
1/36

Ultra-fast x-space evolution for
generalized parton distributions

Ultra-fast x-space evolution for
generalized parton distributions

Ultra-fast x-space evolution for
generalized parton distributions

Ultra-fast x-space evolution for
generalized parton distributions

Ultra-fast x-space evolution for
generalized parton distributions

Ultra-fast x-space evolution for
generalized parton distributions

Adam FreeseAdam FreeseAdam FreeseAdam FreeseAdam FreeseAdam Freese

Thomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator Facility

July 1, 2024July 1, 2024July 1, 2024July 1, 2024July 1, 2024July 1, 2024



2/36

Generalized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributions

e

e′

p

x+ ξ x− ξ

q

p′

Deeply virtual Compton scattering

H(ξ, t;Q2)

p

x+ ξ x− ξ

p′

Generalized parton distribution

H(x, ξ, t;Q2)

I Generalized parton distributions are 4-variable functions.
I Probed in processes such as deeply virtual Compton scattering (DVCS).
I Exciting because they encode spatial distributions of quarks and gluons.



3/36

The GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variables

e

e′

p

x+ ξ x− ξ

q

p′

x =
(k + k′) · n
(p+ p′) · n

ξ =
(p− p′) · n
(p+ p′) · n

t = (p′ − p)2

Q2 = −q2

n defines the reference frame

I x is average momentum fraction of struck parton.

I 2ξ is the skewness: momentum fraction lost by struck parton.

I t is the invariant momentum transfer.

I GPDs also depend on resolution scale Q2.



4/36

Evolution equationsEvolution equationsEvolution equationsEvolution equationsEvolution equationsEvolution equations

I GPDs obey evolution equations for Q2 dependence:

dH(x, ξ, t, Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I KernelK(x, y, ξ,Q2) known theoretically.

I Only need 3D GPD at one scale Q2
0 to fix 4D GPD at all Q2.

I This is what we (via neural network) parametrize.

I Need fast and differentiable code to perform evolution.



5/36

PixelationPixelationPixelationPixelationPixelationPixelation

I GPD is pixelated in x-space.

I Per (ξ, t, Q2) value is effectively column matrix.

Hi =


0

−3.50688094× 10−8

−2.23178870× 10−6

...

2.93122078× 10−5





6/36

Evolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matrices

I GPD at (ξ, t, Q2) and (ξ, t, Q2
0) are both column matrices.

I An Nx ×Nx square matrix connects them.
I Evolution matrix (or transfer matrix)
I Solve evolution equation by constructing these matrices!

I Evolution matrices fit our needs:

I Matrix multiplication is fast (especially with GPUs).
I Matrix multiplication is differentiable.
I Can easy be implemented via torch.einsum

Hi(ξ, t, Q
2) =

Nx∑
j=1

Mij(ξ,Q
2
0 → Q2)Hj(ξ, t, Q

2
0)



7/36

Two code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. FortranTwo code bases: PyTorch vs. Fortran

I We have two code bases for making evolution matrices, in PyTorch and Fortran.

I Can explore different algorithms & strategies.

I Different codes serve as a cross-check.

I Ideas developed in one can also be applied to the other.

PyTorch implementation

�3 All operations are matrix multiplication

�3 Conceptually straightforward

�3 Runs on (and leverages) GPUs

�3 Still fast on CPUs

�7 Can’t use adaptive integration/interpolation

�7 Numerically noisy

�3 Seamlessly integrated into PyTorch

codebase

Fortran implementation

�7 Uses some non-matrix methods

�7 Conceptually complicated

�7 CPU-only

�7 Slower than PyTorch code

�3 Leverages adaptive methods

�3 Numerically well-behaved

�3 Python wrapper allows integration into

codebase



PyTorch implementationPyTorch implementation



8/36

Integral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretization

I First step is to discretize the integral:

S(x, ξ, t, Q2) =

∫ +1

−1

dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I Kernel made up of three distributions; must be integrated separately:

K(x, y, ξ,Q2) = KR(x, y, ξ,Q
2) + [KP (x, y, ξ,Q

2)]+ +KC(Q
2)δ(y − x)

I Regular piece—just a normal integral:∫ +1

−1

dy KR(x, y, ξ,Q
2)H(y, ξ, t, Q2)

I Plus distribution piece:∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) ≡

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
+H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Constant piece (or delta distribution piece):∫ +1

−1

dy KC(Q
2)δ(y − x)H(y, ξ, t, Q2) ≡ KC(Q

2)H(x, ξ, t, Q2)



9/36

Regular pieceRegular pieceRegular pieceRegular pieceRegular pieceRegular piece

I Regular piece approximated using Gauss-Legendre quadrature:

SR(x, ξ, t,Q
2) =

∫ +1

−1
dy KR(x, y, ξ,Q

2)H(y, ξ, t, Q2)

≈
Ng∑
g=1

wgKR(x, yg, ξ, Q
2)H(yg, ξ, t, Q

2)

I yg are roots of Ngth order Legendre polynomial.
I wg are Gaussian weights at these roots.
I Need Ng ∼ 1000 for good accuracy.



10/36

cubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolationcubic-turbo interpolation

I Quadrature grid and pixelation grid are not the same.

I Must interpolate to quadrature grid.

I Use cubic-turbo method by Daniel Adamiak.

I Modified cubic Hermite polynomials (except at endpoints).
I “Modified”: numerical derivative computed using values at adjacent points.
I Ordinary cubic interpolation used for endpoints.
I Parallelized code leverages GPUs for massive speedup—hence “turbo”.

I Interpolation done via matrix multiplication:

H(yg, ξ, t, Q
2) =

Nx∑
j=1

LgjH(yj , ξ, t, Q
2)

I Interpolation matrix Lgj constructed via cubic-turbo.



11/36

Regular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulationRegular piece: matrix formulation

I Using cubic-turbo and Gauss-Legendre quadrature:

SR(xi, ξ, t, Q
2) ≈

Nx∑
j=1

 Ng∑
g=1

gwKR(xi, yg, ξ, Q
2)Lgj


︸ ︷︷ ︸(

KR(ξ,Q
2)
)
ij

Hj(ξ,t,Q
2)︷ ︸︸ ︷

H(yj , ξ, t, Q
2)

I Right-hand side is now matrix multiplication:

SR(xi, ξ, t, Q
2) ≈

Nx∑
j=1

(
KR(ξ,Q

2)
)
ij
Hj(ξ, t, Q

2)

I The matrix
(
KR(ξ,Q

2)
)
ij
is independent of the GPD.

I Can be computed once, stored in memory.
I Doesn’t need to be re-computed for each trial GPD during fit/training/etc.



12/36

Plus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piece

I Plus distribution piece is a sum of two integrals:

SP (x, ξ, t, Q
2) ≡

∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) = S

(1)
P (x, ξ, t, Q2) + S

(2)
P (x, ξ, t, Q2)

S
(1)
P (x, ξ, t, Q2) =

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
S

(2)
P (x, ξ, t, Q2) = H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Presents numerical difficulties because of 1/(y − x) factors inKP .



13/36

Plus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integral

I Do first integral using Gauss-Legendre quadrature and cubic-turbo:

S
(1)
P (xi, ξ, t, Q

2) =

∫ +1

−1

dy KP (xi, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(xi, ξ, t, Q

2)
)

≈
Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)

(
Nx∑
j=1

LgjH(yj , ξ, t, Q
2)−H(xi, ξ, t, Q

2)

)
I Matrix implementation:

S
(1)
P (xi, ξ, t, Q

2) ≈
Nx∑
j=1

Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)
[
Lgj − δij

]
︸ ︷︷ ︸(

K
(1)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I Current implementation numerically noisy.



14/36

Plus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integral

I Second integral gives diagonal matrix:

S
(2)
P (xi, ξ, t, Q

2) =

Nx∑
j=1

(∫ +1

−1
dy

(
KP (xi, y, ξ,Q

2)−KP (y, xi, ξ, Q
2)
))

δij︸ ︷︷ ︸(
K

(2)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I Current PyTorch implementation does integral with torch.trapz
I Surprisingly smooth result, despite singularity at y = x.
I Numerical issues for x ∼ ξ; fixed by interpolating from adjacent points.

I Alternate Fortran implementation uses adaptive integration—more accurate result.

I Could do integral analytically (only feasible at leading order).



15/36

Numerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementationNumerical noise in current implementation

I Numerical noise in S
(1)
P .

I The term that integrates H(y)−H(x)…
I …and has 1/(y − x) in the integrand.

I Cause unclear.

I Noise not present in Fortran code.

I Noise disappears in overall solution.

I Maybe don’t worry about it?

I Suggestions welcome



16/36

Constant pieceConstant pieceConstant pieceConstant pieceConstant pieceConstant piece

I The constant piece (delta distribution piece) is trivial.

SC(xi, ξ, t, Q
2) =

∫ +1

−1
dy KC(Q

2)δ(y − xi)H(y, ξ, t, Q2)

=

Nx∑
j=1

(
δijKC(Q

2)
)

︸ ︷︷ ︸(
KC(Q

2)
)
ij

Hj(ξ, t, Q
2)



Fortran implementationFortran implementation



17/36

Regular pieceRegular pieceRegular pieceRegular pieceRegular pieceRegular piece

I Regular piece approximated using Gauss-Kronrod quadrature.
I The domain [−1, 1] is broken into six pieces with boundaries:

−1 < min(−ξ,−|x|) < max(−ξ,−|x|) < 0 < min(ξ, |x|) < max(ξ, |x|) < 1

I x and ξ grids must be misaligned.
I Interpolation done differently for every x and ξ point.
I 15-point quadrature used inside each region.

SR(x, ξ, t, Q
2) ≈

Ng=6×15∑
g=1

wgKR(x, yg, ξ, Q
2)H(yg, ξ, t, Q

2)

≈
Nx∑
j=1

 Ng∑
g=1

wgKR(xi, yg, ξ, Q
2)Lgj(xi, ξ)


︸ ︷︷ ︸(

KR(ξ,Q
2)
)
ij

Hj(ξ, t, Q
2)

I I use (piecewise) sixth-order Newton polynomials to interpolate.



18/36

Plus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piece

I Reminder: plus distribution piece is a sum of two integrals:

SP (x, ξ, t, Q
2) ≡

∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) = S

(1)
P (x, ξ, t, Q2) + S

(2)
P (x, ξ, t, Q2)

S
(1)
P (x, ξ, t, Q2) =

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
S

(2)
P (x, ξ, t, Q2) = H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Still presents numerical difficulties because of 1/(y − x) factors inKP .



19/36

Plus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integralPlus distribution piece: first integral

I Do first integral via Gauss-Kronrod rule still.

I Break into same six integration regions.
I Use same sixth-order Newton interpolation.

I Matrix implementation:

S
(1)
P (xi, ξ, t, Q

2) ≈
Nx∑
j=1

 Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)
[
Lgj(xi, ξ)− δij

]
︸ ︷︷ ︸(

K
(1)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I The Fortran implentation is not noisy.



20/36

Plus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integralPlus distribution piece: second integral

I Second integral gives diagonal matrix:

S
(2)
P (xi, ξ, t, Q

2) =

Nx∑
j=1

(∫ +1

−1
dy

(
KP (xi, y, ξ,Q

2)−KP (y, xi, ξ, Q
2)
))

δij︸ ︷︷ ︸(
K

(2)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I I get most accurate results using adaptive quadrature and three regions, with boundaries:

−1 < −|x| < |x| < 1

I Can get analytic results, & thus benchmark different integration methods.



21/36

Second integral: three-region methodSecond integral: three-region methodSecond integral: three-region methodSecond integral: three-region methodSecond integral: three-region methodSecond integral: three-region method

I Relative error compared to analytic result for QQ kernel.



22/36

Second integral: six-region methodSecond integral: six-region methodSecond integral: six-region methodSecond integral: six-region methodSecond integral: six-region methodSecond integral: six-region method

I Relative error compared to analytic result for QQ kernel.



23/36

Second integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid methodSecond integral: trapezoid method

I Relative error compared to analytic result for QQ kernel.



24/36

InterpixelsInterpixelsInterpixelsInterpixelsInterpixelsInterpixels

I Adaptive quadrature incompatible with fixed interpolation matrices.

I Interpixels (interpolated pixel): interpolation basis functions.
I Exploit linearity of Newton interpolation:

N [y1 + y2](x) = N [y1](x) +N [y2](x)

I GPD pixelation is a sum of pixels:

H =


h1

h2

...

hn

 = h1


1
0
...

0

+ h2


0
1
...

0

+ . . .+ hn


0
0
...

1

 ≡ h1ê1 + h2ê2 + . . .+ hnên

I Interpolated pixelation is a sum of interpixels!

N [H](x) = h1N [ê1](x) + h2N [ê2](x) + . . .+ hnN [ên](x)

I Get kernel matrix by putting H[êj ](x) into integrals.



25/36

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 8

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



25/36

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 40

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



25/36

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 100

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



25/36

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 300

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



25/36

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 1000

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



26/36

Reasons for interpixelsReasons for interpixelsReasons for interpixelsReasons for interpixelsReasons for interpixelsReasons for interpixels

I Don’t need to store big interpolation matrices in memory.

I More flexible (adaptive or (x, ξ)-dependent) interpolation allowed.

I Allows sampling kernels arbitrarily finely in a controlled way.



27/36

Accuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singletAccuracy benchmark: non-singlet

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.



28/36

Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 40



28/36

Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 100



28/36

Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 300



28/36

Increasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singletIncreasing pixel density: non-singlet

nx = 1000



29/36

Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 40

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.



29/36

Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 100

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.



29/36

Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 300

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.



29/36

Accuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singletAccuracy benchmark: singlet

I nx = 1000

I Accuracy increases with pixel density.

I Seems to require more pixels than non-singlet.



Solving the evolution equationsSolving the evolution equations



30/36

Differential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equation

I Combining pieces gives a matrix form of the evolution kernel:

Kij(ξ,Q
2) =

(
KR(ξ,Q

2)
)
ij
+
(
K

(1)
P (ξ,Q2)

)
ij
+
(
K

(2)
P (ξ,Q2)

)
ij
+
(
KC(Q

2)
)
ij

I Turns evolution equation into a matrix differential equation:

dHi(ξ,Q
2)

d log(Q2)
=

Nx∑
j=1

Kij(ξ,Q
2)Hj(ξ,Q

2)

I This can be solved using Runge-Kutta.



31/36

Evolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matrices

I Solution to the evolution equation, via RK4:

Hi(ξ, t, Q
2
fin) =

Nx∑
j=1

Mij(ξ,Q
2
ini → Q2

fin)Hj(ξ,Q
2
ini)

I Evolution matrix:

Mij(ξ,Q
2
ini → Q2

fin) = δij +
1

6
log

Q2
fin

Q2
ini

(
M

(1)
ij (ξ) + 2M

(2)
ij (ξ) + 2M

(3)
ij (ξ) +M

(4)
ij (ξ)

)
I Build using RK4:

M
(1)
ij (ξ) = Kij(ξ,Q

2
ini)

M
(2)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(1)
lj (ξ)

)

M
(3)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(2)
lj (ξ)

)

M
(4)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
fin)

(
δlj + log

Q2
fin

Q2
ini

M
(3)
lj (ξ)

)



32/36

Numerical solutionNumerical solutionNumerical solutionNumerical solutionNumerical solutionNumerical solution

Q2
0 = 1 GeV2

Q2 = 25 GeV2

t = 0

ξ = 0.5

I Slight discrepancy
between codes.

I Noise gone in
PyTorch code?



33/36

Crude timing benchmarksCrude timing benchmarksCrude timing benchmarksCrude timing benchmarksCrude timing benchmarksCrude timing benchmarks

I Ran code to make evolution matrices at 10 Q2 values from 1 GeV2 to 25 GeV2.

I PyTorch code:

I on GPU (JLab farm): 10.8 s
I on CPU (JLab farm): 19.7 s

I Fortran code

I on CPU (JLab farm): 26.3 s
I on CPU (my laptop): 54 s

I Caveats (comparison is not apples-to-apples):

I PyTorch code uses Nx = 200 and Nξ = 100. (This is hard-coded.)
I Fortran code uses Nx = 100 and Nξ = 50. (Segfaults at Nx = 200.)
I PyTorch only computes helicity-independent kernels, Nf = 3.
I Fortran computes helicity-independent & -dependent kernels, Nf ∈ {3, 4, 5}.

I Overall seems PyTorch code is faster.



Remaining issuesRemaining issues



34/36

Memory issuesMemory issuesMemory issuesMemory issuesMemory issuesMemory issues

I Fortran RK4 solver segfaults for nx > 180.

I Cause possibly from arithmetic operations on stack?

I Fails on the following line:

1 MV_NS(:,:,ixi,iQ2) = MV_NS(:,:,ixi,iQ2) + &
2 & rk4_NS(nx, nxi, Q2_cache(iQ2-1), Q2_cache(iQ2), &
3 & K_NS_0(:,:,ixi,4), K_zero(:,:))

I Failure mitigated if MV_NS(:,:,ixi,iQ2) + is removed; why?



35/36

InteroperabilityInteroperabilityInteroperabilityInteroperabilityInteroperabilityInteroperability

I There’s a mismatch in discretization strategies.

I PyTorch codebase assumes x and ξ are discretized the same way.
I Fortran code requires x 6= ξ, so grids are misaligned.
I Need interpolation matrices to wrap Fortran evolution matrices.

I May be technical difficulties deploying Fotran code.

I I did create a Python wrapper via f2py around Fortran code.
I Compilation requires CMake version ≥ 3.12; not all systems have.
I Jupyter Notebooks can’t locate the compiled .so file, no matter what I do to environment

variables. (I’ve been running Fortran code via IPython instead.)



36/36

Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)Credits (direct contributions to code/design)

I Daniel Adamiak

I Ian Cloët

I Chris Cocuzza

I Adam Freese

I Nobuo Sato

I Marco Zaccheddu

Thank you for your time!


