Ultra-fast *x*-space evolution for generalized parton distributions

Adam Freese Thomas Jefferson National Accelerator Facility

July 1, 2024

Generalized parton distributions

- I **Generalized parton distributions** are 4-variable functions.
- **Probed in processes such as deeply virtual Compton scattering (DVCS).** I Exciting because they encode **spatial distributions** of quarks and gluons.

The GPD variables

 n defines the reference frame

- \triangleright x is *average* momentum fraction of struck parton.
- \triangleright 2 ξ is the **skewness**: momentum fraction lost by struck parton.
- \blacktriangleright *t* is the invariant momentum transfer.
- \blacktriangleright GPDs also depend on **resolution scale** Q^2 .

Evolution equations

 \blacktriangleright GPDs obey **evolution equations** for Q^2 dependence:

$$
\frac{dH(x,\xi,t,Q^2)}{d\log(Q^2)} = \int_{-1}^{+1} dy K(x,y,\xi,Q^2) H(y,\xi,t,Q^2)
$$

- **Kernel** $K(x, y, \xi, Q^2)$ known theoretically.
- Only need 3D GPD at one scale Q_0^2 to fix 4D GPD at all Q^2 .
	- **In This** is what we (via neural network) parametrize.
- **IDED** Need **fast** and **differentiable** code to perform evolution.

Pixelation

- \blacktriangleright GPD is **pixelated** in *x*-space.
- Per (ξ, t, Q^2) value is effectively column matrix.

$$
H_{i} = \begin{bmatrix} 0 \\ -3.50688094 \times 10^{-8} \\ -2.23178870 \times 10^{-6} \\ \vdots \\ 2.93122078 \times 10^{-5} \end{bmatrix}
$$

Evolution matrices

► GPD at (ξ, t, Q^2) and (ξ, t, Q_0^2) are both column matrices.

- An $N_x \times N_x$ square matrix connects them.
- ▶ **Evolution matrix** (or transfer matrix)
- \triangleright Solve evolution equation by constructing these matrices!
- \blacktriangleright Evolution matrices fit our needs:
	- \blacktriangleright Matrix multiplication is fast (especially with GPUs).
	- \blacktriangleright Matrix multiplication is differentiable.
	- \triangleright Can easy be implemented via torch.einsum

$$
H_i(\xi, t, Q^2) = \sum_{j=1}^{N_x} M_{ij}(\xi, Q_0^2 \to Q^2) H_j(\xi, t, Q_0^2)
$$

Two code bases: PyTorch vs. Fortran

- \blacktriangleright We have two code bases for making evolution matrices, in PyTorch and Fortran.
- \triangleright Can explore different algorithms & strategies.
- \triangleright Different codes serve as a cross-check.
	- \triangleright Ideas developed in one can also be applied to the other.

PyTorch implementation

- \Box All operations are matrix multiplication
- **□** Conceptually straightforward
- \blacksquare Runs on (and leverages) GPUs
- ✓ Still fast on CPUs
- **** ∠ Can't use adaptive integration/interpolation
- **X** Numerically noisy
- Seamlessly integrated into PyTorch codebase

Fortran implementation

- **X** Uses some non-matrix methods
- ✗ Conceptually complicated
- ✗ CPU-only
- Slower than PyTorch code
- \blacksquare Leverages adaptive methods
- Numerically well-behaved
- \triangledown Python wrapper allows integration into codebase

PyTorch implementation

Integral discretization

 \blacktriangleright First step is to discretize the integral:

$$
S(x,\xi,t,Q^2) = \int_{-1}^{+1} dy K(x,y,\xi,Q^2) H(y,\xi,t,Q^2)
$$

 \blacktriangleright Kernel made up of three distributions; must be integrated separately:

$$
K(x, y, \xi, Q^{2}) = K_{R}(x, y, \xi, Q^{2}) + [K_{P}(x, y, \xi, Q^{2})]_{+} + K_{C}(Q^{2})\delta(y - x)
$$

• Regular piece—just a normal integral:

$$
\int_{-1}^{+1} dy K_R(x, y, \xi, Q^2) H(y, \xi, t, Q^2)
$$

Plus distribution piece:

$$
\int_{-1}^{+1} dy \left[K_P(x, y, \xi, Q^2) \right] + H(y, \xi, t, Q^2) \equiv \int_{-1}^{+1} dy \, K_P(x, y, \xi, Q^2) \left(H(y, \xi, t, Q^2) - H(x, \xi, t, Q^2) \right) + H(x, \xi, t, Q^2) \int_{-1}^{+1} dy \left(K_P(x, y, \xi, Q^2) - K_P(y, x, \xi, Q^2) \right)
$$

Constant piece (or delta distribution piece):

$$
\int_{-1}^{+1} dy \, K_C(Q^2) \delta(y-x) H(y,\xi,t,Q^2) \equiv K_C(Q^2) H(x,\xi,t,Q^2)
$$
8/36

Regular piece

I Regular piece approximated using **Gauss-Legendre quadrature**:

$$
S_R(x,\xi,t,Q^2) = \int_{-1}^{+1} dy K_R(x,y,\xi,Q^2) H(y,\xi,t,Q^2)
$$

$$
\approx \sum_{g=1}^{N_g} w_g K_R(x,y_g,\xi,Q^2) H(y_g,\xi,t,Q^2)
$$

- \blacktriangleright y_a are roots of N_a th order Legendre polynomial.
- \bullet w_a are Gaussian weights at these roots.
- I Need $N_a \sim 1000$ for good accuracy.

cubic-turbo interpolation

\triangleright Quadrature grid and pixelation grid are not the same.

- \blacktriangleright Must interpolate to quadrature grid.
- ▶ Use **cubic-turbo** method by Daniel Adamiak.
	- \triangleright Modified cubic Hermite polynomials (except at endpoints).
	- I "Modified": numerical derivative computed using values at adjacent points.
	- \triangleright Ordinary cubic interpolation used for endpoints.
	- ▶ Parallelized code leverages GPUs for massive speedup—hence "turbo".

 \blacktriangleright Interpolation done via matrix multiplication:

$$
H(y_g, \xi, t, Q^2) = \sum_{j=1}^{N_x} L_{gj} H(y_j, \xi, t, Q^2)
$$

Interpolation matrix L_{qi} constructed via **cubic-turbo**.

Regular piece: matrix formulation Regular piece: matrix formulation Regular piece: matrix formulation

 \triangleright Using cubic-turbo and Gauss-Legendre quadrature:

$$
S_R(x_i, \xi, t, Q^2) \approx \sum_{j=1}^{N_x} \underbrace{\left(\sum_{g=1}^{N_g} g_w K_R(x_i, y_g, \xi, Q^2) L_{gj}\right)}_{\left(K_R(\xi, Q^2)\right)_{ij}} \underbrace{H_{j}(\xi, t, Q^2)}_{H(y_j, \xi, t, Q^2)}
$$

Right-hand side is now matrix multiplication:

$$
S_R(x_i, \xi, t, Q^2) \approx \sum_{j=1}^{N_x} (K_R(\xi, Q^2))_{ij} H_j(\xi, t, Q^2)
$$

- The matrix $(K_R(\xi, Q^2))_{ij}$ is *independent of the GPD*.
	- ▶ Can be computed once, stored in memory.
	- Doesn't need to be re-computed for each trial GPD during fit/training/etc.

Plus distribution piece

 \blacktriangleright Plus distribution piece is a sum of two integrals:

$$
S_P(x,\xi,t,Q^2) \equiv \int_{-1}^{+1} dy \left[K_P(x,y,\xi,Q^2) \right] + H(y,\xi,t,Q^2) = S_P^{(1)}(x,\xi,t,Q^2) + S_P^{(2)}(x,\xi,t,Q^2)
$$

$$
S_P^{(1)}(x,\xi,t,Q^2) = \int_{-1}^{+1} dy \, K_P(x,y,\xi,Q^2) \Big(H(y,\xi,t,Q^2) - H(x,\xi,t,Q^2) \Big)
$$

$$
S_P^{(2)}(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) \int_{-1}^{+1} dy \left(K_P(x,y,\xi,Q^2) - K_P(y,x,\xi,Q^2) \right)
$$

► Presents numerical difficulties because of $1/(y - x)$ factors in K_P .

Plus distribution piece: first integral

 \triangleright Do first integral using Gauss-Legendre quadrature and cubic-turbo:

$$
S_P^{(1)}(x_i, \xi, t, Q^2) = \int_{-1}^{+1} dy \, K_P(x_i, y, \xi, Q^2) \Big(H(y, \xi, t, Q^2) - H(x_i, \xi, t, Q^2) \Big)
$$

$$
\approx \sum_{g=1}^{N_g} w_g K_P(x_i, y_g, \xi, Q^2) \left(\sum_{j=1}^{N_x} L_{gj} H(y_j, \xi, t, Q^2) - H(x_i, \xi, t, Q^2) \right)
$$

 \blacktriangleright **Matrix implementation:**

S

$$
S_P^{(1)}(x_i, \xi, t, Q^2) \approx \sum_{j=1}^{N_x} \underbrace{\left(\sum_{g=1}^{N_g} w_g K_P(x_i, y_g, \xi, Q^2) \left[L_{gj} - \delta_{ij} \right] \right)}_{\left(K_P^{(1)}(\xi, Q^2) \right)_{ij}} H_j(\xi, t, Q^2)
$$

 \triangleright Current implementation numerically noisy.

Plus distribution piece: second integral $\mathbb Z$

Second integral gives diagonal matrix:

$$
S_P^{(2)}(x_i, \xi, t, Q^2) = \sum_{j=1}^{N_x} \underbrace{\left(\int_{-1}^{+1} dy \left(K_P(x_i, y, \xi, Q^2) - K_P(y, x_i, \xi, Q^2)\right)\right) \delta_{ij} H_j(\xi, t, Q^2)}_{\left(K_P^{(2)}(\xi, Q^2)\right)_{ij}}
$$

- \triangleright Current PyTorch implementation does integral with $torch$. trapz
	- Surprisingly smooth result, despite singularity at $y = x$.
	- \triangleright Numerical issues for $x \sim \xi$; fixed by interpolating from adjacent points.
- \blacktriangleright Alternate Fortran implementation uses adaptive integration—more accurate result.
- Could do integral analytically (only feasible at leading order).

Numerical noise in current implementation

- \blacktriangleright Numerical noise in $S_P^{(1)}$ $\stackrel{(1)}{P}$.
	- \triangleright The term that integrates $H(y) H(x)$...
	- \bullet …and has $1/(y-x)$ in the integrand.
- \blacktriangleright Cause unclear.
- lacktriangleright Moise not present in Fortran code.
- \triangleright Noise disappears in overall solution.
	- \blacktriangleright Maybe don't worry about it?
- \blacktriangleright Suggestions welcome

Constant piece

 \blacktriangleright The constant piece (delta distribution piece) is trivial.

$$
S_C(x_i, \xi, t, Q^2) = \int_{-1}^{+1} dy \, K_C(Q^2) \delta(y - x_i) H(y, \xi, t, Q^2)
$$

=
$$
\sum_{j=1}^{N_x} \underbrace{\left(\delta_{ij} K_C(Q^2)\right)}_{\left(K_C(Q^2)\right)_{ij}} H_j(\xi, t, Q^2)
$$

Fortran implementation

Regular piece

I Regular piece approximated using **Gauss-Kronrod quadrature.**

I The domain [−1, 1] is broken into **six pieces** with boundaries:

 $-1 < \min(-\xi, -|x|) < \max(-\xi, -|x|) < 0 < \min(\xi, |x|) < \max(\xi, |x|) < 1$

- \triangleright x and ξ grids must be misaligned.
- **Interpolation done differently for every** x and ξ point.
- \blacktriangleright 15-point quadrature used inside each region.

$$
S_R(x,\xi,t,Q^2) \approx \sum_{g=1}^{N_g=6\times15} w_g K_R(x,y_g,\xi,Q^2) H(y_g,\xi,t,Q^2)
$$

$$
\approx \sum_{j=1}^{N_x} \underbrace{\left(\sum_{g=1}^{N_g} w_g K_R(x_i,y_g,\xi,Q^2) L_{gj}(x_i,\xi)\right)}_{\left(K_R(\xi,Q^2)\right)_{ij} H_j(\xi,t,Q^2)
$$

I use (piecewise) sixth-order Newton polynomials to interpolate.

Plus distribution piece

 \blacktriangleright Reminder: plus distribution piece is a sum of two integrals:

$$
S_P(x,\xi,t,Q^2) \equiv \int_{-1}^{+1} dy \left[K_P(x,y,\xi,Q^2) \right] + H(y,\xi,t,Q^2) = S_P^{(1)}(x,\xi,t,Q^2) + S_P^{(2)}(x,\xi,t,Q^2)
$$

$$
S_P^{(1)}(x,\xi,t,Q^2) = \int_{-1}^{+1} dy \, K_P(x,y,\xi,Q^2) \Big(H(y,\xi,t,Q^2) - H(x,\xi,t,Q^2) \Big)
$$

$$
S_P^{(2)}(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) \int_{-1}^{+1} dy \left(K_P(x,y,\xi,Q^2) - K_P(y,x,\xi,Q^2) \right)
$$

► Still presents numerical difficulties because of $1/(y - x)$ factors in K_P .

Plus distribution piece: first integral

\triangleright Do first integral via Gauss-Kronrod rule still.

- \triangleright Break into same six integration regions.
- \triangleright Use same sixth-order Newton interpolation.
- \blacktriangleright **Matrix implementation:**

$$
S_P^{(1)}(x_i, \xi, t, Q^2) \approx \sum_{j=1}^{N_x} \underbrace{\left(\sum_{g=1}^{N_g} w_g K_P(x_i, y_g, \xi, Q^2) \Big[L_{gj}(x_i, \xi) - \delta_{ij}\Big]\right)}_{\left(K_P^{(1)}(\xi, Q^2)\right)_{ij}} H_j(\xi, t, Q^2)
$$

▶ The Fortran implentation is *not noisy*.

Plus distribution piece: second integral $\mathbb R$

 \triangleright Second integral gives diagonal matrix:

$$
S_P^{(2)}(x_i, \xi, t, Q^2) = \sum_{j=1}^{N_x} \underbrace{\left(\int_{-1}^{+1} dy \left(K_P(x_i, y, \xi, Q^2) - K_P(y, x_i, \xi, Q^2)\right)\right) \delta_{ij} H_j(\xi, t, Q^2)}_{\left(K_P^{(2)}(\xi, Q^2)\right)_{ij}}
$$

I I get most accurate results using **adaptive quadrature** and **three regions**, with boundaries: $-1 < -|x| < |x| < 1$

Can get analytic results, & thus benchmark different integration methods.

Second integral: three-region method Second integral: three-region method

Relative error compared to analytic result for QQ kernel.

Second integral: six-region method

Relative error compared to analytic result for QQ kernel.

Second integral: trapezoid method

Relative error compared to analytic result for QQ kernel.

Interpixels

- Adaptive quadrature incompatible with fixed interpolation matrices.
- **Interpixels** (**interpolated pixel**): interpolation basis functions.
	- \blacktriangleright Exploit linearity of Newton interpolation:

$$
N[y_1 + y_2](x) = N[y_1](x) + N[y_2](x)
$$

GPD pixelation is a sum of pixels:

$$
\boldsymbol{H} = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{bmatrix} = h_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + h_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \ldots + h_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \equiv h_1 \hat{e}_1 + h_2 \hat{e}_2 + \ldots + h_n \hat{e}_n
$$

Interpolated pixelation is a sum of interpixels!

 $N[\mathbf{H}](x) = h_1 N[\hat{e}_1](x) + h_2 N[\hat{e}_2](x) + \ldots + h_n N[\hat{e}_n](x)$

Get kernel matrix by putting $H[\hat{e}_j](x)$ into integrals.

- **Interpixel is a** *piecewise* polynomial.
	- **In Of fixed order.**
	- ▶ Avoids Runge phenomennon.
- \blacktriangleright Knots on the discrete x grid.
- \blacktriangleright Each interpixel is oscillatory.
- \triangleright Oscillations cancel in sum.
- Improvement at high N_x .

 $n_r = 40$

- **Interpixel is a** *piecewise* polynomial.
	- **In Of fixed order.**
	- **In Avoids Runge phenomennon.**
- \blacktriangleright Knots on the discrete x grid.
- \blacktriangleright Each interpixel is oscillatory.
- ▶ Oscillations cancel in sum.
- Improvement at high N_x .

- **Interpixel is a** *piecewise* polynomial.
	- **In Of fixed order.**
	- **In Avoids Runge phenomennon.**
- \blacktriangleright Knots on the discrete x grid.
- \blacktriangleright Each interpixel is oscillatory.
- ▶ Oscillations cancel in sum.
- Improvement at high N_x .

- **Interpixel is a** *piecewise* polynomial.
	- \triangleright Of fixed order.
	- **In Avoids Runge phenomennon.**
- \blacktriangleright Knots on the discrete x grid.
- \blacktriangleright Each interpixel is oscillatory.
- \triangleright Oscillations cancel in sum.
- Improvement at high N_x .

- **Interpixel is a** *piecewise* polynomial.
	- \triangleright Of fixed order.
	- **In Avoids Runge phenomennon.**
- \blacktriangleright Knots on the discrete x grid.
- \blacktriangleright Each interpixel is oscillatory.
- \triangleright Oscillations cancel in sum.
- Improvement at high N_x .

Reasons for interpixels

- \triangleright Don't need to store big interpolation matrices in memory.
- \blacktriangleright More flexible (adaptive or (x, ξ) -dependent) interpolation allowed.
- \blacktriangleright Allows sampling kernels arbitrarily finely in a controlled way.

- ▶ "Ground truth" determined by adaptive integration of model function.
- \blacktriangleright Error represents error from both pixelation & interpolation.
- \triangleright Sub-percent error even at $n_x = 40$.

- **In Accuracy increases with pixel density.**
- \triangleright Seems to require more pixels than non-singlet.

- **Accuracy increases with pixel density.**
- \blacktriangleright Seems to require more pixels than non-singlet.

- **Accuracy increases with pixel density.**
- \blacktriangleright Seems to require more pixels than non-singlet.

- \blacktriangleright Accuracy increases with pixel density.
- \triangleright Seems to require more pixels than non-singlet.

Solving the evolution equations

Differential matrix equation

- \triangleright Combining pieces gives a matrix form of the evolution kernel:
	- $K_{ij}(\xi, Q^2) = (K_R(\xi, Q^2))_{ij} + (K_P^{(1)})$ $\binom{(1)}{P}(\xi,Q^2)_{ij} + \bigl(K_P^{(2)}$ $\left(F^{(2)}_{P}(\xi,Q^2)\right)_{ij}+\left(K_C(Q^2)\right)_{ij}$
- **F** Turns evolution equation into a **matrix differential equation**:

$$
\frac{\mathrm{d}H_i(\xi, Q^2)}{\mathrm{d}\log(Q^2)} = \sum_{j=1}^{N_x} K_{ij}(\xi, Q^2) H_j(\xi, Q^2)
$$

 \blacktriangleright This can be solved using Runge-Kutta.

Evolution matrices

 \triangleright Solution to the evolution equation, via RK4:

$$
H_i(\xi, t, Q_{\text{fin}}^2) = \sum_{j=1}^{N_x} M_{ij}(\xi, Q_{\text{ini}}^2 \to Q_{\text{fin}}^2) H_j(\xi, Q_{\text{ini}}^2)
$$

F Evolution matrix:

$$
M_{ij}(\xi, Q_{\text{ini}}^2 \to Q_{\text{fin}}^2) = \delta_{ij} + \frac{1}{6} \log \frac{Q_{\text{fin}}^2}{Q_{\text{ini}}^2} \Big(M_{ij}^{(1)}(\xi) + 2M_{ij}^{(2)}(\xi) + 2M_{ij}^{(3)}(\xi) + M_{ij}^{(4)}(\xi) \Big)
$$

 \blacktriangleright Build using RK4:

$$
M_{ij}^{(1)}(\xi) = K_{ij}(\xi, Q_{\text{mi}}^2)
$$

\n
$$
M_{ij}^{(2)}(\xi) = \sum_{l=1}^{N_x} K_{il}(\xi, Q_{\text{mid}}^2) \left(\delta_{lj} + \frac{1}{2} \log \frac{Q_{\text{fin}}^2}{Q_{\text{ini}}^2} M_{lj}^{(1)}(\xi) \right)
$$

\n
$$
M_{ij}^{(3)}(\xi) = \sum_{l=1}^{N_x} K_{il}(\xi, Q_{\text{mid}}^2) \left(\delta_{lj} + \frac{1}{2} \log \frac{Q_{\text{fin}}^2}{Q_{\text{ini}}^2} M_{lj}^{(2)}(\xi) \right)
$$

\n
$$
M_{ij}^{(4)}(\xi) = \sum_{l=1}^{N_x} K_{il}(\xi, Q_{\text{fin}}^2) \left(\delta_{lj} + \log \frac{Q_{\text{fin}}^2}{Q_{\text{ini}}^2} M_{lj}^{(3)}(\xi) \right)
$$

Numerical solution

 $Q_0^2 = 1 \text{ GeV}^2$ $Q^2 = 25 \text{ GeV}^2$ $t = 0$ $\xi = 0.5$

- \blacktriangleright Slight discrepancy between codes.
- \triangleright Noise gone in PyTorch code?

Crude timing benchmarks

- Ran code to make evolution matrices at 10 Q^2 values from 1 GeV² to 25 GeV².
- ▶ **PyTorch code:**
	- \triangleright on **GPU** (JLab farm): 10.8 s
	- \triangleright on CPU (JLab farm): 19.7 s
- ▶ Fortran code
	- \triangleright on CPU (JLab farm): 26.3 s
	- \triangleright on CPU (my laptop): 54 s
- ▶ **Caveats** (comparison is not apples-to-apples):
	- **PyTorch code uses** $N_x = 200$ and $N_\xi = 100$. (This is hard-coded.)
	- Fortran code uses $N_x = 100$ and $N_\xi = 50$. (Segfaults at $N_x = 200$.)
	- **•** PyTorch only computes helicity-independent kernels, $N_f = 3$.
	- ► Fortran computes helicity-independent & -dependent kernels, $N_f \in \{3, 4, 5\}$.
- ▶ Overall seems PyTorch code is faster.

Remaining issues

- \blacktriangleright Fortran RK4 solver segfaults for $n_x > 180$.
- \blacktriangleright Cause possibly from arithmetic operations on stack?
- \blacktriangleright Fails on the following line:

```
MV NS(:,:,ixi,iQ2) = MV NS(:,:,ixi,iQ2) + &2 & rk4_NS(nx, nxi, Q2_cache(iQ2-1), Q2_cache(iQ2), &
& K_N = 0(:,:,ixi,4), K_Z = 0(:,:))
```
▶ Failure mitigated if MV_NS(:,:, ixi , $iQ2$) + is removed; why?

Interoperability

- \blacktriangleright There's a mismatch in discretization strategies.
	- **PyTorch codebase assumes x and** ξ **are discretized the same way.**
	- **If** Fortran code requires $x \neq \xi$, so grids are misaligned.
	- **IDENTIFY INTERFEDIATION MATRICIST MATRICISE.** Need interpolation matrices.
- \blacktriangleright May be technical difficulties deploying Fotran code.
	- ▶ I *did* create a Python wrapper via f2py around Fortran code.
	- \triangleright Compilation requires CMake version > 3.12; not all systems have.
	- I Jupyter Notebooks can't locate the compiled . so file, no matter what I do to environment variables. (I've been running Fortran code via IPython instead.)

Credits (direct contributions to code/design)

- \blacktriangleright Daniel Adamiak
- \blacktriangleright Ian Cloët
- \blacktriangleright Chris Cocuzza
- \blacktriangleright Adam Freese
- \blacktriangleright Nobuo Sato
- ▶ Marco Zaccheddu

Thank you for your time!