


» The goal: extract generalized parton distributions (GPDs) from deeply virtual Compton
scattering (DVCS) events.

» The usual caveats of inverse problems apply:

» Finite data, continuous functions.
P Epistemic uncertainty (interpolation & extrapolation error).

» The issue is worse for GPDs—the formal inverse almost doesn’t exist.
» T’ll explain this over the next few slides.

> Caveats:
» This is all a work in progress.
» I’m just one member of the team—1I1l point you to others’ slides where they can explain things
better.
P> I’m not an expert in inverse problems or uncertainty quantification; if I’m saying or doing
anything foolish, feel free to correct me—I’1l benefit from being led on the right path!
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Deeply virtual Compton scattering Generalized parton distribution

H(E Q%) H(z,&, Q%)

» Generalized parton distributions are 4-variable functions.
P Probed in processes such as deeply virtual Compton scattering (DVCS).
» Exciting because they encode spatial distributions of quarks and gluons. 3/17
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n defines the reference frame

» 1 is average momentum fraction of struck parton.
» 2¢ is the skewness: momentum fraction lost by struck parton.
»  is the invariant momentum transfer.

» GPDs also depend on resolution scale Q2.
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DYCS aud GED3

Deeply virtual Compton scattering Generalized parton distribution
H(E 1 Q%) H(z,&,t Q%)
» Loop in diagram: z is integrated out
» Integrated quantities seen in experiment: Compton form factors
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Snadoyw GPDs
P> Need to invert the relationship:

1
H(E Q) = / 4 C(@,§)H (.66 @)

» For fixed Q?, the inverse doesn’t exist!
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» Multiple solutions encoded by shadow 5
GPDs: o -
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> H(x,&,t,Q3) and

> H(z,&,t,Q3) + b(z,&,t,QF) give the
same physical amplitude.

P> Bertone, et al., PRD103 (2021) 114019

» Akin to inverting a 4 X 3 matrix.

Examples of shadow GPDs.
» But this is not the end. 6/17
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Byolution acuations

» GPDs obey evolution equations for Q%> dependence:
dH(x7£7t’ Qz) /+1 2 2
TP, N dyK($>y’€7Q)H(ya€)taQ)EK@H
dlog(Q?) -1
» Kernel K (x,v, ¢, Q%) known theoretically (up to NLO).
» Basically a generalization of DGLAP evolution.
» Only need 3D GPD at one scale Q% to fix 4D GPD at all Q?.
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Please excuse the horrendous abuse of notation!
» Shadow GPDs evolve into non-shadows:

/Hshadow(gvta Q2) :/ dz C($ 5) <

» Three variable function — three variable function.
» We now have a proper inverse problem.
» The inverse exists, but how well can we find it—given finite data, with uncertainties? 7117
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T
Ground truth
Pixelation

10

» We pixelate the GPD:
H(.CL', 57 ta Q2) = HZ]le
» Avoids biases of functional forms.

» Meshes well with finite element methods.

» Number of needed pixels furnishes a
resolution. (A kind of uncertainty
quantification?)

» Integrals become tensor contraction:

» Fast and differentiable!
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WNotag on pixalai

» Pixel widths & placement constitute a covert model dependence.

» Linear vs. logarithmic spacing is motivated by expected functional
behavior.

» Allowing pixel widths to float being explored—talk by Daniel
Adamiak (see QR code).
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Iniarpixcals

> Interpixels (interpolated pixel): interpolation basis functions.
» Exploit linearity of polynomial (e.g., Newton) interpolation:

Niys + y2](2) = N[ya](z) + Nlya] ()

» GPD pixelation is a sum of pixels:

H,y 1 0 0
Hoy 0 1 0
H, 0 0 1

» Interpolated pixelation is a sum of interpixels!
N[H](x) = HiN[é1](x) + HaN[és](x) + ... + H,N[é,](x)

» Basically a shoddy finite element method.
P [ just learned this Wednesday that this can be done better.

» Get convolution matrices by putting H[é;] () into integrals. 10/17



Iniarpixal damo

1.0 ]

= Ground truth

Interpixels

Ny =8
05] —— Interpixel sum
Discrete values

» Interpixel is a piecewise polynomial.
» Of fixed order.

» Avoids Runge phenomennon.

» Knots on the discrete x grid.

» Each interpixel is oscillatory.

» Oscillations cancel in sum.

» Improvement at high IV, .
1073
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Iniarpixal damo

= Ground truth

Interpixels
Interpixel sum

Discrete values

n; = 40

» Interpixel is a piecewise polynomial.
» Of fixed order.

» Avoids Runge phenomennon.
» Knots on the discrete x grid.

» Each interpixel is oscillatory.

» Oscillations cancel in sum.

» Improvement at high IV, .
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Iniarpixal damo

T
= Ground truth

ng = 100
Interpixels

054~ Interpixel sum

» Interpixel is a piecewise polynomial.

» Of fixed order.
» Avoids Runge phenomennon.

Discrete values

» Knots on the discrete x grid.

» Each interpixel is oscillatory.

» Oscillations cancel in sum.

» Improvement at high NV,.

1.0
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Intarpiial damo

= Ground truth

Interpixels
Interpixel sum

Discrete values

0.0 1.0
[ I
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ng = 300

» Interpixel is a piecewise polynomial.
» Of fixed order.
» Avoids Runge phenomennon.

» Knots on the discrete x grid.
» Each interpixel is oscillatory.
» Oscillations cancel in sum.

» Improvement at high NV,.
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Intarpiieal damo Rl 7

| ==-- Interpixel sum

T
= Ground truth

ng = 1000

Interpixels

» Interpixel is a piecewise polynomial.
» Of fixed order.
» Avoids Runge phenomennon.

Discrete values

» Knots on the discrete x grid.
» Each interpixel is oscillatory.

» Oscillations cancel in sum.

1.0 ; d 1.0
» Improvement at high NV,.
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Convolutions 43 t2nsor contractions

» A pixelated GPD is a rank-4 tensor:
Ny
H(y, &, tk, Q7) = > Hi(&),tr, Q1)é:(y)
i=1

» Put inside an integral—e.g., for the Compton form factor:

A +1 > N "+1 2
H(&jvtkal):/_l dyC(y,fj)H(y,éj,tk,Ql):Z ([l dyC(y,fj)éi(y)>Hz‘(§j7tk7Qz)

Ci

» Getting the Compton form factor entails a loss of rank:
Hirw = Z CiHj1

» Of course this operation isn’t invertible.
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Byolution a3 & gain of ranie

» Evolution of pixelated GPDs (deferring Q? discretization):

dH,;;1(Q 9
—_— E Ky
leg Q2 i1 Jk [ Jk(Q )

» Solution:

zykl Z AJH 7lcle ]k(QO)

o/ =l

Talk by me on GPD evolution

» Numerically implemented via RK4.
» Compton form factors in terms of model scale GPD:

Hjp = Z (ZC i Miir M!)Hi’jk(Qg)

=gl \g=l

M (&5, tx)

» Effectively matrix multiplication (z;; dependence — ()7 dependence).

» Inverse problem: invert M (in terms of 2 and ? indices). 31



Byolution accurscy banchmarl (non-singlat ayel
n, = 40

T
—— Ground truth

1 Matrix method

» “Ground truth” determined by adaptive

Ry \/\ integration of model function.
=14

» Error represents error from both pixelation
,i‘o _05 0_‘0 0.5 1“0 & interpOIBtiOH.

[ dyK (z, y, &) H(y. €)

» Sub-percent error even at n,, = 40.

1.0 05 0.0 05 1.0

» Probably a source of epistemic uncertainty in extractions. 14117



Ayolution aceuracy panchrmarie (non-singlat 2ve
ng = 100

T
—— Ground truth

1 Matrix method

» “Ground truth” determined by adaptive

S \/\ integration of model function.
=14

» Error represents error from both pixelation
,i‘o _05 0_‘0 0.5 1“0 & interpOIBtiOH.

[ dyK (z, y, &) H(y. €)

» Sub-percent error even at n,, = 40.
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» Probably a source of epistemic uncertainty in extractions. 14117



Ayolution aceuracy panchrmarie (non-singlat 2ve
ng = 300

T
—— Ground truth

1 Matrix method

» “Ground truth” determined by adaptive

S \/\ integration of model function.
=14

» Error represents error from both pixelation
,i‘o _05 0_‘0 0.5 1“0 & interpOIBtiOH.

[ dyK (z, y, &) H(y. €)

» Sub-percent error even at n,, = 40.

1.0 05 0.0 05 1.0

» Probably a source of epistemic uncertainty in extractions. 14117



Ayolution aceuracy panchrmarie (non-singlat 2ve

ng = 1000

T
—— Ground truth

14 Matrix method

k/\ » “Ground truth” determined by adaptive
04 \/“ integration of model function.
—kd

» Error represents error from both pixelation
& interpolation.

JdyK (x,y, &) H(y, &)

—ip —05 0.0 05 10

1014 » Sub-percent error even at n,, = 40.

el. err. (%)

=106

» Probably a source of epistemic uncertainty in extractions.
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Bxiraction: Cormpion form fciors

Q% =25.0 GeV

— t=100
t=—-05
t=-10

e

» A “neural network” (one linear layer) fit.

e

» Compton form factors can be “extracted” quite accurately ...

» ...with lots of arbitrarily precise data.

» Preliminary toy extraction

Talk by Marco
Zaccheddu
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Bxiraction: genaraliz
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. Zaccheddu

» A “neural network” (one linear layer) fit.

» This inverse problem appears unsolved by evolution.

» Preliminary toy extraction

> Remaining work: uncertainty quantification, constructing/exploring latent space.
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Daniel Adamiak
Ian Cloét

Chris Cocuzza
Adam Freese
Nobuo Sato
Marco Zaccheddu

Thank you for your time!

17/17



