Example: in collaboration with Mohammadreza "Zaki" Zakeri [UK → EKU], in preparation & 2311.13649 [Universe **2024**, 10, 67] and Jeff Berryman [N3AS, VPI → LLNL] & Mohammadreza Zakeri, 2201.02637 [Symmetry **2022**, 14(3), 518] & 2305.13377 [Phys. Rev. D 109, 023021 (2024)] *New Physics with Continuous GWs:* Pulsar Timing Constraints on New Energy Loss Mechanisms in Neutron Stars Department of Physics and Astronomy University of Kentucky Lexington, KY Susan Gardner

Discovering Continuous GWs with Nuclear, Astro and Particle Physics INT Workshop — November 18-22, 2024

1

Continuous GW from Neutron Stars

2

Binary Pulsar PSR 1913+16 **Discovered by Hulse & Taylor, 1974**

 $\frac{1}{2}$. In the choice of $\frac{1}{2}$ or a new cype of periodic, a choice Nobel, 1993: "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"

Observable Signatures **of Baryon Number Violation (BNV)**

Spin Down: Change in the moment of inertia (*I*) could modify the pulsar spin-down rate (\dot{P}_s) .

Binary Orbital Decay: Changes in the masses and spins of NS components would modify the binary orbital period decay rate (\dot{P}_b) .

• Temperature: BNV would change the cooling history of NS by generating direct and indirect (via chemical disequilibrium) heat.

Pulsar Binary Orbital Decay **Mass-loss induced change in period** Model Independent Analysis Constraining BNV with NS

The dominant contributions to the observed relative rate of orbital period decay [Damour and Taylor, 1991]:

$$
\left(\frac{\dot{P}_b}{P_b}\right)^{\text{obs}} = \left(\frac{\dot{P}_b}{P_b}\right)^{\text{GR}} + \left(\frac{\dot{P}_b}{P_b}\right)^{\dot{E}} + \left(\frac{\dot{P}_b}{P_b}\right)^{\text{ext}} \frac{\text{[Lazaridis et al., 2009]}}{\text{intrinsic}}
$$

- Gravitational radiation [Peters, 1964]
- Mass-energy loss \sim

BSM (BNV) here!

Extrinsic effects such as Doppler effects caused by the relative acceleration a binary pulsar with respect to the solar system [Cf. galactic acceleration map: Moran, Mingarelli, Van Tilburg, 2023; Donlon et al., 2024]

$$
\left(\frac{\dot{P}_b}{P_b}\right)^{\dot{E}} = -2\left(\frac{\dot{M}_1^{\text{eff}} + \dot{M}_2^{\text{eff}}}{M_1 + M_2}\right) \quad \text{[Jeans, 1924; Huang, 1963]}
$$

[Note pulsar timing & n-mirror n mixing: Goldman et al., 2019]

Binary Pulsars to Limit BNV Use systems without observable mass transfer…. the EUNS ENDS in the stars control of the stars control of the stars control of the stars control of the stars $\sum_{i=1}^{n}$ 1111 ∞ 11 ∞ 1011 ∞ $H \cap L$ invarit $DNNL$ to LIMIL BIVV **rate ISN** α distribution, which we denote by how denote by α

.
乌 $\dot{B} = f \times B \times \Gamma_{\text{BNV}}$ $\Gamma_{\text{BNV}} < 4 \times 10^{-13} \,\text{yr}^{-1}$ [95 % CL] \leq 4

Exclusion Limits (at 2σ)

N.B. dark sector choices

What of Other Pulsar Binaries? **Neutron star-black hole binaries have been discovered (through their GWs), but not ones with pulsars**

- Pulsar black hole binaries should be able to constrain many BSM scenarios (superradiance?)
- Such systems are expected to exist near the Galactic Center [Faucher-Giguere & Loeb, 2011]
- But long-period pulsar binaries (w/ black holes) may

remain undetected

[Jones, Kaplan, McLaughlin, Lorimer, 2023]

Summary (for our BNV example) —Neutron stars contain $\sim 10^{57}$ baryons; energy loss constraints limit BNV rates under weak assumptions…

—Quasi-equilibrium BNV relocates the (static) n star along its one-parameter sequence

—Orbital periods of pulsar binaries lead to stringent constraints for this generic class of BNV: & microscopic interpretation (flavor structure) thereof limits B-mesogenesis models $\Gamma_{\rm BNV} \lesssim 10^{-12} \,\rm yr^{-1}$

—Future studies of neutron star heating may help with identification of non-null results

insensitive to these constraints (& explain it completely!) —BSM models of n lifetime anomaly exist that are

Neutron Stars with Baryon Number Violation, Probing Dark Sectors J. Berryman, SG, M. Zakeri arXiv: 2201.02637 & 2305.13377 SG, M. Zakeri, 2311.13649

Jeff Zaki

Backup Slides

At lower energies... Dark Decay Models **Minimal ingredients, considered broadly**

[Alonso-Alvarez et al., 2022]

largest

CLAS, BESIII,

SN1987A

dark sector

mass

$$
\mathcal{O}_{abc} = u_a d_b d_c \chi
$$

- to induce visible-dark baryon mixing $\hspace{0.1em}-\hspace{0.1em}$ to induce visible-dark baryoi

> **Neutron decay anomaly** $\mathcal{O} = u d d \chi$ $m_{DS} \lesssim m_n$ $= u d d \chi$ $m_{DS} \le m_n$
 $= u d s \chi$ $m_{DS} \le m_A$
 $= u d b \chi$ $m_{DS} \le m_B$ $= u \, d \, s \chi \quad m_{\text{DS}} \lesssim m_{\text{A}}$ **Dark Decays of Hadrons** \overline{a} which is not the case in our proposal. The case is not the case in our proposal. \blacksquare *n* mediated by mixing between the neutron and *neutron and we have a*nd α

B-Mesogenesis

$$
\mathcal{L}_1^{\text{eff}} = \bar{n} \left(i \partial - m_n + \frac{g_n e}{2m_n} \sigma^{\mu \nu} F_{\mu \nu} \right)
$$

 $\mathcal{F}^n + \frac{g_n e}{\sigma^{\mu \nu} F}$ μ ^{on} $2m_n$ ^{μ} μ ⁿ $\ell = \frac{1}{\ell}$ n

$$
+\bar{\chi}(i\partial\!\!\!/ - m_{\chi})\chi + \varepsilon(\bar{n}\chi + \bar{\chi}n)
$$

mediate: Eq. (1). First, it has been pointed out that a dark decay of $u \rightarrow \gamma u$ (or $\Lambda \rightarrow \gamma u$) $mediates$ *n* → *χγ* (or Λ → *χγ*)

the neutron can resolve the long-standing neutron lifetime ite from duration of $CN1087A$ wh particles (model in the respective hadron decay in the respective hadron decay in the respective hadron decay i mite from duration of corresponding to the correction of limits from duration of SN1987A ν burst

14 indicated. $Br(\Lambda \rightarrow \gamma\gamma)$ 14 $<$ $Br(\Lambda \rightarrow \chi \gamma)$ ¹ < 1.6 \times 10⁻⁷

weak forces in helium-6 and lithium-8 decay using the control of the con The Neutron Litetime Puz The Neutron Lifetime Puzzle

What if neutrons were to decay invisibly?

[Recall early suggestion: Z. Berezhiani & "mirror neutrons'' & 2019; note Broussard et al., 2022!]

using new physics is required to be compatible with the measured *V A* structure of the SM currents. SM Tests & Neutron Dark Decays

E.g., new dark sector fermion ψ_B [$\bar{\chi}$] with $B=-1....$ **via dark sector co-genesis — an "EDM safe" mechanism!** A Cosmic Baryon Asymmetry Visible & dark sectors have opposite B charge **Visible & dark sectors have opposite B choos**

Simple, "UV-Complete" Models of B-Mesogenesis **Contain a B-carrying scalar or vector**

[Elor, Escudero, Nelson, 2019; Alonso-Alvarez et al., 2022;…] Supposing low-scale, out-of-equilibrium B production [N.B. leptoquark models: Fajfer & Susic, 2021]

 ${\mathscr L}_{Y_{\underline{2}}}$ 3 $\sum -y_{d_a d_b} \epsilon_{\alpha \beta \gamma} Y^{\alpha}_{\frac{2}{3}}$ 3 $d_a^{\beta}d_b^{\gamma} - y_{\chi u_c}Y_{\frac{2}{3}}^{\alpha}$ 3 $\chi^c u_c^{\alpha}$ + h . c . , ${\mathscr L}_{Y_{-\frac 13}}$ 3 $\supset -y_{u_a d_b} \epsilon_{\alpha \beta \gamma} Y^{\alpha}_{-\frac{1}{3}}$ $u_{a}^{\beta}d_{b}^{\gamma} - y_{\chi d_{c}}Y_{-\frac{1}{3}}^{\alpha}$ $-\frac{1}{3}$ $\chi^c d_c^{\alpha}$ + h . c . Plus: \mathscr{L}_{dark} $\supset y_d \bar{\chi} \phi_B \xi + h.c.$ *Y*2 $\frac{2}{3}$: $\left(\bar{3}, 1, \right)$ Enter: $Y_{\frac{2}{3}}: \quad (\bar{3},1,\frac{2}{3})$ (SU(3) x SU(2)_L x U(1)_Y) Or: $Y_{-\frac{1}{3}}: \quad (\bar{3},1,-\frac{1}{3})$! T_n anomaly Or…. proton decay $p \rightarrow e^+ \pi^0$ How to constrain the couplings? Enter neutron stars!

19

Neutron Star Schematic

Observed neutron stars limit neutron dark decay models

20 .
6, & Zakeri, 2022; after Baym & Pethick, 1975] & dynamics…. [Berryman, SG, & Zakeri, 2022; after Baym & Pethick, 1975]

Here: impact of **energy-loss** constraints

Enormous baryon ($\sim 10^{57})$ reservoir!

Observational studies illuminate structure

- For a given EoS, the structure of a n star $[\varepsilon(r), p(r)]$ is fixed by its central energy density ε_c as per the solution to the TOV equations & b.c. Supposing $\Gamma_{\text{BNV}} < \langle \Gamma_{\text{weak}} \rangle$ (quasi-equilibrium) BNV implies that ε_c changes, yet the resulting structure is fixed by BNC physics Neutron Stars to Limit BNV Neglecting rotation & *χ* that does not accumulate
- Given a rate of change in B, we can predict changes in the macroscopic parameters of the star
- Given these, we can limit microscopic (dark decay) models using relativistic mean-field theory….

21

Neutron Stars (with BNV)

Their structure moves along a one-parameter sequence

Neutron Stars to Limit BNV

Parameterize the quasi-equilibrium change in an observable (*O*) as a result of a change in *B* by

$$
\frac{\dot{\mathcal{O}}}{\mathcal{O}} = \left(\frac{B}{\mathcal{O}} \times \frac{\partial_{\mathcal{E}_c} \mathcal{O}}{\partial_{\mathcal{E}_c} B}\right) \frac{\dot{B}}{B} \equiv b(\mathcal{O}) \times \frac{\dot{B}}{B}
$$

Quasi-equilibrium mass loss:

$$
\dot{M}^{\text{eff}} \equiv \frac{d}{dt} \left(M + \frac{1}{2} I \Omega^2 \right)
$$
\n
$$
= b(M) \left(\frac{\dot{B}}{B} \right) M + b(I) \left(\frac{\dot{B}}{B} \right) \left(\frac{2\pi^2 I}{P_s^2} \right) - \frac{4\pi^2 I \beta^2}{P_s^3},
$$
\n
$$
\underbrace{\qquad \qquad \text{BNV}} \qquad \qquad
$$

Medium Effects

Effective mass EOS: DS (CMF)-1

Vector Self Energy

25 **Energy** In the dense medium, new processes are possible! Broader constraints!

Modelling Dense Matter

The Walecka Model

[Walecka, 1974; Serot & Walecka, 1986]

$$
\mathcal{L}_{\varphi/V} = \bar{\psi} \left[(i\gamma_\mu \partial^\mu - g_V \gamma_\mu V^\mu) - (m_N - g_s \varphi) \right] \psi + \frac{1}{2} (\partial_\mu \varphi \partial^\mu \varphi - m_s^2 \varphi^2) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} m_V V_\mu V^\mu + \delta \mathcal{L}
$$

 \sim massive QED with a scalar extension; $\mathscr B$ cons. charge captures basic features of the NN force

$$
\left(\partial^2 + m_s^2\right)\varphi(x) = g_s\overline{\psi}\psi
$$

$$
\partial_\nu F^{\nu\mu} + m_V^2 V^\mu = g_V \overline{\psi}\gamma^\mu \psi
$$

$$
\left\{ \left[i\gamma_\mu \partial^\mu - g_v \gamma_\mu V^\mu(x) \right] - \left[m_N - g_s \varphi(x) \right] \right\} \psi(x) = 0.
$$

The mean-field limit $\varphi(x) \to \bar{\varphi} \& V_{\mu}(x) \to \delta_{\mu 0} V_0$ in the n.m. frame is grossly simplifying & is apropos to dense matter. $\varphi(x) \to \bar{\varphi}$ & $V_{\mu}(x) \to \delta_{\mu 0} \bar{V}_0$

Modelling Dense Matter **The Walecka Model**

In static, uniform nuclear matter, the mean fields depends only on density *n*

Under $k_{\mu} \rightarrow k_{\mu}^{*} \equiv k_{\mu} - g_{V} \delta_{\mu 0} \bar{V}_{0}$; $m \rightarrow m^{*} \equiv m - g_{s} \bar{\varphi}_{0}$ we can solve a suitably modified free Dirac equation for $\psi(x)$ In nuclear matter with a nucleon we thus have $\overline{}$

$$
k^{* \mu} \equiv k^{\mu} - \Sigma^{\mu} = \left\{ E^{*}(k^{*}), \vec{k} - \overrightarrow{\Sigma} \right\}^{\nu}
$$

27 Future?! e.g., Alford et al.,2205.10283We can generalize thus to baryon species & include additional contributions to m_i^* χ_i^* , $\sum_i 0$ Enter RMFT with these parameters fixed by the EOS

Interpretation (re B-mesogenesis) **Neutron star results can limit flavor couplings severely**

Decay Rates in the Medium **RMFT provides a covariant framework**

We exploit our freedom to pick a frame to simplify our analysis.

We compute the decay matrix element in a background field, e.g., of uniform neutron matter

$$
\mathcal{B}(p_{\mathcal{B}}) \to \chi(k_{\chi}) + \gamma(k_{\gamma})
$$

$$
|\mathcal{M}|^2 = \frac{\varepsilon_{\mathcal{B}\chi}^2 g_{\mathcal{B}}^2 e^2}{2(m_{\mathcal{B}}^*)^2} \left[(p_{\mathcal{B}}^* \cdot k_{\chi}) + m_{\mathcal{B}}^* m_{\chi} \right],
$$

N.B. integration over phase space non-trivial