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Motivation

Why Schwinger model?
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• Simple enough for a first-principle quantum simulation

• Has a lot of similarity with QCD in 3+1

How to understand entanglement in jet fragmentation?

 Real-time quantum process requires

 Real-time quantum simulation



Outline

• Overview of the Schwinger model

• The setup for numerical simulation of jet fragmentation

• Observations: screening, vacuum modification, entanglement

• Properties of Schmidt states - hadronization

• Approach to thermalization reflected in local observables and entanglement
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Schwinger model

Single-flavor (1+1)-dimensional QED:

Features include:

• No magnetic field/no dynamical photons

• Linear potential between “quarks” – confinement

• Chiral condensate (spontaneous chiral symmetry breaking at m=0)

Massless case is exactly solvable, e.g. by bosonization:
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Schwinger model and jets: history
1974
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time

Massless Schwinger model with external source:

2012

pairs pairs



Schwinger model and jets: history
1974

6

time

Massless Schwinger model with external source:

2012

pairs pairs

Classical treatment is sufficient 
in the exactly solvable massless case

However, massive fermion case 
is not exactly solvable and
inherently quantum



Continuum:

The massive Schwinger model on the lattice
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Temporal gauge



Continuum:

The massive Schwinger model on the lattice
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Temporal gauge

Kogut-Susskind

N lattice sites encode 
N/2 physical sites

Fermion



Continuum:

The massive Schwinger model on the lattice
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Temporal gauge

Kogut-Susskind

N sites encode 
N/2 physical sites

Fermion

Gauge field

Gauss law

With open boundary conditions the electric field is fully determined by the fermionic one



Mapping to a spin chain (optional) 

Jordan-Wigner transformation
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Spin chain Hamiltonian:

etc.

Kinetic term Mass term Nonlocal
electric field term
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Adding the jets



Numerical procedure
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Start from the ground state

of the Hamiltonian:

Switch on the external source

and time evolve:

Numerical time evolution using 
classical exact diagonalization or 
tensor networks mimics 
simulation on a quantum device



Screening, chiral condensate 
and entanglement
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Screening, chiral condensate 
and entanglement
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Electric energy

Chiral condensate

Entanglement entropy

Total charge



Screening, chiral condensate 
and entanglement
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Screening the
 electric field

Effects of the dynamical 
pair production:



Screening, chiral condensate 
and entanglement
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Screening the
 electric field

Effects of the dynamical 
pair production:

Destroying 
vacuum 
condensate



Screening, chiral condensate 
and entanglement
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Screening the
 electric field

Effects of the dynamical 
pair production:

Destroying 
vacuum 
condensate

Entangling
the jets



Boundary effects and boundary conditions
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Compare 
expectation
values of local 
operators in 
the ground state



Massless fermion benchmark

19

Bosonization:

Casher, Kogut, Susskind (1974)
Kharzeev, Loshaj (2011)



Massless fermion benchmark
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Bosonization:

Casher, Kogut, Susskind (1974)
Kharzeev, Loshaj (2011)



Massless fermion as a benchmark
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Bosonization:

Casher, Kogut, Susskind (1974)
Kharzeev, Loshaj (2011)

Entanglement? Suggestions welcome!



Correlations to probe entanglement

22

Consider correlation function

Compare the original setup 
with uncorrelated:



Entanglement spectrum
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Schmidt decomposition:

Symmetry-resolved:



Renyi entropies and entangleness
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Differentiate between pure state (PS) 
and maximally entangled state (MES):



Charge distribution in Schmidt vectors

Weak coupling:
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Strong coupling:



Charge distribution in Schmidt vectors

Weak coupling:

Charge is concentrated
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Strong coupling:

Charge is distributed



Charge distribution in Schmidt vectors

Weak coupling:

Charge is concentrated

Some screening
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Strong coupling:

Charge is distributed

Stronger screening



Fermionic Fock basis
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Neel state

N=10 example



Fermionic Fock basis
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Neel state

N=10 example

1-pair excitation

example

...



Strong coupling

Hadronization in real time
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Look at the maximal overlap: 

Schmidt vector Fock basis state
Weak coupling



Towards thermalization
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Equilibration in the middle?

Electric field 

Chiral condensate



Averaged observables 
equilibrate
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Renyi entropy of the central region

Study as a function of L
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Ground state: “area law” (L-independent)

Typical state, e.g. thermal: “volume law” (linear in L)
E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar,

PRX Quantum 3 (2022)
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Area and volume laws
of entanglement

Adjust by the jet arrival time

area law at early times
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Area and volume laws
of entanglement

Adjust by the jet arrival time

area law at early times

Rescale by the subsystem size

volume law at late times



Stopping the jets

Modify the external source:

instead of

Compare different 
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Stopping the jets

Modify the external source:

instead of

37

Condensate responds instantaneously



Stopping the jets

Modify the external source:

instead of
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Condensate responds instantaneously

Entanglement entropy does not 
deviate until 

Information propagates back to the boundary
at about speed of light



Conclusion

• Dynamical pair production leads to electric field screening and 
modification of the vacuum condensate

• Electric field and chiral condensate equilibrate in the central region

• Entanglement between jets steadily grows with contributions from 
many Schmidt states

• At large coupling we observe a dynamical transition of Schmidt states 
from fermionic Fock states to bosonic Fock states

• Second Renyi entropy in the central region exhibits a transition from 
the area law to the volume law
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Backup

40



System size 
(in)dependence 
with exact 
diagonalization
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