
1/17

Generalized parton distributions:

an especially tricky inverse problem

Generalized parton distributions:

an especially tricky inverse problem

Generalized parton distributions:

an especially tricky inverse problem

Generalized parton distributions:

an especially tricky inverse problem

Generalized parton distributions:

an especially tricky inverse problem

Generalized parton distributions:

an especially tricky inverse problem

Adam FreeseAdam FreeseAdam FreeseAdam FreeseAdam FreeseAdam Freese

Thomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator Facility

July 12, 2024July 12, 2024July 12, 2024July 12, 2024July 12, 2024July 12, 2024



2/17

An especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problem

I The goal: extract generalized parton distributions (GPDs) from deeply virtual Compton

scattering (DVCS) events.

I The usual caveats of inverse problems apply:

I Finite data, continuous functions.
I Epistemic uncertainty (interpolation & extrapolation error).

I The issue is worse for GPDs—the formal inverse almost doesn’t exist.

I I’ll explain this over the next few slides.

I Caveats:

I This is all a work in progress.
I I’m just one member of the team—I’ll point you to others’ slides where they can explain things

better.
I I’m not an expert in inverse problems or uncertainty quantification; if I’m saying or doing

anything foolish, feel free to correct me—I’ll benefit from being led on the right path!



Generalized parton distributionsGeneralized parton distributions



3/17

Generalized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributionsGeneralized parton distributions

e

e′

p

x+ ξ x− ξ

q

p′

Deeply virtual Compton scattering

H(ξ, t;Q2)

p

x+ ξ x− ξ

p′

Generalized parton distribution

H(x, ξ, t;Q2)

I Generalized parton distributions are 4-variable functions.
I Probed in processes such as deeply virtual Compton scattering (DVCS).
I Exciting because they encode spatial distributions of quarks and gluons.



4/17

The GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variables

e

e′

p

x+ ξ x− ξ

q

p′

x =
(k + k′) · n
(p+ p′) · n

ξ =
(p− p′) · n
(p+ p′) · n

t = (p′ − p)2

Q2 = −q2

n defines the reference frame

I x is average momentum fraction of struck parton.

I 2ξ is the skewness: momentum fraction lost by struck parton.

I t is the invariant momentum transfer.

I GPDs also depend on resolution scale Q2.



5/17

DVCS and GPDsDVCS and GPDsDVCS and GPDsDVCS and GPDsDVCS and GPDsDVCS and GPDs

e

e′

p

x+ ξ x− ξ

q

p′

Deeply virtual Compton scattering
H(ξ, t;Q2)

p

x+ ξ x− ξ

p′

Generalized parton distribution
H(x, ξ, t;Q2)

I Loop in diagram: x is integrated out

I Integrated quantities seen in experiment: Compton form factors

H(ξ, t;Q2) =

∫ 1

−1

dxC(x, ξ)H(x, ξ, t;Q2)
LO
==

∫ 1

−1

dx

[
1

ξ − x− i0
∓ 1

ξ + x− i0

]
H(x, ξ, t;Q2)



6/17

Shadow GPDsShadow GPDsShadow GPDsShadow GPDsShadow GPDsShadow GPDs

I Need to invert the relationship:

H(ξ, t;Q2) =

∫ 1

−1
dxC(x, ξ)H(x, ξ, t;Q2)

I For fixed Q2, the inverse doesn’t exist!

I Multiple solutions encoded by shadow

GPDs:∫ 1

−1
dxC(x, ξ)h(x, ξ, t;Q2

0) = 0

I H(x, ξ, t,Q2
0) and

I H(x, ξ, t,Q2
0) + h(x, ξ, t, Q2

0) give the
same physical amplitude.

I Bertone, et al., PRD103 (2021) 114019

I Akin to inverting a 4× 3 matrix.

I But this is not the end.

0.0 0.2 0.4 0.6 0.8 1.0
−0.015

−0.010

−0.005

0.000

0.005

0.010

F
u

(+
)

S
A

ξ = 0.01

FS1A (µ2
0)

FS1A (100 GeV2)

FS2A (µ2
0)

FS2A (100 GeV2)

FS3A (µ2
0)

FS3A (100 GeV2)

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

ξ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

−40

−20

0

20

40

ξ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

F
u

(+
)

S
B

FS1B (µ2
0)

FS1B (100 GeV2)

FS2B (µ2
0)

FS2B (100 GeV2)

FS3B (µ2
0)

FS3B (100 GeV2)

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.0

−0.5

0.0

0.5

1.0

Examples of shadow GPDs.



7/17

Evolution equationsEvolution equationsEvolution equationsEvolution equationsEvolution equationsEvolution equations

I GPDs obey evolution equations for Q2 dependence:

dH(x, ξ, t, Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ, t, Q2) ≡ K ⊗H

I KernelK(x, y, ξ,Q2) known theoretically (up to NLO).
I Basically a generalization of DGLAP evolution.

I Only need 3D GPD at one scale Q2
0 to fix 4D GPD at all Q2.

H(x, ξ, t,Q2) =

(
Q2

Q2
0

)K⊗
H(y, ξ, t, Q2

0)

Please excuse the horrendous abuse of notation!

I Shadow GPDs evolve into non-shadows:

Hshadow(ξ, t, Q
2) =

∫ 1

−1
dxC(x, ξ)

(
Q2

Q2
0

)K⊗
h(y, ξ, t, Q2

0) 6= 0

I Three variable function→ three variable function.
I We now have a proper inverse problem.
I The inverse exists, but how well can we find it—given finite data, with uncertainties?



The frameworkThe framework



8/17

PixelationPixelationPixelationPixelationPixelationPixelation

I We pixelate the GPD:

H(x, ξ, t,Q2) → Hijkl

I Avoids biases of functional forms.

I Meshes well with finite element methods.

I Number of needed pixels furnishes a

resolution. (A kind of uncertainty

quantification?)

I Integrals become tensor contraction:∫
dy C(y)H(y, ξ, t, Q2) →

∑
i

CiHijkl

I Fast and differentiable!



9/17

Notes on pixelationNotes on pixelationNotes on pixelationNotes on pixelationNotes on pixelationNotes on pixelation

I Pixel widths & placement constitute a covert model dependence.

I Linear vs. logarithmic spacing is motivated by expected functional

behavior.

I Allowing pixel widths to float being explored—talk by Daniel

Adamiak (see QR code).



10/17

InterpixelsInterpixelsInterpixelsInterpixelsInterpixelsInterpixels

I Interpixels (interpolated pixel): interpolation basis functions.
I Exploit linearity of polynomial (e.g., Newton) interpolation:

N [y1 + y2](x) = N [y1](x) +N [y2](x)

I GPD pixelation is a sum of pixels:

H =


H1

H2

...

Hn

 = H1


1
0
...

0

+H2


0
1
...

0

+ . . .+Hn


0
0
...

1

 ≡ H1ê1 +H2ê2 + . . .+Hnên

I Interpolated pixelation is a sum of interpixels!

N [H](x) = H1N [ê1](x) +H2N [ê2](x) + . . .+HnN [ên](x)

I Basically a shoddy finite element method.
I I just learned this Wednesday that this can be done better.

I Get convolution matrices by putting H[êj ](x) into integrals.



11/17

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 8

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



11/17

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 40

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



11/17

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 100

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



11/17

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 300

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



11/17

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 1000

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.



12/17

Convolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractions

I A pixelated GPD is a rank-4 tensor:

H(y, ξj , tk, Q
2
l ) ≈

Nx∑
i=1

Hi(ξj , tk, Q
2
l )êi(y)

I Put inside an integral—e.g., for the Compton form factor:

H(ξj , tk, Q
2
l ) =

∫ +1

−1

dy C(y, ξj)H(y, ξj , tk, Q
2
l ) =

Nx∑
i=1

(∫ +1

−1

dy C(y, ξj)êi(y)

)
︸ ︷︷ ︸

Ci

Hi(ξj , tk, Q
2
l )

I Getting the Compton form factor entails a loss of rank:

Hjkl =

Nx∑
i=1

CiHijkl

I Of course this operation isn’t invertible.



13/17

Evolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rank

I Evolution of pixelated GPDs (deferring Q2 discretization):

dHijk(Q
2)

d logQ2
=

Nx∑
i′=1

Kii′jk(Q
2)Hi′jk(Q

2)

I Solution:

Hijkl =

Nx∑
i′=1

Mii′jklHi′jk(Q
2
0)

I Numerically implemented via RK4.
Talk by me on GPD evolution

I Compton form factors in terms of model scale GPD:

Hjkl =

Nx∑
i′=1

(
Nx∑
i=1

CiMii′jkl

)
︸ ︷︷ ︸

Mli′(ξj , tk)

Hi′jk(Q
2
0)

I Effectively matrix multiplication (xi′ dependence→ Q2
l dependence).

I Inverse problem: invertM (in terms of x and Q2 indices).



14/17

Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)

nx = 40

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.



14/17

Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)

nx = 100

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.



14/17

Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)

nx = 300

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.



14/17

Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)

nx = 1000

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.



The extractions?The extractions?



15/17

Extraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factors

Talk by Marco

Zaccheddu
I A “neural network” (one linear layer) fit.

I Compton form factors can be “extracted” quite accurately …

I …with lots of arbitrarily precise data.

I Preliminary toy extraction



16/17

Extraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributions

Talk by Marco

Zaccheddu
I A “neural network” (one linear layer) fit.

I This inverse problem appears unsolved by evolution.

I Preliminary toy extraction

I Remaining work: uncertainty quantification, constructing/exploring latent space.



17/17

CreditsCreditsCreditsCreditsCreditsCredits

I Daniel Adamiak

I Ian Cloët

I Chris Cocuzza

I Adam Freese

I Nobuo Sato

I Marco Zaccheddu

Thank you for your time!


