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We have fun

Teaser Ágnes Mocsy

Movie by 
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Edgard B. 
Me G.
Kyle G. 
Morten H.

Rahul J.
Fernando M.
Alexandra S.
Frederi V.

June 26 – June 28 2023

“This was a very holistic and humane Summer School. I didn't just grow as a physicist, but as a person!”

-Anonymous (feedback)

https://forum.ascsn.net/t/about-the-2023-frib-ta-summer-school/42

Link to recordings

https://www.youtube.com/playlist?list=PLx2qaC0Xa2Rtr_6M6b6Thm7ql3odDzD10
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+
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Experiment

Theory

Abstract deadline 
extended to 
Monday 15 
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Let's normalize 
the conversation
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Likelihood Prior

Evidence

(what we want)
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(how much 
sense all makes)

Probably not 
Thomas

Advantages:

1) Assumptions are 
clearly stated

2) Allows for natural 
continuous learning 

Bayesian Formulation
https://github.com/ascsn/2023-FRIB-TA-Summer-School
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Challenge 1 : repeated evaluations

Heavy ion collisions

Heavy ion collisions

Many-body problem

Core-collapse super novae

Relativistic 
collisions

Neutron stars
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https://bmex.dev/

“A future where models are not 
defined by parameter values, but 
rather by distributions constantly 
updated with new data”

Computation paradigm

Thursday

https://www.int.washington.edu/program/schedule/1441
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Two challenges

Computational paradigm

(Fewer)
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Model Order Reduction (Faster)
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CAT plot
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1) Find good reduced coordinates

2) Find equations for them

Reducing your model in two easy steps:

How it works

Me talking for an hour about this

https://www.youtube.com/watch?v=HBlbG6JgR4U&t=1473s
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**Congratulations! You found the second joke

How it works

Quantum Harmonic Oscillator

Reduced Basis

PCA

Boris Galerkin

Two coefficients

Two equations*

*Technically, there are three equations if you count the normalization condition. Plus, there is also the eigenvalue, so yeah, there are three 
equations. Funny that someone would write such a long footnote, makes you wonder if this is just a joke**.



Reducing your model in two easy steps:

2) Find equations for them

Reduced Basis 
Method

How it works

One equation per coefficient

Principal 
Component

Analysis

1) Find good reduced coordinates

Harmonic Oscillator Example
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Skyrme DFT

RMF DFT

Scattering

Time dynamics

Auxiliary Field QMC

Applications

Speed-
ups

Beam Control

TOV

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.054322
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.109.044612
https://dr.ascsn.net/HO_Time/HO_Time_Dependent.html
https://arxiv.org/abs/2404.11566
https://dr.ascsn.net/blackbox_galerkin/SECAR.html
https://arxiv.org/abs/2405.20558


Skyrme DFT

RMF DFT

Scattering

Time dynamics

Applications

Beam Control

Speed-
ups

Auxiliary Field QMC

This morning

https://www.int.washington.edu/program/schedule/1441
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Fit from data

https://arxiv.org/abs/2401.11694

Danny Jammooa

Daniel LeeDean Lee

Patrick Cook

Morten  Hjorth-Jensen

General curve/surface fitting!

Classification ML!

Arxiv update!
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