PROBLEMATIC SYSTEMATICS IN NEUTRON-STAR MERGER SIMULATIONS

Fabian Gittins INT-24-89W, University of Washington 5th Sep. 2024 in collaboration with R. Matur, N. Andersson, I. Hawke

[Abbott+, Phys. Rev. X **9**, 011001 (2019)]

gravitational waves and nuclear matter

 GW170817 demonstrated that we can use gravitational-wave observations of neutron-star binaries to constrain dense nuclear matter.

• It was the *absence* of a distinguishable imprint in the signal that provided upper limits on the stars' *tidal deformabilities* Λ_1 and Λ_2 .

• Although this is the only event for which these constraints have been obtained, this is expected to change with next-generation interferometers, the Einstein Telescope and Cosmic Explorer, designed to be a factor of 50 more sensitive.

- of state of the stellar material.
- magnetic/axial and rotational Love numbers.)
- throughout the inspiral.

$$Q_{jk} = -\frac{2}{3}k_2R^5\mathscr{E}_{jk} = -\Lambda M^5\mathscr{E}_{jk}$$

tidal deformations

• In Newtonian gravity, the tidal susceptibility of the star is characterised by its (gravito-electric/polar) Love numbers k_l , which depend on the equation

• (In general relativity, new Love numbers manifest, such as the gravito-

• The quadrupolar Love numbers k_2 of the binary components enter the waveform phase Ψ at 5PN, providing a small (but cumulative) contribution

- It is useful to decompose the inspiral into two separate regimes.
 - constrain the tidal interaction in GW170817.
 - become excited.

static and dynamical tides

(i) The static tide: The external field due to the companion is slowly varying, $\lambda = m\dot{\Psi}/\omega_{\alpha} \ll 1$. This regime is valid when the stars are well separated and is accessible with current instruments; being used to

(ii) The dynamical tide: As the compact objects inspiral, the orbital frequency increases such that it eventually becomes comparable to the neutron star's oscillation modes, $\lambda = O(1)$, some of which may

- The dynamical tide contains information about the rich spectrum of neutron-star oscillation modes, which depend on the nuclear microphysics.
- The Einstein Telescope and Cosmic Explorer will possess even greater sensitivity to the dynamical tide than previously anticipated [Ho+Andersson, Phys. Rev. D 108, 061104 (2023)].
- Neglecting these effects could introduce severe biases in equation-of-state inference [Pratten+, Phys. Rev. Lett. **129**, 081102 (2022)].

next-generation observatories

[Dietrich+, Gen. Relativ. Gravit. 53, 27 (2021)]

- relativity simulations.
- assuming the stellar material to be cold and in equilibrium.

role of simulations

• Gravitational-waveform models rely on matching post-Newtonian, inspiral waveforms to those generated from computationally expensive, numerical-

• The state of the art relies on data from simulations that implement piecewise-polytropic fits of one-parameter nuclear models, implicitly

• Since realistic mergers are hot, out-of-equilibrium events, we ultimately need to work towards calibrations based on finite-temperature simulations.

[R. Matur]

hot simulations

 Simulations of neutron-star mergers get artificially hot [Perego+, Eur. Phys. J. A 55, 124 (2021); Endrizzi+, Eur. Phys. J. A 56, 15 (2020); Prakash+, Phys. Rev. D 104, 083029 (2021); Hammond+, Phys. Rev. D 104, 103006 (2021)].

 Shock heating associated with the merger heats the matter up to extreme temperatures.

• During the inspiral, the stellar surface reaches order $10 \text{ MeV} \approx 1.16 \times 10^{11} \text{ K}$. This leads to systematics already at the beginning of the simulations.*

**Cf.*, mature neutron stars are ~ 10^6 K.

inspiral-merger simulations.

1. Einstein Toolkit, APR matter

[Hammond+ (2021)]

impact on tidal dynamics I

• To explore the effects of temperature, we use results from two separate

2. WhiskyTHC, DD2 matter

[[]R. Matur]

temperature profiles.

impact on tidal dynamics II

• We determine the tidal deformability Λ and the mode frequencies ω_{α} (to represent the dynamical tide) of a neutron star immersed in the simulation

APR Simulation

- increase is by 25%.
- simulations with this effect.

impact on tidal dynamics III

• The tidal deformability changes by 16% with respect to the colder star for the APR simulation. The difference is even starker with DD2, where the

Therefore, we need to be very careful with systematic errors from

APR Simulation

- considerable systematic error in the parameter inference.
- correcting for them in the gravitational-wave analyses.
- (2014); Rosswog+Diener, arXiv:2024.15952 (2024)].

cautionary remarks

• Take-home message: If we were to use results from finite-temperature simulations to calibrate gravitational waveforms, we may incur

• Future work will need to be dedicated to either reducing the systematics or

• We expect these features to be generic for all grid-based numericalrelativity codes. It would be useful to explore the extent to which the features arise in particle-based simulations [Bauswein+, Phys. Rev. D 90, 023002

- measurement of the dynamical tide.
- oscillation spectrum of the neutron star.
- parameter inference with future gravitational-wave detections.

summary

• The Einstein Telescope and Cosmic Explorer will have enhanced sensitivities to neutron-star coalescences and may provide the first

• We have demonstrated how the artificial temperatures encountered in numerical-relativity simulations severely distort the tidal deformability and

• We need to understand the systematics in order to conduct reliable

