Bayesian inference and gaussian processes for PDF determination

Tommaso Giani

Based on arXiv:2404.07573

Inverse Problems and Uncertainty Quantification in Nuclear Physics 8/07/2024

Parton Distribution Functions (PDFs)

Hard matrix element: accessible in perturbation theory

$$\sigma = \sum_{i,j} \int dx_1 dx_2 f_i(x_1,\mu) f_j(x_2,\mu) \hat{\sigma}\left(x_1,x_2,\frac{Q}{\mu}\right) \times \left(1 + \mathcal{O}\left(\Lambda/M\right)^p\right)$$

• PDFs: non perturbative objects, extracted from experimental data

 $f_i(x,\mu)$

- x : momentum fraction $p_{\text{parton}}/p_{\text{proton}}$
- μ : energy scale, computable perturbation theory

PDFs and precision studies

					-
et	$\alpha_{ m s}(m_Z)$	PDF uncertainty	$g \; [GeV^2]$	$q \; [GeV^4]$	
20 [37]	0.11839	0.00040	0.44	-0.07	~ 1.7 %
F4.0 [84]	0.11779	0.00024	0.50	-0.08	
[29]	0.11982	0.00050	0.36	-0.03	
PDF2.0 [65]	0.11890	0.00027	0.40	-0.04	

Methodology

Data

Methodology

- Impact of jets vs diets at N3LO [arXiv:2312.12505]
- Impact of 13 TeV $t\bar{t}$ data • [PRD 109 (2024)]
- Impact of future data (HL-LHC [Eur. • Phys. J. C (2018) 78], EIC [PRD 103 (2021) 096005], FPF [arXiv:2309.09581])

- Nonparametric regression [arXiv:2404.02964]

Data

Methodology

- Impact of jets vs diets at N3LO arXiv:2312.12505
- Impact of 13 TeV $t\bar{t}$ data • [PRD 109 (2024)]
- Impact of future data (HL-LHC [Eur. Phys. J. C (2018) 78], EIC [PRD 103 (2021) 096005], FPF [arXiv:2309.09581])

- aN3LO [EPJC 83, arXiv:2402.18635
- MHOU [arXiv:2401.10319]
- QED [arXiv:2401.08749]
- QED + aN3LO [arXiv:2404.02964]

- Nonparametric regression [arXiv:2404.02964]

Data

Methodology

- Impact of jets vs diets at N3LO [arXiv:2312.12505]
- Impact of 13 TeV $t\bar{t}$ data [PRD 109 (2024)]
- Impact of future data (HL-LHC [Eur. Phys. J. C (2018) 78], EIC [PRD 103 (2021) 096005], FPF [arXiv:2309.09581])

- α_{s} + PDF @ N3LO [arXiv:2404.02964]

- aN3LO [EPJC 83, arXiv:2402.18635
- MHOU [arXiv:2401.10319]
- QED [arXiv:2401.08749]
- QED + aN3LO [arXiv:2404.02964]

- Nonparametric regression [arXiv:2404.02964]

Intrinsic charm PDF [arXiv: 2211.01387, arXiv:2311.00743,]

Methodology

- Impact of jets vs diets at N3LO [arXiv:2312.12505]
- Impact of 13 TeV $t\bar{t}$ data PRD 109 (2024)
- Impact of future data (HL-LHC [Eur. Phys. J. C (2018) 78], EIC [PRD 103] (2021) 096005], FPF [arXiv:2309.09581])

- α_{s} + PDF @ N3LO [arXiv:2404.02964]

- aN3LO [EPJC 83, arXiv:2402.18635
- MHOU [arXiv:2401.10319]
- QED [arXiv:2401.08749]
- QED + aN3LO [arXiv:2404.02964]

- Nonparametric regression [arXiv:2404.02964]

Intrinsic charm PDF [arXiv: 2211.01387, arXiv:2311.00743,]

Methodology

- Impact of jets vs diets at N3LO [arXiv:2312.12505]
- Impact of 13 TeV $t\bar{t}$ data PRD 109 (2024)
- Impact of future data (HL-LHC [Eur. Phys. J. C (2018) 78], EIC [PRD 103] (2021) 096005], FPF [arXiv:2309.09581])

Parametric regression

PDFs are parametrised at some initial scale $Q_0 = 1.65$ GeV. Sum rules are imposed with suitable normalisation

Build theory predictions for observables entering the fit

Use data to build
$$\chi^2$$
 minimise

Bayesian approach

- Start from a prior on the model p(f)
- Look at the data
- Get the posterior p(f|D)

Introduce probability distribution on a space of functions

Gaussian Processes

$\frac{\text{Kernel }K \text{ and } \text{mean function }m}{\text{modelling the correlation between parameters}}$

<u>Hyperparameters</u> θ : set of parameters entering the definition of the kernel (they control some specific feature of the prior)

Joint probability distribution of f and θ : target of th

stochastic variables representing values of the of points

$$m(x_i;\theta) = \mathsf{E}(f(x_i))$$

$$k(x_i, x_j; \theta) = \mathsf{cov}(f(x_i), f(x_j))$$

he analysis
$$p\left(\mathbf{f}, \theta \,|\, \mathbf{data}\right)$$

Some examples of application of GPs in physics

Gaussian process models—I. A framework for probabilistic continuous inverse theory 💷

Andrew P Valentine ∞, Malcolm Sambridge

Geophysical Journal International, Volume 220, Issue 3, March 2020, Pages 1632–1647, https://doi.org/10.1093/gji/ggz520

Reconstructing QCD spectral functions with Gaussian processes

Jan Horak, Jan M. Pawlowski, José Rodríguez-Quintero, . Savvas Zafeiropoulos Phys. Rev. D **105**, 036014 – Published 23 February 2022

What about PDFs?

Jan Horak, Jan M. Pawlowski, José Rodríguez-Quintero, Jonas Turnwald, Julian M. Urban, Nicolas Wink, and

Prior for PDF: a bad example

$$y) = \sigma^2 \exp\left[\frac{-\frac{(x-y)^2}{l^2}}\right]$$

Exponential quadratic

Prior for PDF: a possibly better example

$$\tilde{k}(x,y) = x^{\alpha}y^{\alpha} \quad \sigma^{2}\sqrt{\frac{2l(x)l(y)}{l^{2}(x) + l^{2}(y)}} \exp\left[-\frac{(x-y)^{2}}{l^{2}(x) + l^{2}(y)}\right] \quad \text{with} \quad l(x) = (x+\epsilon) \times l_{0}$$

Gibbs Kernel

3 hyperparameters controlling different features of the prior: α , l_0 , σ

Ex

$$F(x,Q^2) = \sum_{i} \int_{x}^{1} dy C_i\left(\frac{x}{y}, \frac{Q}{\mu}, \alpha_s\right) f_i(y, \mu) \longrightarrow F_i(F_i) = \sum_{\alpha} (FK)_{i\alpha} f(x_{\alpha}) = FKf_i$$

We use a chosen underlying law to generate pseudo-data

$$y = FK\mathbf{f_0} + \eta, \quad \eta \sim \mathcal{N}(0, C_y)$$

NMC F_2^d/F_2^p NMC $\sigma^{\text{NC}, p}$ SLAC F_2^p SLAC F_2^d BCDMS F_2^p BCDMS F_2^d CHORUS σ_{CC}^{ν} CHORUS $\sigma_{CC}^{\bar{\nu}}$ NuTeV σ_{CC}^{ν} (c NuTeV $\sigma^{\bar{\nu}}$ (

Dataset

[NOMAD
$$\mathcal{R}_{\mu}$$

- [EMC F_2^c]
- HERA I+II $\sigma_{\rm N}^{p}$
- HERA I+II $\sigma_{\rm N}^c$
- HERA I+II σ^b_N

	References	N _{dat}	x	Q [GeV
	[33]	260 (121/121)	[0.012, 0.680]	[2.1, 10
	[34]	292 (204/204)	[0.012, 0.500]	[1.8, 7.9
	[35]	211 (33/33)	[0.140, 0.550]	[1.9, 4.4
	[35]	211 (34/34)	[0.140, 0.550]	[1.9, 4.4
	[36]	351 (333/333)	[0.070, 0.750]	[2.7, 15
	[36]	254 (248/248)	[0.070, 0.750]	[2.7, 15
С	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8
C	[37]	607 (416/416)	[0.045, 0.650]	[1.9, 9.8
dimuon)	[38,39]	45 (39/39)	[0.020, 0.330]	[2.0, 11
dimuon)	[38,39]	45 (36/37)	[0.020, 0.210]	[1.9, 8.3
$_{\mu\mu}(E_{\nu})]$ (*)	[111]	15 (-/15)	[0.030, 0.640]	[1.0, 28
	[44]	21 (-/16)	[0.014, 0.440]	[2.1, 8.8
p NC,CC	[40]	1306 (1011/1145)	$[4 \cdot 10^{-5}, 0.65]$	[1.87, 2
c (*)	[145]	52 (-/37)	$[7 \cdot 10^{-5}, 0.05]$	[2.2, 45]
^b NC (*)	[145]	27 (26/26)	$[2 \cdot 10^{-4}, 0.50]$	[2.2, 45]

Gaussian inference

Gaussian variable representing PDF on interpolation points **x**

$$\mathcal{O} = FK\mathbf{f}$$

Gaussian variabl representing PDF or set of points **x***

$$\begin{pmatrix} \mathbf{f}^* \\ FK\mathbf{f} \end{pmatrix} \sim \mathcal{N} \left(0, \begin{pmatrix} K_{\mathbf{x}^*\mathbf{x}^*} & K_{\mathbf{x}^*\mathbf{x}} FK^T \\ FKK_{\mathbf{xx}^*} & FKK_{\mathbf{xx}} FK^T \end{pmatrix} \right)$$

$$p\left(\mathbf{f}^* | FK\mathbf{f} + \epsilon = y, \theta\right)$$

This is a gaussian distribution. Its mean and covariance can be computed analytically

$$K\left(x, y; \theta\right)$$
Function modelling
correlation
$$y, \quad \epsilon \sim N(0, 0)$$
Data and
corresponding
experimental error

 $\tilde{\mathbf{m}}^* = \mathbf{m} + K_{\mathbf{x}^*\mathbf{x}}FK^T \left(FKK_{\mathbf{x}\mathbf{x}}FK^T + C_y\right)^+ \left(\mathbf{y} - \mathbf{m}\right)$

 $\tilde{K}^* = K_{\mathbf{x}^*\mathbf{x}^*} - K_{\mathbf{x}^*\mathbf{x}}FK^T \left(FKK_{\mathbf{x}\mathbf{x}}FK^T + C_y\right)^+ FKK_{\mathbf{x}\mathbf{x}^*}$

 $p\left(\mathbf{f}^* | \mathbf{data}, \theta\right)$ gluon

$p\left(\mathbf{f}^* | \mathbf{data}, \theta\right)$ singlet

Inference on the hyperparameters

Joint probability distribution of \mathbf{f}^* and θ

We can sample from $p(\theta | data)$ running a MCMC algorithm

Workflow

Posterior for hyperparameters (gluon)

Posterior for hyperparameters (singlet)

Kinetic limit

f(1) = 0

Additional linear constrain on the PDF: can be implemented directly in the FK table

Sum rules

 $g \sim GP\left(0, K(x, y)\right) \longrightarrow \frac{dg}{dx} \sim GP\left(0, \partial_x \partial_y K(x, y)\right)$

Sum rules can be implemented as additional linear constrains on the primitive of the PDF

Global fits

$$\sigma = \sum_{i,j} \int dx_1 dx_2 f_i \left(x_1, \mu \right) f_j \left(x_2, \mu \right) \hat{\sigma} \left(x_1, x_2, \frac{q}{r_1} \right)$$

$p(\mathbf{f}, \theta | \text{data}) = p(\mathbf{f} | \text{data}, \theta) p(\theta | \text{data})$

This bit is not a gaussian distribution any longer

 \underline{Q} $X \left(1 + \mathcal{O}\left(\Lambda/M\right)^p\right)$

To access the posterior we have to run a MCMC having dimension dim \mathbf{f} + dim θ

Summary and future work

- A Bayesian methodology based on GP has been presented
- Might be helpful to further understand and quantify PDF uncertainties
- It is possible to implement physical constraints such as sum rules and kinetic limit
- Preliminary study on an extended DIS dataset is being finalised

- Comparison with non Bayesian methodologies. Are there any differences?
- Implementation of a full global analysis

Systematic study of different possible kernels

Fit quality

$$\frac{S}{dof} = \frac{1}{N_{\text{data}}} \left((\mathbf{m} - \tilde{\mathbf{m}})^T K_{xx}^{-1} (\mathbf{m} - \tilde{\mathbf{m}}) + (y - FK \tilde{\mathbf{m}})^T C_Y^{-1} (y - KK)^T K_{xx}^{-1} (\mathbf{m} - \tilde{\mathbf{m}}) + (y - FK \tilde{\mathbf{m}})^T K_Y^{-1} (y - KK)^T K_{xx}^{-1} (\mathbf{m} - \tilde{\mathbf{m}}) \right)$$

Generalisation on unseen data

 $\tilde{\mathbf{m}} - y^*$)

Further possible applications

- simultaneous fits of PDFs and Wilson coefficients

$$\sigma_{\text{eft}}\left(\boldsymbol{c}/\Lambda^{2}\right) = \sigma_{\text{SM}} + \sum_{i} \tilde{\sigma}_{i}^{\text{LO/NLO}} \frac{c_{i}}{\Lambda^{2}} + \sum_{i,j} \tilde{\sigma}_{ij}^{\text{LO/NLO}} \frac{c_{i}c_{j}}{\Lambda^{4}}$$

- Inverse problems relevant for the lattice community

Jan Horak,¹ Jan M. Pawlowski,^{1,2} José Rodríguez-Quintero,³ Jonas Turnwald,¹ Julian M. Urban,^{1,*} Nicolas Wink,¹ and Savvas Zafeiropoulos⁴

The top quark legacy of the LHC Run II for PDF and SMEFT analyses

Zahari Kassabov,^a Maeve Madigan,^a Luca Mantani,^a James Moore,^a Manuel Morales Alvarado,^{*a*} Juan Rojo^{*b,c*} and Maria Ubiali^{*a*}

JHEP 05 (2023) 205

Reconstructing QCD Spectral Functions with Gaussian Processes

Phys.Rev.D 105 (2022) 3

Decomposition of PDF uncertainty

$$a_{xx}^{T} = K_{\mathbf{xx}} F K^{T} \left(F K K_{\mathbf{xx}} F K^{T} + C_{y} \right)^{T}$$
$$R_{xx} = a_{xx}^{T} F K$$