid are not the same.
P Must interpolate to quadrature grid.
» Use cubic-turbo method by Daniel Adamiak.

» Modified cubic Hermite polynomials (except at endpoints).

P> “Modified”: numerical derivative computed using values at adjacent points.
» Ordinary cubic interpolation used for endpoints.

P Parallelized code leverages GPUs for massive speedup—hence “turbo”.

» Interpolation done via matrix multiplication:

Ny
H(yg7 57 t, QZ) e Z LQJH<y]7 57 t, Q2)

o

» Interpolation matrix L ; constructed via cubic-turbo.

10/36

Ragular place: matrle formulation

o)

» Using cubic-turbo and Gauss-Legendre quadrature:

N . H;(&,t,Q%)
x ‘Yg e N
SR($i7§7t7 QQ) ~ Z Z,(JHTI(R(:L.?:?yg:f:CQQ)ng H(yj*‘g/faQQ)
=1 g=1
(KR(f-/ Q2)>7jj
» Right-hand side is now matrix multiplication:
N
Sr(zi, 6,1, Q%) = Y (Kr(§, @), Hi(6,t, Q)
j=1

> The matrix (Kg(&, QQ)) is independent of the GPD.

» Can be computed once, stored in memory.
» Doesn’t need to be re-computed for each trial GPD during fit/training/etc.

11/36

» Plus distribution piece is a sum of two integrals:

+1
Sp(z,&,t,Q%) z/ dy [Kp(z,y,€, Q)+ H(y, &,t,Q%) = S5 (z,6,¢,Q%) + S&(,€,t,Q7)

—1
+1

Sg)($7£7t7Q2) = /

—1

dy Kr(2,5,6, Q") (H(y,6,1,Q7) — H(w,6,,Q%))

Sg)($,£7t7Q2) (m 6 t, Q)/1 dy (KP(7y,§,Q2)—KP(y,x,§,Q2))

» Presents numerical difficulties because of 1/(y — x) factors in Kp.

12/36

» Do first integral using Gauss-Legendre quadrature and cubic-turbo:

W oy _ [T 2 > 2
SP@ir6,,Q%) = [dyKe(wi, .6, @) (6 4.Q%) - Hai,6,1,Q%)

-1
NQ Ny

& ngKP(l'iyyg7€7Q2) (Z ngH(yj7€7t7 QQ) i H(xi’€7t7Q2)>
g=1 J=1

» Matrix implementation:

Nz Ng

(1)(351:5 t, Q) Z“ o Kp(2i,9g,8,Q°)[93 —(3,_/] Hj(gvthQ)

Jj=1 \g=1

S 1B

» Current implementation numerically noisy.

13/36

Plug distrinu

» Second integral gives diagonal matrix:

Nz 1
S (2:,6,6,07) = (/ dy (Kp(@i,€ Q%) — Kp(y, @i, cf))) 0iiH;(&,t, Q%)
Jj=1 bk

&S).,

» Current PyTorch implementation does integral with torch.trapz
» Surprisingly smooth result, despite singularity at y = .
» Numerical issues for x ~ &; fixed by interpolating from adjacent points.

P> Alternate Fortran implementation uses adaptive integration—more accurate result.
» Could do integral analytically (only feasible at leading order).

14/36

03 03

MNurmearieal noise in currant implameantatig

0.75 — sWe.g)
506
» Numerical noise in Sg). 15l [=l
» The term that integrates H (y) — H (z) ... 0.95 \\
» ...and has 1/(y — z) in the integrand. / \
» Cause unclear. 0.00
/
» Noise not present in Fortran code. —0.95
» Noise disappears in overall solution.
; : —0.50
» Maybe don’t worry about it?
» Suggestions welcome —0.75
] 0 o 0.0 05 1.0
X

15/36

Congrant piace

» The constant piece (delta distribution piece) is trivial.
+1

Sc(xiyf,t, QQ) The / dyKC(QQ)(S(y e xl)H(yvéathz)

=il

Ny
= (65Kc(Q?) Hi(e,,Q%)
Nl o o

(Ko(@?)) ij

16/36

Ragular piacea

» Regular piece approximated using Gauss-Kronrod quadrature.
» The domain [—1, 1] is broken into six pieces with boundaries:

—1 < min(=¢, —|z|) < max(—=¢, —|z|) < 0 < min(¢, |z|) < max(&, |z|) < 1

» 2z and ¢ grids must be misaligned.
» Interpolation done differently for every 2 and ¢ point.
» 15-point quadrature used inside each region.

Ng76><15
(l’ g t, Q Z ngR €T yg7£ Q) (ygvgat7 Q2)
g

T

Ny
~ Z'wg]{R(Ii:ygvgtQQ)L!]j('rivg) H](&athz)
g=1

il

(KR(£7 Q2)>¢j

» I use (piecewise) sixth-order Newton polynomials to interpolate. 1736

» Reminder: plus distribution piece is a sum of two integrals:

+1
Sp(z,&,t,Q%) z/ dy [Kp(z,y,€, Q)+ H(y, &,t,Q%) = S5 (z,6,¢,Q%) + S&(,€,t,Q7)

—1
+1

Sg)($7£7t7Q2) = /

—1

dy Kr(2,5,6, Q") (H(y,6,1,Q7) — H(w,6,,Q%))

Sg)($,£7t7Q2) (m 6 t, Q)/1 dy (KP(7y,§,Q2)—KP(y,x,§,Q2))

» Still presents numerical difficulties because of 1/(y — x) factors in Kp.

18/36

» Do first integral via Gauss-Kronrod rule still.

» Break into same six integration regions.
» Use same sixth-order Newton interpolation.

» Matrix implementation:

Ny Ny
S9) (i,€,4,Q%) ~ o L T 0, R {ng(-’l?nﬁ) —6ij| | Hj(€,t, Q%)
=1 \g=1

» The Fortran implentation is not noisy.

19/36

» Second integral gives diagonal matrix:
Ne

1 . (
89 (x4,€,t,Q%) = X (/ dy ([(P('/I:iayaga (i Foo ol Q2)>) 01 H;(€,t, Q%)

P

(ED(€,0%),,

» I get most accurate results using adaptive quadrature and three regions, with boundaries:

—1<—|z| < |z| <1

» Can get analytic results, & thus benchmark different integration methods.

20/36

Sacond intagral: thraa-ragion mathod 48

Three region adaptive quad

100
0.8 80
0.6 60

L
0.4 40
R 20
: E b : 0
—1.0 —0.5 0.0 0.5 1.0
T

> Relative error compared to analytic result for QQ kernel. 21/36

Sacond intagral: sie-ragion mathod

Six region fixed quad

100
0.8 80
0.6 60
vy
0.4 40
0.2 20
_ — r L)
1y —0.5 0.0 0.5 1.0
T

> Relative error compared to analytic result for QQ kernel. 22/36

0.8
0.6
L
0.4
R
—1.0 —0.5 0.0 0.5 1.0
T

> Relative error compared to analytic result for QQ kernel.

100

80

60

40

20

0

23/36

Iniarpixcals

» Adaptive quadrature incompatible with fixed interpolation matrices.
> Interpixels (interpolated pixel): interpolation basis functions.
» Exploit linearity of Newton interpolation:

Niy1 + y2l(2) = N[ya](z) + Niya] ()

» GPD pixelation is a sum of pixels:

h1 1 0 0
ho 0 1 0

Ha— : = - + ho : IL S agselBey e : = h1é1 + hoés + ...+ h,é,
h 0 0 1

S

» Interpolated pixelation is a sum of interpixels!

N[H](xz) = hiN[é1](z) + haN[éa](x) + ... + h,N[é,](z)

» Get kernel matrix by putting H [¢;](z) into integrals. 24136

Iniarpixal damo

1.0]

= Ground truth

Interpixels

Ny =8
05] —— Interpixel sum
Discrete values

» Interpixel is a piecewise polynomial.
» Of fixed order.

» Avoids Runge phenomennon.

» Knots on the discrete x grid.

» Each interpixel is oscillatory.

» Oscillations cancel in sum.

» Improvement at high IV, .
1073

rel. err. (%)

1079 1— :
—1.0 —0.5

5 1.0

25/36

Iniarpixal damo

= Ground truth

Interpixels
Interpixel sum

Discrete values

n; = 40

» Interpixel is a piecewise polynomial.
» Of fixed order.

» Avoids Runge phenomennon.
» Knots on the discrete x grid.

» Each interpixel is oscillatory.

» Oscillations cancel in sum.

» Improvement at high IV, .

25/36

Iniarpixal damo

= Ground truth Ny — 100
Interpixels
- | === Interpixel sum
0.5 I . . o 3 .
Discrsto daluas » Interpixel is a piecewise polynomial.

» Of fixed order.
» Avoids Runge phenomennon.

» Knots on the discrete x grid.

» Each interpixel is oscillatory.

» Oscillations cancel in sum.

» Improvement at high NV,.

1.0

25/36

Intarpiial damo

= Ground truth

Interpixels
Interpixel sum

Discrete values

0.0 1.0
[I
=i 05 0.0 10
iy

ng = 300

» Interpixel is a piecewise polynomial.
» Of fixed order.
» Avoids Runge phenomennon.

» Knots on the discrete x grid.
» Each interpixel is oscillatory.
» Oscillations cancel in sum.

» Improvement at high NV,.

25/36

Intarpiieal damo Rl 7

| ==-- Interpixel sum

T
= Ground truth

ng = 1000

Interpixels

» Interpixel is a piecewise polynomial.
» Of fixed order.
» Avoids Runge phenomennon.

Discrete values

» Knots on the discrete x grid.
» Each interpixel is oscillatory.

» Oscillations cancel in sum.

1.0 ; d 1.0
» Improvement at high NV,.

=i 05 0.0 05 10

25/36

» Don’t need to store big interpolation matrices in memory.

» More flexible (adaptive or (z, £)-dependent) interpolation allowed.

» Allows sampling kernels arbitrarily finely in a controlled way.

26/36

[y (z, y,) H(y, §)

Accuracy Dancnmeare

—— Ground truth
Matrix method
\/\ >
>
—1.0 =0 0.0 0.5 10
>
1o —0. 0.0 0.5 1.0

non-singlat

“Ground truth” determined by adaptive
integration of model function.

Error represents error from both pixelation
& interpolation.

Sub-percent error even at n, = 40.

27/36

@

£

=

o

3

&

e

=
s 14
=t
g
=106

—— Ground truth

Matrix method

—i0

i}, 0.0 0.5 10
=0) 0.0 05 1.0
x

PIXEL DENSITY

— Hazy [PA 6.5%

Lake Zurich

1L — PR

\

(
(

@
£
=
o
3
&
e
=
s 14
=t
g
o]
= 10—!}

lnereasing

ng = 100

T
—— Ground truth
Matrix method
=i —0. 0.0 0.5 10
—o —0. 0.0 05 1.0
T

PIXEL DENSITY

— Hazy [PA 8.5%

Loke Zurich. IL — B%

@
£
=
o
3
&
e
=
s 14
=t
g
o]
= 10—!}

lnereasing

ng = 300

T
—— Ground truth
Matrix method
=i —0. 0.0 0.5 10
—o —0. 0.0 05 1.0
T

PIXEL DENSITY

— Hazy [PA 8.5%

Loke Zurich. IL — B%

[nereagic

ng, = 1000

T
—— Ground truth

Matrix method

5 0.0 0.5 10

PIXEL DENSITY w—
o, + Lake Zurich. I

y ! T T Hazy IPA 6.5%
5 0.0 05 10 ™

!

Accuracy pancirarie: singlat

QG splitting (LO) GQ splitting (LO) GG splitting (LO)
T
—— Ground truth —— Ground truth —— Ground truth

& o Matrix method Matrix method Matrix method
2
o
< \
= 0
2%
=
So

-1.0 —0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0

—-1.0 —0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0

z z z

» Accuracy increases with pixel density.

P> Seems to require more pixels than non-singlet.

29/36

Accuracy bancnmarie: singlat

QG splitting (LO)

GQ splitting (LO) GG splitting (LO)
T
—— Ground truth —— Ground truth —— Ground truth
Matrix method) Matrix method Matrix method
3
T
9
2
&
31
&
—0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0
1.0 —0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0 —L. —0.5 0.0 0.5 1.0
iz i I

> n, =100
P Accuracy increases with pixel density.

P> Seems to require more pixels than non-singlet.

29/36

Accuracy bancnmarie: singlat

QG splitting (LO)

GQ splitting (LO) GG splitting (LO)
T
—— Ground truth —— Ground truth —— Ground truth
Matrix method) Matrix method Matrix method
3
T
9
2
&
31
&
—0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0
1.0 —0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0 —L. —0.5 0.0 0.5 1.0
iz i I

> n, =300
P Accuracy increases with pixel density.

P> Seems to require more pixels than non-singlet.

29/36

!

Accuracy pancirarie: singlat

QG splitting (LO) GQ splitting (LO) GG splitting (LO)
T
—— Ground truth —— Ground truth —— Ground truth
e Matrix method =3 Matrix method P Matrix method
2 £ &
= = =
) \) <
= 0 = =0
& & L
ES S ES
g g S .
-1 = =2
0
1.0 0.5 0.0 0.5 1.0 1.0 5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
10!
El 6 106
—0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0 —-1.0 —0.5 0.0 0.5 1.0
a v P

> n, = 1000
P> Accuracy increases with pixel density.

P> Seems to require more pixels than non-singlet.

29/36

Diffarantizal matrie aquation

» Combining pieces gives a matrix form of the evolution kernel:

Ki(6, Q) = (Kr(6 @), + (K5 (6.@Y),; + (KE(€,Q%),; + (Ko(@Y),,
» Turns evolution equation into a matrix differential equation:

dH;(£,Q2) &=
g =3 Kol QI(6Q)

» This can be solved using Runge-Kutta.

30/36

0y

Byolution meiricas

» Solution to the evolution equation, via RK4:

N(E
Hi(&,t,Qf) = > Mij (€, Qi — Qi) Hi (6, Qo)
j=1
» Evolution matrix:

(6, @ — Q) = b+ = log T2 (M () + 22 () + 24D () + MP ©)

lm

» Build using RK4:
M3 (6) = Kij (€, Qi)

= 2
Mi(jQ)(g) a Z Kil(ﬁ, Qr2nid) (5lj i %log Q—Q"Mf]”(g))

=1 ini

N
M;J?’)(f) = Z Ki(E, Q?md) (6lj = log QﬁnM(Q)(f))

=il ini

Lk 2
MP(E) = - Kaule. @) (85 +1og T2 1) 6))

(1= ini

31/36

WNurnarieal solution

----- Initial
—— Evolved (Fortran code)
1.5{ Evolved (PyTorch code)
&
+ 1.0

Qi =1GeV?
Q? = 25 GeV?

+++ Initial
—— Evolved (Fortran code)
— = Evolved (PyTorch code)

—i —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0 t—0
L frii -
€ = (49
----- Initial Initial . A
Evolved (Fortran code) Evolved (Fortran code) > Shght d]screpancy
-~ Evolved (PyTorch code) -~ Evolved (PyTorch code) A
: between codes.
S 2l » Noise gone in
3% : PyTorch code?
S 0.0/ ——
¥
= o1
~fire)

—10 05 0.0 05 1.0 il il 0.0 05 1.0 32/36

—

Crucle tirning pancormarks

)

» Ran code to make evolution matrices at 10 Q% values from 1 GeV? to 25 GeV?.
» PyTorch code:
» on GPU (JLab farm): 10.8 s
» on CPU (JLab farm): 19.7 s
» Fortran code
» on CPU (JLab farm): 26.3 s
» on CPU (my laptop): 54 s
» Caveats (comparison is not apples-to-apples):

» PyTorch code uses /N, = 200 and N¢ = 100. (This is hard-coded.)

» Fortran code uses N, = 100 and N¢ = 50. (Segfaults at N, = 200.)

» PyTorch only computes helicity-independent kernels, Ny = 3.

» Fortran computes helicity-independent & -dependent kernels, Ny € {3,4,5}.

» Overall seems PyTorch code is faster.

33/36

L,—.
L’z
(12
Llo

Wlzmory i

» Fortran RK4 solver segfaults for n, > 180.
» Cause possibly from arithmetic operations on stack?
» Fails on the following line:

h MV_NS(:,:,ix1,iQ2) = MV_NS(:,:,ixi,iQ2) + &
3 & rk4_NS(nx, nxi, Q2_cache(iQ2-1), Q2_cache(iQ2), &
5 & K_NS_@(:,:,ixi,4), K_zero(:,:))

» Failure mitigated if MV_NS(:, :,ix1,1Q2) + isremoved; why?

34/36

o‘lou

Intergparanilicy

» There’s a mismatch in discretization strategies.
» PyTorch codebase assumes z and ¢ are discretized the same way.

» Fortran code requires = # &, so grids are misaligned.
» Need interpolation matrices to wrap Fortran evolution matrices.

» May be technical difficulties deploying Fotran code.

» 1did create a Python wrapper via f2py around Fortran code.

» Compilation requires CMake version > 3.12; not all systems have.

» Jupyter Notebooks can’t locate the compiled . So file, no matter what I do to environment
variables. (I’ve been running Fortran code via IPython instead.)

35/36

Cradits (cdirect contriputions to code/dasigd)

Daniel Adamiak
Ian Cloét

Chris Cocuzza
Adam Freese
Nobuo Sato
Marco Zaccheddu

Thank you for your time!

36/36

