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Core-Collapse Supernovae (CCSNe)

• Massive stars (> ~8-10Msun) at the end of their lives
• After Si-burning
• Onset of collapse (negative velocities in the core)

• Phases of a CCSN:
• Collapse
• Core-bounce
• Prompt shock
• Shock stall
• Revival of shock / no revival
• Explosion / no explosion

Janka (2012)
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Core-collapse supernova simulations

• Multi-dimensional problem

• Multi-physics problem:

• General relativity

• Nuclear physics of dense matter

• Neutrino transport 
(trapped, diffusive, free-streaming regimes)

• Multi-scale problem:
• shock formation at ~200 km vs entire star 108 km
• collapse and shock formation ~1 s vs shock 

breakout ~1 day

Cas A; Chandra, NASA
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Core-collapse supernova simulations

• Multi-dimensional problem

• Multi-physics problem:

• General relativity

• Nuclear physics of dense matter

• Neutrino transport 
(trapped, diffusive, free-streaming regimes)

• Multi-scale problem:
• shock formation at ~200 km vs entire star 108 km
• collapse and shock formation ~1 s vs shock 

breakout ~1 day

Cas A; Chandra, NASA

Simulation Status:

1D: in general no self-consistent explosions
       ~10 CPUh/model

2D: models have converged 

3D: mixed results
       ~ Mio CPUh/model

O’Conor+18

FornaxVertex
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The paths forward

• Self-consistent 3D simulations
• The ultimate goal
• Computationally expensive à can do O(10)

• Effective models
• Simplify part of the problem, but have free parameters
• Physically reliable
• Computationally efficient à can do O(1000)

• The two paths are complimentary (3D-1D-3D feedback loop)
• Both paths are needed for current open science questions
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Effective CCSN Models

• Parametrize a multi-dimensional aspect in 1D simulations
• Mixing above the PNS, enhanced neutrino heating, etc

• Calibrate parametrization, then apply to many models
• Eg a suitable model should reproduce observables of SN1987A
• Predictive within the framework

• PUSH: Parametrized neutrino heating
• PHOT-B: Parametrized neutrino heating
• STIR: Parametrized mixing above PNS

Ugliano+12, Ertl+15, Sukhbbold+16

Perego+15, Ebinger+19, Curtis+19, Ebinger+20, Ghosh+23

Couch+20

O'Connor+13; Mueller+15; Pejcha15; Fryer+12,22; …
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PUSH: An effective CCSN Model

• Neutrino-driven (convection-aided) mechanism
• Neutrinos are emitted from hot PNS, deposit energy behind the shock
• Material behind the shock is unstable to convection à enhanced neutrino 

heating

• Additional (artificial) heating term:

Standard heating 
from electron 
(anti-) neutrinos

Additional 
heating in PUSH
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Simulation Setup: PUSH

• General relativistic hydrodynamics: Agile

• Neutrino transport: 
• IDSA and advanced spectral leakage (ASL)

• Nuclear EOS: 6 different nuclear EOSs
• DD2, SFHo, SFHx, BHBλϕ, TM1, NL3

àPredictive (within the framework) for outcome (NS or BH), explosion energy, etc

Hempel+02; Typel+10

Lieberdoerfer+09; Perego+16

Liebendoerfer+02

Simulation time: up to 15sec (typically ~8sec)

Electron fraction is evolved during collapse 
and explosion

Mass cut emerges from the simulation
à ejecta and explosion energy are not 
independent “knobs to turn”
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Statistical distributions 
of compact remants from supernovae 

and 
the nuclear equation of state

(as relevant for supernova simulations)
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Supernova nuclear EOS

• Nuclear physics input to astrophysical simulations
• Thermodynamic quantities
• Nuclear composition

• Challenges:
• Finite temperature: T = 0 – 100 MeV
• No weak equilibrium: Ye = 0 – 0.6
• Wide density range: 𝜌 = 104 – 1015 g/cm3 
à In tabular form: ~1 million points in (T, Ye, 𝜌)
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Tabulated EOS
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Statistical distributions 
of compact remants from supernovae 

and 
the nuclear equation of state

Or, what can we do with >1500 supernova simulations?
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How to compare simulated and observed data

• Typical setup:
• Collect input-output pairs from Nature

• Calibrate the simulator

4 Meskhi et al.

for NS mass MNS. Observationally, there are two popu-214

lations of isolated stars, recycled and slow pulsars, how-215

ever they are not very di↵erent and are combined into216

a single population for isolated NSs. The parameters217

are M0 = 1.54 and � = 0.219689 for isolated stars. For218

double stars, M0 = 1.33 and � = 0.09. All in units of219

solar masses.220

2.4. Distributions of Measurement Error221

The observed mass distributions are subject to ob-222

servational error coming from, e.g., telescope properties223

and the di�culty of observing a given system. We con-224

vert an ensemble of measurements to a distribution by225

assuming, via the central limit theorem (Fischer 2010),226

that in the ensemble, the error e can be drawn from227

a Gaussian distribution with mean zero and standard228

deviation � that depends on the population:229

p(e;�) =
1p
2⇡�2

e�e2/2�2

, (4)230

where all quantities are in units of solar masses. The BH231

measurement error comes primarily from the noise prop-232

erties of gravitational wave detectors, which depends on233

the frequency of the gravitational wave, and thus the234

masses of the merging BHs (Buikema et al. 2020). From235

reported 90% confidence intervals (Abbott et al. 2019),236

we infer the standard deviation of the measurement er-237

ror to be238

�BH(MBH) = 0.120213MBH + 0.355936 (5)239

in units of solar masses. The NS measurement error240

varies more wildly, as observations vary significantly in241

their sensitivity depending on observing telescope and242

observed system. We therefore assume the standard de-243

viation for the neutron star mass observational error (in244

solar masses) to be245

�NS = 0.1. (6)246

We arrive at this value by taking the average width of247

90 % confidence intervals of neutron star observations.248

3. STATISTICAL TECHNIQUES249

Although our CCSN models contain many uncertain-250

ties, for the purposes of this study, we assume that our251

simulations would mimic physical reality closely if s is252

tuned to an unknown ideal EOS s0:253

⇣(x) ⇡ ⌘(x; s0), 8x. (7)254

In other words, we assume that the discrepancy between255

the best tuned simulator ⌘(·; s0) and the reality ⇣(·)256

is negligible. The setup assuming discrepancy between257

⌘(·; s0) and ⇣(·) su↵ers from an identifiability issue (Ba-258

yarri et al. 2007; Brynjarsdóttir & O’Hagan 2014; Wong259

et al. 2017), and may require additional information to260

find s0. In the following, we discuss the predicted and261

observed remnant mass distributions for BHs, MBH and262

(MBH)s respectively. The same procedure also applies263

for NSs MNS and (MNS)s, respectively.264

Our overarching goal is to find the state s0, which265

is only possible if we have observations from Nature.266

However, in practice, we can only observe a contami-267

nated version M̃BH (or M̃NS) of MBH (or MNS). The268

relationship between M̃BH and MBH is modeled by269

M̃BH = MBH + e = ⇣(x) + e, (8)270

where e is the measurement error satisfying E(e | x) = 0271

and x encapsulates both MZAMS and z.272

In a typical setup of computer model calibration, one273

would collect data in terms of input-output pairs, i.e.,274

{((x)i, (M̃BH)i)}ni=1
from Nature to calibrate the simu-275

lator, i.e., to estimate s0, by276

argmin
s

1

n

nX

i=1

n
(M̃BH)i � ⌘((x)i; s)

o2

, (9)277

assuming the simulator evaluations are a↵ordable. How-278

ever, here, we do not have the luxury to observe the279

input-output pair (x, M̃BH) from Nature. Instead, we280

are only able to obtain the marginal distribution p(x) of281

x (Section 2.1) and the marginal distribution p(M̃BH) of282

M̃BH (Section 2.3). Therefore, we have to build a cali-283

bration strategy that intuitively based on p(M̃BH) and284

p(x), instead of the joint distribution p(x, M̃BH) or the285

conditional distribution p(M̃BH | x).286

3.1. Comparing the marginal distributions287

Aside from real star-collapse data, we are additionally288

provided with data sets {((x)si , (MBH)si )}
ns
i=1

from the289

simulator for every state s:290

(MBH)
s
i = ⌘((x)si ; s), i = 1, . . . , ns, (10)291

where the sampling designs {(x)si} are generated inde-292

pendently according to the sampling density qs(x).293

We use qs to represent the densities related to294

data generated from the simulator at state s: e.g.,295

qs(MBH, x), qs(x) and qs(MBH | x). Note that296

p(M̃BH) =

Z
p(x, M̃BH)dx (11)297

=

Z
p(M̃BH | x)p(x)dx (12)298

=

Z
p(M̃BH | x)ws(x)qs(x)dx, (13)299

300
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From progenitor to compact remnant

Core collapseProgenitor star Supernova
Compact remnant
(NS or BH)

Simulation:
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From progenitor to compact remnant

SN1987A:

Sanduleak -69 202

SN1987A
But NS is missing?!

Core collapseProgenitor star Supernova
Compact remnant
(NS or BH)

Simulation:
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From progenitor to compact remnant

Core collapseProgenitor star Supernova
Compact remnant
(NS or BH)

Simulation:

Nature:
Stars

Supernovae

Neutron stars Black holes
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How to compare simulated and observed data

• Typical setup:
• Collect input-output pairs from Nature

• Calibrate the simulator

• Here: 
• We cannot observe such input-output pairs from Nature
• We cannot calibrate on the joint distribution

nor the conditional distribution

• Instead obtain marginal distributions:           and  

4 Meskhi et al.
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for NS mass MNS. Observationally, there are two popu-214
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ever they are not very di↵erent and are combined into216

a single population for isolated NSs. The parameters217

are M0 = 1.54 and � = 0.219689 for isolated stars. For218

double stars, M0 = 1.33 and � = 0.09. All in units of219
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assuming, via the central limit theorem (Fischer 2010),226

that in the ensemble, the error e can be drawn from227
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deviation � that depends on the population:229
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measurement error comes primarily from the noise prop-232

erties of gravitational wave detectors, which depends on233

the frequency of the gravitational wave, and thus the234

masses of the merging BHs (Buikema et al. 2020). From235

reported 90% confidence intervals (Abbott et al. 2019),236

we infer the standard deviation of the measurement er-237

ror to be238

�BH(MBH) = 0.120213MBH + 0.355936 (5)239
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varies more wildly, as observations vary significantly in241

their sensitivity depending on observing telescope and242

observed system. We therefore assume the standard de-243

viation for the neutron star mass observational error (in244

solar masses) to be245

�NS = 0.1. (6)246

We arrive at this value by taking the average width of247
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Simulated data

• Simulations of core-collapse supernovae using PUSH
• Each simulation predicts as output as remnant mass η(x,s) 
• Either a neutron star (NS) of a given mass
• Or a black hole (BH) of a given mass

• Simulation is a mapping 𝜁(x): x → η(x,s) 
• Assume: mapping mimics physical reality for ideal EOS s0 

  𝜁(x) ≈ η(x,s0) 
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Simulated data

• Binary outcome: explosion / no explosion
• Explosion à NSs of a given mass
• No explosion à BHs of a given mass
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Simulated data

• Binary outcome: explosion / no explosion
• Explosion à NSs of a given mass
• No explosion à BHs of a given mass

• Distribution of mass:
• Kroupa initial mass function

• Distribution of metallicity:
• uniform
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In this work, we focus on CCSNe, where the EOS65

can have a significant impact on both the dynamics and66

the outcome. When a massive star runs out of nuclear67

fuel, it collapses under its own weight. The iron core68

of the star becomes ultra dense and neutron rich, form-69

ing a proto-neutron star (PNS). In-falling material then70

bounces o↵ of the PNS, forming an outward moving71

shock. If this shock is strong enough, it moves out-72

ward, driving an explosion. If the shock fails, the star73

collapses without an explosion. The core of the star74

eventually forms either a stable NS, supported by neu-75

tron degeneracy pressure and the strong nuclear force,76

or collapses to a black hole (BH) Shapiro & Teukolsky77

(2008).78

Solving the full CCSN problem remains a grand chal-79

lenge in astrophysics, with many decades devoted to80

simulations at high resolution in 3D (Müller 2020, e.g.).81

Several studies have been performed with a focus on the82

EOS dependence of the PNS contraction and explosion83

properties, Richers et al. (e.g. 2017); Yasin et al. (e.g.84

2020); Schneider et al. (e.g. 2019). Many other studies85

performed simulations of 1-3 di↵erent progenitors with86

1-3 di↵erent EOSs. See Nakazato et al. (2021); Ivanov87

& Fernández (2021) for some recent examples. Similar88

small-scale sensitivity studies have also been attempted89

for binary merger simulations. However, the absence of90

a truly systematic approach makes it di�cult to corre-91

late the explosion properties with the underlying physics92

assumptions in the EOS.93

In this letter, we take an entirely new approach, facil-94

itated by the availability of computationally relatively95

cheap e↵ective CCSN models. We combine the CCSN96

simulations with statistical techniques from data science97

and observational data of NS and BH remnant masses98

and use a data-driven framework to validate six nuclear99

EOS models.100

Unfortunately, with rare exceptions (Van Dyk 2017)101

it is impossible to connect a supernova explosion to its102

progenitor star Rather, what is available is a set of ob-103

servations of living stars (not yet collapsing), a sepa-104

rate set of observations of explosions, and another set of105

observations of post-explosion remnant objects (BHs or106

NSs). This gives us the probability distributions of these107

populations, but no way to draw a direct connection be-108

tween a specific progenitor, a specific supernova, and a109

specific remnant.110

We sidestep this issue by comparing distributions di-111

rectly. We use a suite of CCSN models to map a physi-112

cally motivated statistical distribution of stellar progeni-113

tors into a synthetic distribution of remnants, which can114

then be compared to observed remnant distributions.115

Importantly, we create six synthetic distributions, one116

for each EOS, and use this comparison to validate these117

EOS models.118

2. METHODOLOGY AND INPUT PHYSICS119

An overview of our general methodology is shown in120

Figure 1. We begin with a set of model assumptions121

embedded in di↵erent EOSs that lead to di↵erent simu-122

lations of stellar collapse. These are used to generate a123

statistical distribution of post-collapse remnant objects.124

This simulated distribution is then compared to an ob-125

served distribution of remnants. A quantification of the126

distance between real and simulated distribution func-127

tions points to a favored model assumption.128

The distribution of stellar progenitors depends on the129

zero age main sequence mass MZAMS and metalicity z,130

which we combine into the single input variable x. Our131

simulations vary over x and EOS s. A given simula-132

tion predicts as output either a NS or BH of a given133

mass. We call this simulated mapping from x to a rem-134

nant mass ⌘(x; s), which is assumed to mimic the true135

mapping found in Nature, ⇣(x). The observed data is136

also subject to measurement error, e. This error emerges137

from limitations of the observed system or the observing138

instrument.139

2.1. Distribution of Mass and Metallicity140

For pre-collapse stars, we use the initial mass function141

from Kroupa et al. (1993):142

⇠(MZAMS, z) =

8
>><

>>:

0.035MZAMS
�1.3 for MZAMS < 0.5

0.019MZAMS
�2.2 for 0.5  MZAMS < 1.0

0.019MZAMS
�2.7 for MZAMS � 1.0

,

(1)143

for a ZAMS mass MZAMS in solar masses (M�) and144

metallicity z in units of solar metallicity. Note that the145

distribution is uniform in metallicity and that it may146

need a global renormalization factor.147

2.2. Simulations148

While computational power and model sophistication149

are rapidly improving, three-dimensional CCSN simula-150

tions are still heroic, computationally-expensive endeav-151

ors, making a large-scale parameter study intractable.152

Here, we make use of a more tractable setup, where153

the explosion is driven in spherical symmetry by a self-154

consistent parameterized treatment (Perego et al. 2015).155

Our framework (“PUSH”) mimics the net enhanced en-156

ergy deposition expected from multi-dimensional fluid157

motion in a spherically symmetric simulation. Due to158

the physical coupling of core and outer layers, and the159

computational e�ciency of PUSH, observable quantities160



Carla Frohlich (NCSU)INT Workshop "Uncertainty Quantification" (8-12 July 2024)

Data from Nature: Observations of Black Holes (BHs)

• Black holes:

• Model C from Abott et al (2019)
• No BHs below MBH

- 
• Truncated power law from MBH

- to MBH
+

• Gaussian distribution of high-mass BHs from pair-instability SNe
We drop this term
because PUSH does 
not caputre PISNe
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Data from Nature: Observations of Neutron Stars (NSs)

• Neutron stars:

• Split into different astrophysical systems

• For slow pulsars: 
• For recycled pulsars: 
• For NSs in binaries with another degenerate object

(concentric orbits): 
• For NSs in binaries with another degenerate object

(eccentric orbits): 
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for NS mass MNS. Observationally, there are two popu-214

lations of isolated stars, recycled and slow pulsars, how-215

ever they are not very di↵erent and are combined into216

a single population for isolated NSs. The parameters217

are M0 = 1.54 and � = 0.219689 for isolated stars. For218

double stars, M0 = 1.33 and � = 0.09. All in units of219

solar masses.220

2.4. Distributions of Measurement Error221

The observed mass distributions are subject to ob-222

servational error coming from, e.g., telescope properties223

and the di�culty of observing a given system. We con-224

vert an ensemble of measurements to a distribution by225

assuming, via the central limit theorem (Fischer 2010),226

that in the ensemble, the error e can be drawn from227

a Gaussian distribution with mean zero and standard228

deviation � that depends on the population:229

p(e;�) =
1p
2⇡�2

e�e2/2�2

, (4)230

where all quantities are in units of solar masses. The BH231

measurement error comes primarily from the noise prop-232

erties of gravitational wave detectors, which depends on233

the frequency of the gravitational wave, and thus the234

masses of the merging BHs (Buikema et al. 2020). From235

reported 90% confidence intervals (Abbott et al. 2019),236

we infer the standard deviation of the measurement er-237

ror to be238

�BH(MBH) = 0.120213MBH + 0.355936 (5)239

in units of solar masses. The NS measurement error240

varies more wildly, as observations vary significantly in241

their sensitivity depending on observing telescope and242

observed system. We therefore assume the standard de-243

viation for the neutron star mass observational error (in244

solar masses) to be245

�NS = 0.1. (6)246

We arrive at this value by taking the average width of247

90 % confidence intervals of neutron star observations.248

3. STATISTICAL TECHNIQUES249

Although our CCSN models contain many uncertain-250

ties, for the purposes of this study, we assume that our251

simulations would mimic physical reality closely if s is252

tuned to an unknown ideal EOS s0:253

⇣(x) ⇡ ⌘(x; s0), 8x. (7)254

In other words, we assume that the discrepancy between255

the best tuned simulator ⌘(·; s0) and the reality ⇣(·)256

is negligible. The setup assuming discrepancy between257

⌘(·; s0) and ⇣(·) su↵ers from an identifiability issue (Ba-258

yarri et al. 2007; Brynjarsdóttir & O’Hagan 2014; Wong259

et al. 2017), and may require additional information to260

find s0. In the following, we discuss the predicted and261

observed remnant mass distributions for BHs, MBH and262

(MBH)s respectively. The same procedure also applies263

for NSs MNS and (MNS)s, respectively.264

Our overarching goal is to find the state s0, which265

is only possible if we have observations from Nature.266

However, in practice, we can only observe a contami-267

nated version M̃BH (or M̃NS) of MBH (or MNS). The268

relationship between M̃BH and MBH is modeled by269

M̃BH = MBH + e = ⇣(x) + e, (8)270

where e is the measurement error satisfying E(e | x) = 0271

and x encapsulates both MZAMS and z.272

In a typical setup of computer model calibration, one273

would collect data in terms of input-output pairs, i.e.,274

{((x)i, (M̃BH)i)}ni=1
from Nature to calibrate the simu-275

lator, i.e., to estimate s0, by276

argmin
s

1

n

nX

i=1

n
(M̃BH)i � ⌘((x)i; s)

o2

, (9)277

assuming the simulator evaluations are a↵ordable. How-278

ever, here, we do not have the luxury to observe the279

input-output pair (x, M̃BH) from Nature. Instead, we280

are only able to obtain the marginal distribution p(x) of281

x (Section 2.1) and the marginal distribution p(M̃BH) of282

M̃BH (Section 2.3). Therefore, we have to build a cali-283

bration strategy that intuitively based on p(M̃BH) and284

p(x), instead of the joint distribution p(x, M̃BH) or the285

conditional distribution p(M̃BH | x).286

3.1. Comparing the marginal distributions287

Aside from real star-collapse data, we are additionally288

provided with data sets {((x)si , (MBH)si )}
ns
i=1

from the289

simulator for every state s:290

(MBH)
s
i = ⌘((x)si ; s), i = 1, . . . , ns, (10)291

where the sampling designs {(x)si} are generated inde-292

pendently according to the sampling density qs(x).293

We use qs to represent the densities related to294

data generated from the simulator at state s: e.g.,295

qs(MBH, x), qs(x) and qs(MBH | x). Note that296

p(M̃BH) =

Z
p(x, M̃BH)dx (11)297

=

Z
p(M̃BH | x)p(x)dx (12)298

=

Z
p(M̃BH | x)ws(x)qs(x)dx, (13)299

300
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BHBlp
TM1
NL3

Initial stellar
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Initial stellar
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Measurement Error

• Observed mass distributions are subject to observational error

• We convert the ensemble of measurements to a distribution 
via the central limit theorem

• Error e can be drawn from a Gaussian distribution 
with mean zero and standard deviation 𝜎 for each population

• Standard deviation:
• For BHs: from 90% confidence interval in Abbott et al (2019)

• For NSs: average width of 90% confidence intervals of NS observations
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for NS mass MNS. Observationally, there are two popu-214

lations of isolated stars, recycled and slow pulsars, how-215

ever they are not very di↵erent and are combined into216

a single population for isolated NSs. The parameters217

are M0 = 1.54 and � = 0.219689 for isolated stars. For218

double stars, M0 = 1.33 and � = 0.09. All in units of219

solar masses.220

2.4. Distributions of Measurement Error221

The observed mass distributions are subject to ob-222

servational error coming from, e.g., telescope properties223

and the di�culty of observing a given system. We con-224

vert an ensemble of measurements to a distribution by225

assuming, via the central limit theorem (Fischer 2010),226

that in the ensemble, the error e can be drawn from227

a Gaussian distribution with mean zero and standard228

deviation � that depends on the population:229

p(e;�) =
1p
2⇡�2

e�e2/2�2

, (4)230

where all quantities are in units of solar masses. The BH231

measurement error comes primarily from the noise prop-232

erties of gravitational wave detectors, which depends on233

the frequency of the gravitational wave, and thus the234

masses of the merging BHs (Buikema et al. 2020). From235

reported 90% confidence intervals (Abbott et al. 2019),236

we infer the standard deviation of the measurement er-237

ror to be238

�BH(MBH) = 0.120213MBH + 0.355936 (5)239

in units of solar masses. The NS measurement error240

varies more wildly, as observations vary significantly in241

their sensitivity depending on observing telescope and242

observed system. We therefore assume the standard de-243

viation for the neutron star mass observational error (in244

solar masses) to be245

�NS = 0.1. (6)246

We arrive at this value by taking the average width of247

90 % confidence intervals of neutron star observations.248

3. STATISTICAL TECHNIQUES249

Although our CCSN models contain many uncertain-250

ties, for the purposes of this study, we assume that our251

simulations would mimic physical reality closely if s is252

tuned to an unknown ideal EOS s0:253

⇣(x) ⇡ ⌘(x; s0), 8x. (7)254

In other words, we assume that the discrepancy between255

the best tuned simulator ⌘(·; s0) and the reality ⇣(·)256

is negligible. The setup assuming discrepancy between257

⌘(·; s0) and ⇣(·) su↵ers from an identifiability issue (Ba-258

yarri et al. 2007; Brynjarsdóttir & O’Hagan 2014; Wong259

et al. 2017), and may require additional information to260

find s0. In the following, we discuss the predicted and261

observed remnant mass distributions for BHs, MBH and262

(MBH)s respectively. The same procedure also applies263

for NSs MNS and (MNS)s, respectively.264

Our overarching goal is to find the state s0, which265

is only possible if we have observations from Nature.266

However, in practice, we can only observe a contami-267

nated version M̃BH (or M̃NS) of MBH (or MNS). The268

relationship between M̃BH and MBH is modeled by269

M̃BH = MBH + e = ⇣(x) + e, (8)270

where e is the measurement error satisfying E(e | x) = 0271

and x encapsulates both MZAMS and z.272

In a typical setup of computer model calibration, one273

would collect data in terms of input-output pairs, i.e.,274

{((x)i, (M̃BH)i)}ni=1
from Nature to calibrate the simu-275

lator, i.e., to estimate s0, by276

argmin
s

1

n

nX

i=1

n
(M̃BH)i � ⌘((x)i; s)

o2

, (9)277

assuming the simulator evaluations are a↵ordable. How-278

ever, here, we do not have the luxury to observe the279

input-output pair (x, M̃BH) from Nature. Instead, we280

are only able to obtain the marginal distribution p(x) of281

x (Section 2.1) and the marginal distribution p(M̃BH) of282

M̃BH (Section 2.3). Therefore, we have to build a cali-283

bration strategy that intuitively based on p(M̃BH) and284

p(x), instead of the joint distribution p(x, M̃BH) or the285

conditional distribution p(M̃BH | x).286

3.1. Comparing the marginal distributions287

Aside from real star-collapse data, we are additionally288

provided with data sets {((x)si , (MBH)si )}
ns
i=1

from the289

simulator for every state s:290

(MBH)
s
i = ⌘((x)si ; s), i = 1, . . . , ns, (10)291

where the sampling designs {(x)si} are generated inde-292

pendently according to the sampling density qs(x).293

We use qs to represent the densities related to294

data generated from the simulator at state s: e.g.,295

qs(MBH, x), qs(x) and qs(MBH | x). Note that296

p(M̃BH) =

Z
p(x, M̃BH)dx (11)297

=

Z
p(M̃BH | x)p(x)dx (12)298

=

Z
p(M̃BH | x)ws(x)qs(x)dx, (13)299

300
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Results: Probability Density Functions

Neutron starsBlack holes
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Statistical distances between p and ps

• Use two different distance measures:

• Kullback-Leibler (KL) divergence

• Measures the total entropy between p and ps 

• Total variation (TV) distance

• Measures the maximum distance between the probabilities assigned to an event by two 
probability distributions

Statistics, Supernovae, and the Nuclear Equation of State 5

where ws(x) := p(x)/qs(x) is assumed to be strictly pos-301

itive and known.302

We define the contaminated version of (MBH)s as303

(M̃BH)s := (MBH)s + (e)s where (e)s | (x)s ⇠ p(e | x).304

Again, we use qs to represent related densities: e.g.,305

qs(M̃BH, x) and qs(M̃BH | x). We have306

ps(M̃BH) :=

Z
qs(M̃BH, x)ws(x)dx (14)307

=

Z
qs(M̃BH | x)qs(x)ws(x)dx (15)308

309

Since qs0(M̃BH | x) = p(M̃BH | x), ps0(M̃BH) = p(M̃BH)310

by (13) and (15). So we estimate p(M̃BH) through a311

weighted kernel density estimation (KDE) of ps0(M̃BH).312

The weighted KDE is based on the Fast Fourier Trans-313

form algorithm implemented in KDEpy (Odland 2018).314

The pseudo code of the estimation of ps can be found in315

Appendix A.316

Assuming qs 6= qs0 for any s 6= s0, we can compare317

p(M̃BH) with the weighed KDE at di↵erent s, and choose318

s0 as the “closest” one. We use the following two sta-319

tistical distances to quantify the dissimilarity between320

p(·) and the estimated ps(·). The first is the Kullback-321

Leibler divergence322

DKL(p || ps) =
Z

p(M̃BH) log

 
p(M̃BH)

ps(M̃BH)

!
dM̃BH,

(16)323

which measures the relative entropy between p(M̃BH)324

and ps(M̃BH). The second is the total variation distance325

DTV326

DTV(p, ps) =
1

2

Z
|p(M̃BH)� ps(M̃BH)|dM̃BH, (17)327

which measures the maximum di↵erence between the328

probabilities assigned to an event by two probability dis-329

tributions.330

We also obtain corresponding 95% confidence inter-331

vals via bootstrap quantiles (Efron & Tibshirani 1994).332

The pseudo code of the bootstrap procedure is given in333

Appendix B.334

4. RESULTS335

The simulated and observed distributions of remnant336

masses (BHs and NSs separately) are shown in Figure337

2. The distances for each population and each distance338

measure are summarized in table 1.339

We find that both the DKL and the DTV for isolated340

NSs are smaller than those for binary NSs for all EOS341

models. This is not surprising, given that the PUSH342

Figure 2. Probability density functions of BHs (top) and NS
(bottom) for simulated (color) and observed(black; dashed
for isolated and dotted for double NS) distributions.

simulations only model the deaths of isolated stars. We343

also note that for BHs the DTV distances are similar in344

magnitude to those for double NSs, whereas the DKL345

distances for BHs are in between those for isolated NSs346

and double NSs. Within each population, the DKL and347

the DTV give the same ranking, however the rankings348

are somewhat di↵erent between NSs and BHs.349

To interpret the results further, we compute for each350

population, for each distance measure (DKL, DTV ), and351

for each EOS the di↵erence from the average distance,352

�KL and �TV, as shown in Figure 3. The error bars353

represent the 95% confidence interval. Points below354

the dashed line are more favored than points above the355

dashed line. From this we can see that the results for356

the two NS populations are not statistically significant.357

From the results for BHs, the DD2 EOS is most favored.358
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Results

DKL can suffer from stability 
issues due to small density 
values, eg at the tails of the 
distribution
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Results

normalized to 1
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Results: Distances between distributions

∆	= 𝐷!"# 	− 	 &𝐷

𝛥 < 0 à more favored
𝛥 > 0 à less favored

Error bars: 
95% confidence interval
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Conclusions…

• Rankings are slightly different between BHs and NSs
• Results for NSs are not statistically significant
• We show results for NSS (most similar to our simulation setup)

• DD2 is most favored
• Caveat: DD2 was used to calibrate the PUSH parameters

• SFHo and SFHx are mildly disfavored
• BLBλϕ, TM1, NL3 are mildly favored
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… and improvements

• Include progenitors with ZAMS masses of 8 -11 M☉ 
• We miss NSs at the low mass end (~1.4 Msun)

• Include binary stars (currently assume isolated stars as progenitors)

• Influence of the PUSH calibration on the results
• Re-calibrated PUSH using TM1 instead of DD2 à no relevant difference

• Understand the influence of the progenitors used
• All progenitors are from the same stellar evolution code

• Use more observables: NS radius, Ni mass, explosion energy, …
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More (future) observables
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Gravitational Waves and the nuclear EOS

Early-time frequency ⇒ Equation of state?

Late-time frequency ⇒
neutron star mass?

Noah Wolfe: 
   undergraduate at NCSU 
à PhD at MIT

Wolfe+23

• Linear perturbation analysis of general-relativistic 
hydrodynamics background

• Calculate time-frequency evolution (no amplitudes) 
from spherically-symmetric proto-neutron star 
background

• Identify frequencies that characterize astrophysical 
properties of proto-neutron star
• Universal relations for PNS surface gravity

• Multi-messenger observations of core-collapse

• Parameter estimation
Warren+20, Nakamura+22

Torres-Forné+18, Morozova+18, Torres-Forné+19, Sotani+20

Bizouzard+21, Powell+22

Torres-Forne+19
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Gravitational Waves and the nuclear EOS

Early-time frequency ⇒ Equation of state?

Late-time frequency ⇒
neutron star mass?
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