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An especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problemAn especially tricky inverse problem

I The goal: extract generalized parton distributions (GPDs) from deeply virtual Compton

scattering (DVCS) events.

I The usual caveats of inverse problems apply:

I Finite data, continuous functions.
I Epistemic uncertainty (interpolation & extrapolation error).

I The issue is worse for GPDs—the formal inverse almost doesn’t exist.

I I’ll explain this over the next few slides.

I Caveats:

I This is all a work in progress.
I I’m just one member of the team—I’ll point you to others’ slides where they can explain things

better.
I I’m not an expert in inverse problems or uncertainty quantification; if I’m saying or doing

anything foolish, feel free to correct me—I’ll benefit from being led on the right path!
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I Generalized parton distributions are 4-variable functions.
I Probed in processes such as deeply virtual Compton scattering (DVCS).
I Exciting because they encode spatial distributions of quarks and gluons.
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The GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variablesThe GPD variables
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(k + k′) · n
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ξ =
(p− p′) · n
(p+ p′) · n

t = (p′ − p)2

Q2 = −q2

n defines the reference frame

I x is average momentum fraction of struck parton.

I 2ξ is the skewness: momentum fraction lost by struck parton.

I t is the invariant momentum transfer.

I GPDs also depend on resolution scale Q2.
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DVCS and GPDsDVCS and GPDsDVCS and GPDsDVCS and GPDsDVCS and GPDsDVCS and GPDs
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I Loop in diagram: x is integrated out

I Integrated quantities seen in experiment: Compton form factors

H(ξ, t;Q2) =

∫ 1

−1

dxC(x, ξ)H(x, ξ, t;Q2)
LO
==

∫ 1

−1

dx

[
1

ξ − x− i0
∓ 1

ξ + x− i0

]
H(x, ξ, t;Q2)
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Shadow GPDsShadow GPDsShadow GPDsShadow GPDsShadow GPDsShadow GPDs

I Need to invert the relationship:

H(ξ, t;Q2) =

∫ 1

−1
dxC(x, ξ)H(x, ξ, t;Q2)

I For fixed Q2, the inverse doesn’t exist!

I Multiple solutions encoded by shadow

GPDs:∫ 1

−1
dxC(x, ξ)h(x, ξ, t;Q2

0) = 0

I H(x, ξ, t,Q2
0) and

I H(x, ξ, t,Q2
0) + h(x, ξ, t, Q2

0) give the
same physical amplitude.

I Bertone, et al., PRD103 (2021) 114019

I Akin to inverting a 4× 3 matrix.

I But this is not the end.
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I GPDs obey evolution equations for Q2 dependence:

dH(x, ξ, t, Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ, t, Q2) ≡ K ⊗H

I KernelK(x, y, ξ,Q2) known theoretically (up to NLO).
I Basically a generalization of DGLAP evolution.

I Only need 3D GPD at one scale Q2
0 to fix 4D GPD at all Q2.

H(x, ξ, t,Q2) =

(
Q2

Q2
0

)K⊗
H(y, ξ, t, Q2

0)

Please excuse the horrendous abuse of notation!

I Shadow GPDs evolve into non-shadows:

Hshadow(ξ, t, Q
2) =

∫ 1

−1
dxC(x, ξ)

(
Q2

Q2
0

)K⊗
h(y, ξ, t, Q2

0) 6= 0

I Three variable function→ three variable function.
I We now have a proper inverse problem.
I The inverse exists, but how well can we find it—given finite data, with uncertainties?
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PixelationPixelationPixelationPixelationPixelationPixelation

I We pixelate the GPD:

H(x, ξ, t,Q2) → Hijkl

I Avoids biases of functional forms.

I Meshes well with finite element methods.

I Number of needed pixels furnishes a

resolution. (A kind of uncertainty

quantification?)

I Integrals become tensor contraction:∫
dy C(y)H(y, ξ, t, Q2) →

∑
i

CiHijkl

I Fast and differentiable!
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Notes on pixelationNotes on pixelationNotes on pixelationNotes on pixelationNotes on pixelationNotes on pixelation

I Pixel widths & placement constitute a covert model dependence.

I Linear vs. logarithmic spacing is motivated by expected functional

behavior.

I Allowing pixel widths to float being explored—talk by Daniel

Adamiak (see QR code).
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InterpixelsInterpixelsInterpixelsInterpixelsInterpixelsInterpixels

I Interpixels (interpolated pixel): interpolation basis functions.
I Exploit linearity of polynomial (e.g., Newton) interpolation:

N [y1 + y2](x) = N [y1](x) +N [y2](x)

I GPD pixelation is a sum of pixels:

H =


H1

H2

...

Hn

 = H1


1
0
...

0

+H2


0
1
...

0

+ . . .+Hn


0
0
...

1

 ≡ H1ê1 +H2ê2 + . . .+Hnên

I Interpolated pixelation is a sum of interpixels!

N [H](x) = H1N [ê1](x) +H2N [ê2](x) + . . .+HnN [ên](x)

I Basically a shoddy finite element method.
I I just learned this Wednesday that this can be done better.

I Get convolution matrices by putting H[êj ](x) into integrals.
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Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

nx = 8

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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nx = 40

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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nx = 100

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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nx = 300

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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nx = 1000

I Interpixel is a piecewise polynomial.

I Of fixed order.
I Avoids Runge phenomennon.

I Knots on the discrete x grid.

I Each interpixel is oscillatory.

I Oscillations cancel in sum.

I Improvement at high Nx.
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Convolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractionsConvolutions as tensor contractions

I A pixelated GPD is a rank-4 tensor:

H(y, ξj , tk, Q
2
l ) ≈

Nx∑
i=1

Hi(ξj , tk, Q
2
l )êi(y)

I Put inside an integral—e.g., for the Compton form factor:

H(ξj , tk, Q
2
l ) =

∫ +1

−1

dy C(y, ξj)H(y, ξj , tk, Q
2
l ) =

Nx∑
i=1

(∫ +1

−1

dy C(y, ξj)êi(y)

)
︸ ︷︷ ︸

Ci

Hi(ξj , tk, Q
2
l )

I Getting the Compton form factor entails a loss of rank:

Hjkl =

Nx∑
i=1

CiHijkl

I Of course this operation isn’t invertible.
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Evolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rankEvolution as a gain of rank

I Evolution of pixelated GPDs (deferring Q2 discretization):

dHijk(Q
2)

d logQ2
=

Nx∑
i′=1

Kii′jk(Q
2)Hi′jk(Q

2)

I Solution:

Hijkl =

Nx∑
i′=1

Mii′jklHi′jk(Q
2
0)

I Numerically implemented via RK4.
Talk by me on GPD evolution

I Compton form factors in terms of model scale GPD:

Hjkl =

Nx∑
i′=1

(
Nx∑
i=1

CiMii′jkl

)
︸ ︷︷ ︸

Mli′(ξj , tk)

Hi′jk(Q
2
0)

I Effectively matrix multiplication (xi′ dependence→ Q2
l dependence).

I Inverse problem: invertM (in terms of x and Q2 indices).
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Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)

nx = 40

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.
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nx = 100

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.



14/17

Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)Evolution accuracy benchmark (non-singlet evolution)

nx = 300

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.
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nx = 1000

I “Ground truth” determined by adaptive

integration of model function.

I Error represents error from both pixelation

& interpolation.

I Sub-percent error even at nx = 40.

I Probably a source of epistemic uncertainty in extractions.
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Extraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factorsExtraction: Compton form factors

Talk by Marco

Zaccheddu
I A “neural network” (one linear layer) fit.

I Compton form factors can be “extracted” quite accurately …

I …with lots of arbitrarily precise data.

I Preliminary toy extraction
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Extraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributionsExtraction: generalized parton distributions

Talk by Marco

Zaccheddu
I A “neural network” (one linear layer) fit.

I This inverse problem appears unsolved by evolution.

I Preliminary toy extraction

I Remaining work: uncertainty quantification, constructing/exploring latent space.
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I Daniel Adamiak

I Ian Cloët

I Chris Cocuzza

I Adam Freese

I Nobuo Sato
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Thank you for your time!


