$$
\begin{aligned}
& \text { Ceneralized parton distributions: } \\
& \text { thespecially tricky mivenseproblem }
\end{aligned}
$$

- The goal: extract generalized parton distributions (GPDs) from deeply virtual Compton scattering (DVCS) events.
- The usual caveats of inverse problems apply:
- Finite data, continuous functions.
- Epistemic uncertainty (interpolation \& extrapolation error).
- The issue is worse for GPDs-the formal inverse almost doesn't exist.
- I'll explain this over the next few slides.
- Caveats:
- This is all a work in progress.
- I'm just one member of the team-I'll point you to others' slides where they can explain things better.
- I'm not an expert in inverse problems or uncertainty quantification; if I'm saying or doing anything foolish, feel free to correct me-I'll benefit from being led on the right path!

Deeply virtual Compton scattering

$$
\mathcal{H}\left(\xi, t ; Q^{2}\right)
$$

Generalized parton distribution

$$
H\left(x, \xi, t ; Q^{2}\right)
$$

- Generalized parton distributions are 4-variable functions.
- Probed in processes such as deeply virtual Compton scattering (DVCS).
- Exciting because they encode spatial distributions of quarks and gluons.

$$
\begin{aligned}
& x=\frac{\left(k+k^{\prime}\right) \cdot n}{\left(p+p^{\prime}\right) \cdot n} \\
& \xi=\frac{\left(p-p^{\prime}\right) \cdot n}{\left(p+p^{\prime}\right) \cdot n} \\
& t=\left(p^{\prime}-p\right)^{2} \\
& Q^{2}=-q^{2}
\end{aligned}
$$

n defines the reference frame

- x is average momentum fraction of struck parton.
- 2ξ is the skewness: momentum fraction lost by struck parton.
- t is the invariant momentum transfer.
- GPDs also depend on resolution scale Q^{2}.

Deeply virtual Compton scattering

$$
\mathcal{H}\left(\xi, t ; Q^{2}\right)
$$

Generalized parton distribution

$$
H\left(x, \xi, t ; Q^{2}\right)
$$

- Loop in diagram: x is integrated out
- Integrated quantities seen in experiment: Compton form factors

$$
\mathcal{H}\left(\xi, t ; Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C(x, \xi) H\left(x, \xi, t ; Q^{2}\right) \stackrel{\mathrm{LO}}{=} \int_{-1}^{1} \mathrm{~d} x\left[\frac{1}{\xi-x-\mathrm{i} 0} \mp \frac{1}{\xi+x-\mathrm{i} 0}\right] H\left(x, \xi, t ; Q^{2}\right)
$$

- Need to invert the relationship:

$$
\mathcal{H}\left(\xi, t ; Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C(x, \xi) H\left(x, \xi, t ; Q^{2}\right)
$$

- For fixed Q^{2}, the inverse doesn't exist!
- Multiple solutions encoded by shadow GPDs:

$$
\int_{-1}^{1} \mathrm{~d} x C(x, \xi) \mathfrak{h}\left(x, \xi, t ; Q_{0}^{2}\right)=0
$$

- $H\left(x, \xi, t, Q_{0}^{2}\right)$ and
- $H\left(x, \xi, t, Q_{0}^{2}\right)+\mathfrak{h}\left(x, \xi, t, Q_{0}^{2}\right)$ give the same physical amplitude.
- Bertone, et al., PRD103 (2021) 114019
- Akin to inverting a 4×3 matrix.

Examples of shadow GPDs.

- GPDs obey evolution equations for Q^{2} dependence:

$$
\frac{\mathrm{d} H\left(x, \xi, t, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)}=\int_{-1}^{+1} \mathrm{~d} y K\left(x, y, \xi, Q^{2}\right) H\left(y, \xi, t, Q^{2}\right) \equiv K \otimes H
$$

- Kernel $K\left(x, y, \xi, Q^{2}\right)$ known theoretically (up to NLO).
- Basically a generalization of DGLAP evolution.
- Only need 3D GPD at one scale Q_{0}^{2} to fix 4D GPD at all Q^{2}.

$$
H\left(x, \xi, t, Q^{2}\right)=\left(\frac{Q^{2}}{Q_{0}^{2}}\right)^{K \otimes} H\left(y, \xi, t, Q_{0}^{2}\right)
$$

Please excuse the horrendous abuse of notation!

- Shadow GPDs evolve into non-shadows:

$$
\mathcal{H}_{\text {shadow }}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C(x, \xi)\left(\frac{Q^{2}}{Q_{0}^{2}}\right)^{K \otimes} \mathfrak{h}\left(y, \xi, t, Q_{0}^{2}\right) \neq 0
$$

- Three variable function \rightarrow three variable function.
- We now have a proper inverse problem.
- The inverse exists, but how well can we find it-given finite data, with uncertainties?

Pixelation

- We pixelate the GPD:

$$
H\left(x, \xi, t, Q^{2}\right) \rightarrow H_{i j k l}
$$

- Avoids biases of functional forms.
- Meshes well with finite element methods.
- Number of needed pixels furnishes a resolution. (A kind of uncertainty quantification?)
- Integrals become tensor contraction:
$\int \mathrm{d} y C(y) H\left(y, \xi, t, Q^{2}\right) \rightarrow \sum_{i} C_{i} H_{i j k l}$
- Fast and differentiable!
- Pixel widths \& placement constitute a covert model dependence.
- Linear vs. logarithmic spacing is motivated by expected functional behavior.
- Allowing pixel widths to float being explored-talk by Daniel Adamiak (see QR code).

- Interpixels (interpolated pixel): interpolation basis functions.
- Exploit linearity of polynomial (e.g., Newton) interpolation:

$$
N\left[y_{1}+y_{2}\right](x)=N\left[y_{1}\right](x)+N\left[y_{2}\right](x)
$$

- GPD pixelation is a sum of pixels:

$$
\boldsymbol{H}=\left[\begin{array}{c}
H_{1} \\
H_{2} \\
\vdots \\
H_{n}
\end{array}\right]=H_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+H_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\ldots+H_{n}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \equiv H_{1} \hat{e}_{1}+H_{2} \hat{e}_{2}+\ldots+H_{n} \hat{e}_{n}
$$

- Interpolated pixelation is a sum of interpixels!

$$
N[\boldsymbol{H}](x)=H_{1} N\left[\hat{e}_{1}\right](x)+H_{2} N\left[\hat{e}_{2}\right](x)+\ldots+H_{n} N\left[\hat{e}_{n}\right](x)
$$

- Basically a shoddy finite element method.
- I just learned this Wednesday that this can be done better.
- Get convolution matrices by putting $H\left[\hat{e}_{j}\right](x)$ into integrals.

$$
n_{x}=8
$$

- Interpixel is a piecewise polynomial.
- Of fixed order.
- Avoids Runge phenomennon.
- Knots on the discrete x grid.
- Each interpixel is oscillatory.
- Oscillations cancel in sum.
- Improvement at high N_{x}.

$$
n_{x}=40
$$

- Interpixel is a piecewise polynomial.
- Of fixed order.
- Avoids Runge phenomennon.
- Knots on the discrete x grid.
- Each interpixel is oscillatory.
- Oscillations cancel in sum.
- Improvement at high N_{x}.

$$
n_{x}=100
$$

- Interpixel is a piecewise polynomial.
- Of fixed order.
- Avoids Runge phenomennon.
- Knots on the discrete x grid.
- Each interpixel is oscillatory.
- Oscillations cancel in sum.
- Improvement at high N_{x}.

$$
n_{x}=300
$$

- Interpixel is a piecewise polynomial.
- Of fixed order.
- Avoids Runge phenomennon.
- Knots on the discrete x grid.
- Each interpixel is oscillatory.
- Oscillations cancel in sum.
- Improvement at high N_{x}.

$$
n_{x}=1000
$$

- Interpixel is a piecewise polynomial.
- Of fixed order.
- Avoids Runge phenomennon.
- Knots on the discrete x grid.
- Each interpixel is oscillatory.
- Oscillations cancel in sum.
- Improvement at high N_{x}.
- A pixelated GPD is a rank-4 tensor:

$$
H\left(y, \xi_{j}, t_{k}, Q_{l}^{2}\right) \approx \sum_{i=1}^{N_{x}} H_{i}\left(\xi_{j}, t_{k}, Q_{l}^{2}\right) \hat{e}_{i}(y)
$$

- Put inside an integral—e.g., for the Compton form factor:

$$
\mathcal{H}\left(\xi_{j}, t_{k}, Q_{l}^{2}\right)=\int_{-1}^{+1} \mathrm{~d} y C\left(y, \xi_{j}\right) H\left(y, \xi_{j}, t_{k}, Q_{l}^{2}\right)=\sum_{i=1}^{N_{x}} \underbrace{\left(\int_{-1}^{+1} \mathrm{~d} y C\left(y, \xi_{j}\right) \hat{e}_{i}(y)\right)}_{C_{i}} H_{i}\left(\xi_{j}, t_{k}, Q_{l}^{2}\right)
$$

- Getting the Compton form factor entails a loss of rank:

$$
\mathcal{H}_{j k l}=\sum_{i=1}^{N_{x}} C_{i} H_{i j k l}
$$

- Of course this operation isn't invertible.
- Evolution of pixelated GPDs (deferring Q^{2} discretization):

$$
\frac{\mathrm{d} H_{i j k}\left(Q^{2}\right)}{\mathrm{d} \log Q^{2}}=\sum_{i^{\prime}=1}^{N_{x}} K_{i i^{\prime} j k}\left(Q^{2}\right) H_{i^{\prime} j k}\left(Q^{2}\right)
$$

- Solution:

$$
H_{i j k l}=\sum_{i^{\prime}=1}^{N_{x}} M_{i i^{\prime} j k l} H_{i^{\prime} j k}\left(Q_{0}^{2}\right)
$$

- Numerically implemented via RK4.

Talk by me on GPD evolution

- Compton form factors in terms of model scale GPD:

$$
\mathcal{H}_{j k l}=\sum_{i^{\prime}=1}^{N_{x}} \underbrace{\left(\sum_{i=1}^{N_{x}} C_{i} M_{i i^{\prime} j k l}\right)}_{\mathcal{M}_{l i^{\prime}}\left(\xi_{j}, t_{k}\right)} H_{i^{\prime} j k}\left(Q_{0}^{2}\right)
$$

- Effectively matrix multiplication ($x_{i^{\prime}}$ dependence $\rightarrow Q_{l}^{2}$ dependence).
- Inverse problem: invert \mathcal{M} (in terms of x and Q^{2} indices).

Evolution accuracy benchmark (non-singlet evolution)

$$
n_{x}=40
$$

- "Ground truth" determined by adaptive integration of model function.
- Error represents error from both pixelation \& interpolation.
- Sub-percent error even at $n_{x}=40$.
- Probably a source of epistemic uncertainty in extractions.

Evolurionaccuracy benchmark (non-singlet evoution)

$$
n_{x}=100
$$

- "Ground truth" determined by adaptive integration of model function.
- Error represents error from both pixelation \& interpolation.
- Sub-percent error even at $n_{x}=40$.
- Probably a source of epistemic uncertainty in extractions.

Evolution accuracy benchmark (non-singlet evolution)

$$
n_{x}=300
$$

- "Ground truth" determined by adaptive integration of model function.
- Error represents error from both pixelation \& interpolation.
- Sub-percent error even at $n_{x}=40$.
- Probably a source of epistemic uncertainty in extractions.

$$
n_{x}=1000
$$

- "Ground truth" determined by adaptive integration of model function.

- Error represents error from both pixelation \& interpolation.
- Sub-percent error even at $n_{x}=40$.
- Probably a source of epistemic uncertainty in extractions.

- A "neural network" (one linear layer) fit.
- Compton form factors can be "extracted" quite accurately ...
- ...with lots of arbitrarily precise data.
- Preliminary toy extraction

Talk by Marco Zaccheddu

- A "neural network" (one linear layer) fit.
- This inverse problem appears unsolved by evolution.
- Preliminary toy extraction
- Remaining work: uncertainty quantification, constructing/exploring latent space.
- Daniel Adamiak
- Ian Cloët
- Chris Cocuzza
- Adam Freese
- Nobuo Sato
- Marco Zaccheddu

Thank you for your time!

