Statistical distributions of compact remants from supernovae and the nuclear equation of state

Carla Fröhlich

North Carolina State University

RESEARCH CORPORATION for SCIENCE ADVANCEMENT A foundation dedicated to science since 1912.

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

9 July 2024

Statistical distributions of compact remants from supernovae and

the nuclear equation of state

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Core-Collapse Supernovae (CCSNe)

- Massive stars (> ~8-10Msun) at the end of their lives
 - After Si-burning
 - Onset of collapse (negative velocities in the core)
- Phases of a CCSN:
 - Collapse
 - Core-bounce
 - Prompt shock
 - Shock stall
 - Revival of shock / no revival
 - Explosion / no explosion

Janka (2012)

Core-collapse supernova simulations

- Multi-dimensional problem
- Multi-physics problem:
 - General relativity
 - Nuclear physics of dense matter
 - Neutrino transport (trapped, diffusive, free-streaming regimes)
- Multi-scale problem:
 - shock formation at ~200 km vs entire star 10⁸ km
 - collapse and shock formation ~1 s vs shock breakout ~1 day

Core-collapse supernova simulations

- Multi-dimensional problem
- Multi-physics problem:
 - General relativity
 - Nuclear physics of dense matter
 - Neutrino transport (trapped, diffusive, free-streaming regimes)
- Multi-scale problem:
 - shock formation at ~200 km vs entire star 10⁸ km
 - collapse and shock formation ~1 s vs shock breakout ~1 day

Simulation Status:

1D: in general no self-consistent explosions ~10 CPUh/model

2D: models have converged

3D: mixed results

~ Mio CPUh/model

The paths forward

- Self-consistent 3D simulations
 - The ultimate goal
 - Computationally expensive \rightarrow can do O(10)

- Effective models
 - Simplify part of the problem, but have free parameters
 - Physically reliable
 - Computationally efficient \rightarrow can do O(1000)
- The two paths are complimentary (3D-1D-3D feedback loop)
- Both paths are needed for current open science questions

Effective CCSN Models

- Parametrize a multi-dimensional aspect in 1D simulations
 - Mixing above the PNS, enhanced neutrino heating, etc
- Calibrate parametrization, then apply to many models
 - Eg a suitable model should reproduce observables of SN1987A
 - Predictive within the framework
- PUSH: Parametrized neutrino heating
- PHOT-B: Parametrized neutrino heating
- STIR: Parametrized mixing above PNS

Perego+15, Ebinger+19, Curtis+19, Ebinger+20, Ghosh+23
Ugliano+12, Ertl+15, Sukhbbold+16
Couch+20

O'Connor+13; Mueller+15; Pejcha15; Fryer+12,22; ...

PUSH: An effective CCSN Model

- Neutrino-driven (convection-aided) mechanism
 - Neutrinos are emitted from hot PNS, deposit energy behind the shock
 - Material behind the shock is unstable to convection → enhanced neutrino heating
- Additional (artificial) heating term:

Simulation Setup: PUSH

• General relativistic hydrodynamics: Agile

Liebendoerfer+02

Simulation time: up to 15sec (typically ~8sec)

- Neutrino transport:
 - IDSA and advanced spectral leakage (ASL)

Lieberdoerfer+09; Perego+16

- Nuclear EOS: 6 different nuclear EOSs
 - DD2, SFHo, SFHx, BHBλφ, TM1, NL3

Hempel+02; Typel+10

Electron fraction is evolved during collapse and explosion

Mass cut emerges from the simulation \rightarrow ejecta and explosion energy are not independent "knobs to turn"

 \rightarrow Predictive (within the framework) for outcome (NS or BH), explosion energy, etc

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Statistical distributions of compact remants from supernovae and

the nuclear equation of state

(as relevant for supernova simulations)

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Supernova nuclear EOS

- Nuclear physics input to astrophysical simulations
 - Thermodynamic quantities
 - Nuclear composition
- Challenges:
 - Finite temperature: T = 0 100 MeV
 - No weak equilibrium: $Y_e = 0 0.6$
 - Wide density range: $\rho = 10^4 10^{15} \text{ g/cm}^3$
 - \rightarrow In tabular form: ~1 million points in (T, Y_e, ρ)

Tabulated EOS

EOS	K	m_n^*/m_n	m_p^*/m_p	${\rm M}_{\rm max}$	$R_{1.4M_{\odot}}$
	(MeV)			(M_{\odot})	(km)
DD2	242.7	0.5628	0.5622	2.42	13.2
SFHo	245.4	0.7609	0.7606	2.06	11.9
SFHx	238.8	0.7179	0.7174	2.13	12.0
${\rm BHB}\lambda\phi$	242.7	0.5628	0.5622	2.10	13.2
TM1	281.6	0.6343	0.6338	2.21	14.5
NL3	271.5	0.5954	0.5949	2.79	14.8

Statistical distributions of compact remants from supernovae and the nuclear equation of state

Or, what can we do with >1500 supernova simulations?

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

How to compare simulated and observed data

- Typical setup:
 - Collect input-output pairs from Nature $\{((x)_i, (\tilde{M}_{BH})_i)\}_{i=1}^n$

x ... initial mass & metallicity

• Calibrate the simulator

From progenitor to compact remnant

From progenitor to compact remnant

From progenitor to compact remnant

0 10 20

How to compare simulated and observed data

- Typical setup:
 - Collect input-output pairs from Nature $\{((x)_i, (\tilde{M}_{BH})_i)\}_{i=1}^n$

x ... initial mass & metallicity

• Calibrate the simulator
$$\arg \min_{s} \frac{1}{n} \sum_{i=1}^{n} \left\{ (\tilde{M}_{BH})_{i} - \eta((x)_{i}; s) \right\}^{2}$$
 S ... EOS observed simulated

• Here:

- We cannot observe such input-output pairs from Nature
- We cannot calibrate on the joint distribution $p(x, \tilde{M}_{BH})$ nor the conditional distribution $p(\tilde{M}_{BH} \mid x)$
- Instead obtain marginal distributions: p(x) and $p(\tilde{M}_{BH})$

- Simulations of core-collapse supernovae using PUSH
- Each simulation predicts as output as remnant mass $\eta(x,s)$
 - Either a neutron star (NS) of a given mass
 - Or a black hole (BH) of a given mass
- Simulation is a mapping $\zeta(x): x \rightarrow \eta(x,s)$
- Assume: mapping mimics physical reality for ideal EOS s_0 $\zeta(\mathbf{x}) \approx \eta(x, s_0)$

Simulated data

- Binary outcome: explosion / no explosion
 - Explosion \rightarrow NSs of a given mass
 - No explosion \rightarrow BHs of a given mass

Simulated data

- Binary outcome: explosion / no explosion
 - Explosion \rightarrow NSs of a given mass
 - No explosion \rightarrow BHs of a given mass

Simulated data

- Binary outcome: explosion / no explosion
 - Explosion \rightarrow NSs of a given mass
 - No explosion \rightarrow BHs of a given mass

- Distribution of mass:
 - Kroupa initial mass function

 $\xi(M_{\rm ZAMS}, z) = \begin{cases} 0.035 M_{\rm ZAMS}^{-1.3} & \text{for } M_{\rm ZAMS} < 0.5 \\ 0.019 M_{\rm ZAMS}^{-2.2} & \text{for } 0.5 \le M_{\rm ZAMS} < 1.0 \\ 0.019 M_{\rm ZAMS}^{-2.7} & \text{for } M_{\rm ZAMS} \ge 1.0 \end{cases}$

- Distribution of metallicity:
 - uniform

Data from Nature: Observations of Black Holes (BHs)

- Model C from Abott et al (2019)
- No BHs below M_{BH}⁻
- Truncated power law from M_{BH}^{-} to M_{BH}^{+}
- Gaussian distribution of high-mass BHs from pair-instability SNe

We drop this term because PUSH does not caputre PISNe

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Data from Nature: Observations of Neutron Stars (NSs)

• Neutron stars:
$$p(M_{\rm NS}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(M_{\rm NS}-M_0)^2/(2\sigma^2)}$$

- Split into different astrophysical systems
 - For slow pulsars: $M_0 = 1.49$ and $\sigma = 0.19$
 - For recycled pulsars: $M_0 = 1.54$ and $\sigma = 0.23$
 - For NSs in binaries with another degenerate object (concentric orbits): $M_0 = 1.33$ and $\sigma = 0.09$.
 - For NSs in binaries with another degenerate object (eccentric orbits): $M_0 = 1.29$ and $\sigma = 0.24$

Statistical distributions of compact remants from supernovae and

the nuclear equation of state

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Overview of methodology

- Observed mass distributions are subject to observational error
- We convert the ensemble of measurements to a distribution via the central limit theorem
- Error *e* can be drawn from a Gaussian distribution $p(e;\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-e^2/2\sigma^2}$ with mean zero and standard deviation σ for each population
 - Standard deviation:
 - For BHs: from 90% confidence interval in Abbott et al (2019)

 $\sigma_{\rm BH}(M_{\rm BH}) = 0.120213M_{\rm BH} + 0.355936$

• For NSs: average width of 90% confidence intervals of NS observations

 $\sigma_{\rm NS} = 0.1.$

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Results: Probability Density Functions

Statistical distances between p and p_s

- Use two different distance measures:
 - Kullback-Leibler (KL) divergence $D_{\text{KL}}(p || p_s) = \int p(\tilde{M}_{\text{BH}}) \log \left(\frac{p(\tilde{M}_{\text{BH}})}{p_{\epsilon}(\tilde{M}_{\text{BH}})} \right) d\tilde{M}_{\text{BH}}$
 - Measures the total entropy between *p* and *p*_s
 - Total variation (TV) distance $D_{\rm TV}(p,p_s) = \frac{1}{2} \int |p(\tilde{M}_{\rm BH}) p_s(\tilde{M}_{\rm BH})| d\tilde{M}_{\rm BH}$
 - Measures the maximum distance between the probabilities assigned to an event by two probability distributions

EOS		BH		NSS
	$D_{ m KL}$	D_{TV}	$D_{ m KL}$	$D_{ m TV}$
DD2	$0.528\substack{+0.101\\-0.068}$	$0.324\substack{+0.050\\-0.036}$	$0.066\substack{+0.058\\-0.043}$	$0.125\substack{+0.045\\-0.052}$
SFHo	$1.011\substack{+0.836\\-0.270}$	$0.523\substack{+0.155\\-0.092}$	$0.071\substack{+0.081\\-0.054}$	$0.133\substack{+0.060\\-0.069}$
SFHx	$0.999\substack{+1.510\\-0.312}$	$0.519\substack{+0.187\\-0.109}$	$0.082\substack{+0.098\\-0.063}$	$0.143\substack{+0.066\\-0.075}$
${ m BHB}\lambda\phi$	$0.729\substack{+0.270\\-0.135}$	$0.427\substack{+0.089\\-0.060}$	$0.044\substack{+0.066\\-0.033}$	$0.105\substack{+0.061\\-0.064}$
TM 1	$0.752\substack{+0.295\\-0.152}$	$0.437\substack{+0.093\\-0.065}$	$0.018\substack{+0.056\\-0.016}$	$0.068\substack{+0.068\\-0.050}$
NL3	$0.808\substack{+0.459\\-0.178}$	$0.457\substack{+0.121\\-0.073}$	$0.025\substack{+0.060\\-0.023}$	$0.080\substack{+0.066\\-0.062}$

EOS		NSS		
	$D_{ m KL}$	$D_{ m TV}$	$D_{ m KL}$	$D_{ m TV}$
DD2	$0.528\substack{+0.101 \\ -0.068}$	$0.324\substack{+0.050\\-0.036}$	$0.066\substack{+0.058\\-0.043}$	$0.125\substack{+0.045\\-0.052}$
SFHo	$1.011\substack{+0.836\\-0.270}$	$0.523\substack{+0.155\\-0.092}$	$0.071\substack{+0.081\\-0.054}$	$0.133\substack{+0.060\\-0.069}$
SFHx	$0.999\substack{+1.510\\-0.312}$	$0.519\substack{+0.187\\-0.109}$	$0.082\substack{+0.098\\-0.063}$	$0.143\substack{+0.066\\-0.075}$
${ m BHB}\lambda\phi$	$0.729\substack{+0.270\\-0.135}$	$0.427\substack{+0.089\\-0.060}$	$0.044\substack{+0.066\\-0.033}$	$0.105\substack{+0.061\\-0.064}$
TM1	$0.752\substack{+0.295\\-0.152}$	$0.437\substack{+0.093\\-0.065}$	$0.018\substack{+0.056\\-0.016}$	$0.068\substack{+0.068\\-0.050}$
NL3	$0.808\substack{+0.459\\-0.178}$	$0.457\substack{+0.121\\-0.073}$	$0.025\substack{+0.060\\-0.023}$	$0.080\substack{+0.066\\-0.062}$

 D_{KL} can suffer from stability issues due to small density values, eg at the tails of the distribution

EOS		BH		NSS
	$D_{ m KL}$	$D_{ m TV}$	$D_{ m KL}$	$D_{ m TV}$
DD2	$0.528\substack{+0.101\\-0.068}$	$0.324\substack{+0.050\\-0.036}$	$0.066\substack{+0.058\\-0.043}$	$0.125\substack{+0.045\\-0.052}$
SFHo	$1.011\substack{+0.836\\-0.270}$	$0.523\substack{+0.155\\-0.092}$	$0.071\substack{+0.081\\-0.054}$	$0.133\substack{+0.060\\-0.069}$
SFHx	$0.999\substack{+1.510\\-0.312}$	$0.519\substack{+0.187\\-0.109}$	$0.082\substack{+0.098\\-0.063}$	$0.143\substack{+0.066\\-0.075}$
${ m BHB}\lambda\phi$	$0.729\substack{+0.270\\-0.135}$	$0.427\substack{+0.089\\-0.060}$	$0.044\substack{+0.066\\-0.033}$	$0.105\substack{+0.061\\-0.064}$
TM1	$0.752\substack{+0.295\\-0.152}$	$0.437\substack{+0.093\\-0.065}$	$0.018\substack{+0.056\\-0.016}$	$0.068\substack{+0.068\\-0.050}$
NL3	$0.808\substack{+0.459\\-0.178}$	$0.457\substack{+0.121\\-0.073}$	$0.025\substack{+0.060\\-0.023}$	$0.080\substack{+0.066\\-0.062}$

normalized to 1

Results: Distances between distributions

 $\Delta = D_{EOS} - \overline{D}$

Error bars: 95% confidence interval

- Rankings are slightly different between BHs and NSs
 - Results for NSs are not statistically significant
 - We show results for NSS (most similar to our simulation setup)
- DD2 is most favored
 - Caveat: DD2 was used to calibrate the PUSH parameters
- SFHo and SFHx are mildly disfavored
- BLB $\lambda\phi$, TM1, NL3 are mildly favored

... and improvements

- Include progenitors with ZAMS masses of 8 -11 M_{\odot}
 - We miss NSs at the low mass end (~1.4 Msun)
- Include binary stars (currently assume isolated stars as progenitors)
- Influence of the PUSH calibration on the results
 - Re-calibrated PUSH using TM1 instead of DD2 \rightarrow no relevant difference
- Understand the influence of the progenitors used
 - All progenitors are from the same stellar evolution code
- Use more observables: NS radius, Ni mass, explosion energy, ...

More (future) observables

INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Gravitational Waves and the nuclear EOS Wolfe+23

Gravitational Wave Eigenfrequencies from Neutrino-driven Core-collapse Supernovae

Noah E. Wolfe^{1,2,3}, Carla Fröhlich¹, Jonah M. Miller^{4,5}, Alejandro Torres-Forné^{6,7}, and Pablo Cerdá-Durán^{6,7}

- Linear perturbation analysis of general-relativistic hydrodynamics background
 Torres-Forné+18, Morozova+18, Torres-Forné+19, Sotani+20
- Calculate time-frequency evolution (no amplitudes) from spherically-symmetric proto-neutron star background
- Identify frequencies that characterize astrophysical properties of proto-neutron star
 - Universal relations for PNS surface gravity Torres-Forne+19
 - Multi-messenger observations of core-collapse Warren+20, Nakamura+22
 - Parameter estimation

Bizouzard+21, Powell+22

Noah Wolfe: undergraduate at NCSU → PhD at MIT

Gravitational Waves and the nuclear EOS Wolfe+23

Noah Wolfe: undergraduate at NCSU → PhD at MIT

Gravitational Wave Eigenfrequencies from Neutrino-driven Core-collapse Supernovae

Noah E. Wolfe^{1,2,3}, Carla Fröhlich¹, Jonah M. Miller^{4,5}, Alejandro Torres-Forné^{6,7}, and Pablo Cerdá-Durán^{6,7}

