Quantum dynamics of entanglement and hadronization in jet production in the massive Schwinger model

David Frenklakh

PRL 131, 021902 (2023) + arXiv:2404.00087 with A.Florio, K.Ikeda, D.Kharzeev, V.Korepin, S. Shi and K.Yu

INT Program *Heavy ion physics in the EIC era* ¹

Seattle, August 5, 2024

Motivation

How to understand entanglement in jet fragmentation?

Real-time quantum process requires

Real-time quantum simulation

Why Schwinger model?

- Simple enough for a first-principle quantum simulation
- Has a lot of similarity with QCD in 3+1

- Overview of the Schwinger model
- The setup for numerical simulation of jet fragmentation
- Observations: screening, vacuum modification, entanglement
- Properties of Schmidt states hadronization
- Approach to thermalization reflected in local observables and entanglement

Schwinger model

Single-flavor (1+1)-dimensional QED:

$$
\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 + \bar{\psi}(i\gamma^\mu\partial_\mu - g\gamma^\mu A_\mu + m)\psi
$$

Features include:

- No magnetic field/no dynamical photons
- Linear potential between "quarks" confinement
- Chiral condensate (spontaneous chiral symmetry breaking at *m*=0)

Massless case is exactly solvable, e.g. by bosonization:

$$
\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m_B^2 \phi^2, \qquad m_B^2 = \frac{g^2}{\pi}
$$

Schwinger model and jets: history

1974

Vacuum polarization and the absence of free quarks

A. Casher, * J. Kogut, † and Leonard Susskindt

Massless Schwinger model with external source:

 $j_{0}^{\text{ext}} = g\delta(z-t), \quad j_{1}^{\text{ext}} = g\delta(z-t) \quad \text{for } z > 0,$

$$
j_0^{\text{ext}} = -g\delta(z+t), \quad j_1^{\text{ext}} = g\delta(z+t) \quad \text{for } z < 0,
$$

2012

Jet energy loss and fragmentation in heavy ion collisions

Dmitri E. Kharzeev^{1,2} and Frashër Loshaj¹

$$
\phi(x) = \theta(t^2 - z^2)[1 - J_0(m\sqrt{t^2 - z^2})]
$$

Schwinger model and jets: history

1974

2012

 $=\partial_z\phi$

40 $\sqrt{6}$

Vacuum polarization and the absence of free quarks

Jet energy loss and fragmentation in heavy ion collisions

A. Casher, * J. Kogut, † and Leonard Susskindt treatment is sufficient

Massless Schwinger model w issless schwinger model with the exactly solvable massless case

pairs
Pairs cace^(150,2) pairs However, massive fermion case $j_0^{\text{ext}} = -g\delta(z+t), \quad j_1^{\text{ext}} = g\delta(z)$ is not exactly solvable and inherently quantum

The massive Schwinger model on the lattice

Continuum: $H = \int dx \left[\frac{1}{2} E^2 + \bar{\psi} (-i \gamma^1 \partial_1 + g \gamma^1 A_1 + m) \psi \right]$ Temporal gara-

Temporal gauge

The massive Schwinger model on the lattice

Continuum: $H = \int dx \left[\frac{1}{2} E^2 + \bar{\psi} (-i \gamma^1 \partial_1 + g \gamma^1 A_1 + m) \psi \right]$ Temporal gara-Temporal gauge Fermion $\psi(an) \implies \frac{1}{\sqrt{a}}\left(\frac{\lambda^{2n}}{\lambda^{2n}}\right)$ Kogut-Susskind

 $\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{ab}\delta(x-y) \quad \Longrightarrow \quad \{\chi_i, \chi_j^{\dagger}\} = \delta_{ij}$

N lattice sites encode *N/2* physical sites

The massive Schwinger model on the lattice

Continuum:
$$
H = \int dx \left[\frac{1}{2} E^2 + \bar{\psi} (-i\gamma^1 \partial_1 + g \gamma^1 A_1 + m) \psi \right]
$$

\nTermon
$$
\psi(a n)
$$

\n**Hermion**
$$
\psi(a n)
$$

\n
$$
\frac{1}{\sqrt{a}} \begin{pmatrix} \chi_{2n} \\ \chi_{2n-1} \end{pmatrix}
$$

\nKogut-Susskind

\n
$$
\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{ab}\delta(x - y)
$$

\n
$$
\{\chi_i, \chi_j^{\dagger}\} = \delta_{ij}
$$

\n**N sites encode**
$$
N/2
$$
 physical sites

\nGause field
$$
E(x = a n)
$$

\n
$$
L_n
$$

\nGauss law
$$
\partial_1 E - g j^0 = 0
$$

\n
$$
L_n - L_{n-1} - q_n = 0
$$

\n
$$
q_i = \chi_i^{\dagger} \chi_i + \frac{(-1)^i - 1}{2}
$$

With open boundary conditions the electric field is fully determined by the fermionic one

Mapping to a spin chain (optional)

$$
X, Y, Z \rightarrow \text{Pauli matrices} \qquad X_n \equiv I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I \quad \text{etc.}
$$
\n
$$
\overline{X}_n = \frac{X_n - iY_n}{2} \prod_{j=1}^{n-1} (-iZ_j), \qquad \overline{X}_n = \begin{bmatrix} \overline{X}_n & \overline{X}_n \\ \overline{X}_n & \overline{X}_n \\ \overline{X}_n & \overline{X}_n \\ \overline{X}_n & \overline{X}_n \end{bmatrix} \qquad \begin{array}{c} \overline{X}_n & \overline{X}_n \\ \overline{X}_n & \overline{X}_n \\ \overline{X}_n & \overline{X}_n \\ \overline{X}_n & \overline{X}_n \end{array}
$$

$$
\chi_n = \frac{X_n - iY_n}{2} \prod_{j=1}^{n-1} (-iZ_j)
$$

$$
\chi_n^{\dagger} = \frac{X_n + iY_n}{2} \prod_{j=1}^{n-1} (iZ_j),
$$

Jordan-Wigner transformation

Spin chain Hamiltonian:

Adding the jets

$$
j_{\text{ext}}^0(x,t) = g[\delta(\Delta x - \Delta t) - \delta(\Delta x + \Delta t)]\theta(\Delta t) \qquad \Delta x \equiv x - x_0
$$

\n
$$
j_{\text{ext}}^1(x,t) = g[\delta(\Delta x - \Delta t) + \delta(\Delta x + \Delta t)]\theta(\Delta t) \qquad \Delta t \equiv t - t_0
$$

$$
H = \int dx \left[\bar{\psi}(-i\gamma^{1}\partial_{1} + g\gamma^{1}A_{1} + m)\psi + \frac{1}{2}E^{2} + j_{\text{ext}}^{1}(x, t)A_{1} \right]
$$

$$
H^{L}(t) = \frac{1}{4a} \sum_{n=1}^{N-1} (X_{n}X_{n+1} + Y_{n}Y_{n+1}) + \frac{m}{2} \sum_{n=1}^{N} (-1)^{n} Z_{n} \right] L_{\text{dyn},n} = \sum_{i=1}^{n} q_{i}
$$

$$
+ \frac{ag^{2}}{2} \sum_{n=1}^{N-1} (L_{\text{dyn},n} + L_{\text{ext},n}(t))^{2}.
$$

Numerical procedure

Start from the ground state of the Hamiltonian:

$$
H(t=0)|\Psi(t=0)\rangle = E_0|\Psi(t=0)\rangle
$$

Switch on the external source and time evolve:

$$
|\Psi_t\rangle = \mathcal{T}e^{-i\int_0^t dt' H(t')}|\Psi_0\rangle
$$

Numerical time evolution using classical exact diagonalization or tensor networks mimics simulation on a quantum device

Screening, chiral condensate and entanglement

Massless fermion benchmark

$$
\text{Bosonization:}\quad \mathcal{L}=\frac{1}{2}(\partial_\mu\phi)^2-\frac{1}{2}m_B^2(\phi+\phi_{ext})^2~,
$$

$$
\phi(t,x) = \sqrt{\pi} \theta(t^2 - x^2) \left[1 - J_0 \left(m_B \sqrt{t^2 - x^2}\right)\right]
$$

$$
m_B^2 = \frac{g^2}{\pi}
$$

Casher, Kogut, Susskind (1974) Kharzeev, Loshaj (2011)

$$
\bar{\psi}\psi(x) = -\frac{e^{\gamma}}{2\pi} m_B \cos[2\sqrt{\pi}\phi(x)]
$$

Massless fermion benchmark

 $\phi(t,x) = \sqrt{\pi} \theta(t^2 - x^2) \left[1 - J_0 \left(m_B \sqrt{t^2 - x^2}\right)\right]$

Bosonization: $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m_B^2 (\phi + \phi_{ext})^2$,

$$
m_B^2 = \frac{g^2}{\pi}
$$

Casher, Kogut, Susskind (1974) Kharzeev, Loshaj (2011)

Massless fermion as a benchmark

 $\phi(t,x) = \sqrt{\pi} \theta(t^2 - x^2) \left[1 - J_0 \left(m_B \sqrt{t^2 - x^2} \right) \right]$

Bosonization:

$$
m_B^2 = \frac{g^2}{\pi}
$$

Casher, Kogut, Susskind (1974) Kharzeev, Loshaj (2011)

$$
\bar{\psi}\psi(x) = -\frac{e^{\gamma}}{2\pi} m_B \cos[2\sqrt{\pi}\phi(x)], \quad E(x) = -m_B[\phi(x) + \phi_{ext}(x)]
$$

 $\mathcal{L}=\frac{1}{2}(\partial_\mu\phi)^2-\frac{1}{2}m_B^2(\phi+\phi_{ext})^2\;,$

22

Entanglement spectrum

Schmidt decomposition:

Renyi entropies and entangleness

Charge distribution in Schmidt vectors

Charge distribution in Schmidt vectors

Charge distribution in Schmidt vectors

Fermionic Fock basis

Fermionic Fock basis

Hadronization in real time

Towards thermalization

Renyi entropy of the central region

Study as a function of *L*

Ground state: "area law" (*L*-independent)

Typical state, e.g. thermal: "volume law" (linear in *L*)

E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar, PRX Quantum **3** (2022)

Stopping the jets

 \boldsymbol{A} B

Modify the external source:

$$
L_{\text{ext},n}(t) = \begin{cases} -\theta \left(\frac{t-t_0}{a} - \left| n - \frac{N}{2} \right| \right), & t \le t_{end} \\ -\theta \left(\frac{t_{end} - t_0}{a} - \left| n - \frac{N}{2} \right| \right), & t > t_{end} \end{cases}
$$

instead of

$$
L_{\mathrm{ext},n}(t) = -\theta \left(\frac{t - t_0}{a} - \left| n - \frac{N}{2} \right| \right)
$$

Compare different t_{end}

Stopping the jets

Modify the external source:

 \boldsymbol{A}

$$
L_{\text{ext},n}(t) = \begin{cases} -\theta \left(\frac{t-t_0}{a} - \left| n - \frac{N}{2} \right| \right), & t \leq t_{end} \\ -\theta \left(\frac{t_{end} - t_0}{a} - \left| n - \frac{N}{2} \right| \right), & t > t_{end} \end{cases}
$$

B

instead of

$$
L_{\text{ext},n}(t) = -\theta \left(\frac{t - t_0}{a} - \left| n - \frac{N}{2} \right| \right)
$$

Condensate responds instantaneously

Conclusion

- Dynamical pair production leads to electric field screening and modification of the vacuum condensate
- Electric field and chiral condensate equilibrate in the central region
- Entanglement between jets steadily grows with contributions from many Schmidt states
- At large coupling we observe a dynamical transition of Schmidt states from fermionic Fock states to bosonic Fock states
- Second Renyi entropy in the central region exhibits a transition from the area law to the volume law

Backup

System size (in)dependence with exact diagonalization

