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Big questions

What structures form
at the extremes?

Can we make useful

things?

Where do heavy
elements come from?

What’s up with
heutrinos?
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Cycle example
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Sidebar 7.2 How Nuclear Theory Fosters Innovation

The nuclear theory ecosystem functions holistically to
guide and support experimental programs, develop the
theoretical and computational directions of the future,
and communicate and integrate new results with other
science and technology domains. It also provides in-
valuable workforce to critical areas of the US economy.
Universities and national laboratories are the engines
that drive us toward these intertwined short-, medium-,
and long-term goals. The last decade has seen sever-
al advances that have sprouted in small local research
groups, flourishing there until the ideas and methods
could be widely adopted and incorporated into the prior-
ities of larger parts of the ecosystem. Here we discuss
two representative examples.

7855]

Full quantification of uncertainties in predictions|
[ RTOUTTT T tTTE OT Ue TSt LR, Severar researeiers nruniversity and laboratory groups began using data-inten-
sive Bayesian statistical methods to systematically include nuclear physics model uncertainties in predictions
and in parameter inference. The resulting methods have improved our ability to compare theory with experiment
in all subfields of nuclear science. One science application is the Bayesian analysis of the transport particles of
dense nuclear matter. These methods are now part of the toolkit employed in many larger efforts (e.g., topical
collaborations) and are being disseminated through multi-institutional collaborations such as the Bayesian Anal-
ysis of Nuclear Dynamics Cyberinfrastructure for Sustained Scientific Innovation (CSSI) software framework.
The ability to better fit and compare theory with data is also beneficial to the nuclear data enterprise. Because
research in this area involves data analysis and machine learning tools, students working on these projects have
proven highly employable beyond nuclear physics, proceedmg, for example, to careers in quantum computing, to
data-driven activiti

2023 | VERSION 1.3

8 DEVELOPING A NUCLEAR
WORKFORCE FOR THE
BENEFIT OF SOCIETY

8.1 INTRODUCTION

People are central to the scientific enterprise. A dis-
cussion of the compelling nuclear science for the
next decade must inherently include a discussion
of the people—at every level—who will pursue that
science and the skills and societal applications that
spring from it.

A skilled nuclear science workforce contrlbutes sub
stantially to US innovation and_economic_grow
mcludln the development of
r finance, the careful-and state-oi-the-ar
treatment of cancer patients, and the education of

the next generation (Sidebars 8.1 and 2.1 highlight
some of these individuals). However, the number of




P 4 FRIB-TA Summer School: Practical |:Edgard B.  Rahul J.
Theory Alliance U e tificati d Me G. Fernando M.
“ FACILITY FOR RARE IsoTope eeams JNCEIMLAINTY QUantirication an Kyle G. Alexandra S.
Emulator Development in Nuclear | Morten H.  Frederi V.
Physics June 26 — June 28 2023

https://forum.ascsn.net/t/about-the-2023-frib-ta-summer-school/42

Link to recordings =—

FRIB Theory Alliance 2023 Summer School

Practical Uncertainty Quantification and

Emulator Development in Nuclear Physics

Day 1 session 1: overview of “Bayes”

E. G, Viens, Dept. Statistics, Rice University, Houston, TX, USA

FRIB, East Lansing, MI, June 26, 2023

o

“This was a very holistic and humane Summer School. | didn't just grow as a physicist, but as a person!”

-Anonymous (feedback) 20


https://www.youtube.com/playlist?list=PLx2qaC0Xa2Rtr_6M6b6Thm7ql3odDzD10

Observation

DNP 2024

. Abstract deadline
Fall Meeting of the APS extended to

Division of Nuclear Physics Monday 15
October 7-10

Experiment X,

From Data to Discovery: How Machine Learning and Statistics are Fueling Understanding in Nuclear
Physics - Recent advances in cutting-edge machine learning and advanced statistical methods are transforming
science across all disciplines. The lead speaker will discuss how these advances are fueling the understanding in
nuclear physics and the role that open-source science and community-driven development plays in lowering the
barrier for participation in the computational sciences. The speaker will also describe efforts to build inclusive
online collaboration spaces and share resources for kickstarting the uptake of advanced scientific computing. All

contributed speakers and the audience in the session will have the opportunity to collaborate and participate in

Theory

this endeavour.

21



DNP 2024

Fall Meeting of the APS
Division of Nuclear Physics

October 7-10

Let's hormalize
the conversation

Lifting the Shadows: DEI Panel - This session aims fo create an open space to discuss the impact that

disruptive behaviors — including sexual harassment and general mistreatment — have on the workforce, and to
identify community-driven efforts we can adopt to better protect those that are most vulnerable. After the
presentations the speakers and audience will engage in a panel discussion directly addressing these issues in an
afttempt to foster alliances, share ideas, and work together to lift the shadows disrupting our community.

RECOMMENDATION 1

... to capitalize on the extraordinary opportunities

for scientific discovery... We must draw on the
talents of all in the nation to achieve this goal.

* Expanding policy and resources to ensure a

safe and respectful environment for everyone,
realizing the full potential of the US nuclear

workforce.

Drives Women Out of Phys
by Julie Libarkin, 2019

r

~

Nearly three-quarters of the roughly
undergraduate respondents experie
some form of sexual harassment.

22



https://github.com/ascsn/2023-FRIB-TA-Summer-School

Bayesian Formulation

P(Y |a)P(«)

P(alY) = PIY)

Y ¢ ¢ } Exp. Data
W Parameters

0 a,




https://github.com/ascsn/2023-FRIB-TA-Summer-School

Bayesian Formulation

(what we think happened) (what we think we know)
Likelihood Prior

(what we want)

Posterior —_ \ - B /
PlaY )= P(Y;(}j/?( ) Evidence
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https://github.com/ascsn/2023-FRIB-TA-Summer-School

Bayesian Formulation

Advantages:

1) Assumptions are
clearly stated

2) Allows for natural
continuous learning



(Challenge 1): repeated evaluations

Likelihood
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(Challenge 1): repeated evaluations

Likelihood
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(Challenge 1): repeated evaluations

Potential Energy
Surfaces

256Fm

Time dependent
density functional
theory




(Challenge 1): repeated evaluations

Jean-Francois Paquet Many-body problem Andreas Ekstrom

For one choice of model parameters: Computmg nuclei: an HPC problem
Simulate 103-10* collisions (expt: 10°) Solving the Schrédinger equation for a large collection of strongly interacting
[model is stochastic] nucleons typically requires substantial high-performance computing resources.

Simulation: a few core-minute/collision

= ~100-1000 core-hours per param

Ca I‘Ia FI‘OhIiCh Core-collapse super novae
|
1k param samples — ~ 105-106 core-hour Self-consistent 3D simulations
10k param samples — ~ 10°-107 core-hour e The ultimate goal
Heavy ion collisions * ComDUtat'ona”y expensive - can do 0(10)

Neutron stars

— The more accurate PCGP and
Dense matter physics in a nutshell PCSK emulators give tighter

posterior on model parameters
than that from the Scikit GP

Open Science Grid delivered 5 million
CPU hours for the data generation

% L
@o Relativistic Chun Shen

Bayesian inference requires ~10” model evaluations

Rahul Somasundaram

collisions




(Challenge 1): repeated evaluations

”H(gh Fidelity” “Emulated”

Physical f(oé, gj) — f(aa 'CE)

model

Posterior

distribution P(OJ|Y)_>I\D(06’Y)



(Challenge 1): repeated evaluations

Dimensionality
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https://bobby.gramacy.com/surrogates/
https://research.google/blog/autobnn-probabilistic-time-series-forecasting-with-compositional-bayesian-neural-networks/
https://library.oapen.org/handle/20.500.12657/46679
https://link.springer.com/article/10.1007/s11222-022-10194-z
https://www.sciencedirect.com/science/article/pii/S0021999108006062?casa_token=LkwkzkXNQOsAAAAA:VzasYljsPOOx06lE-NaP3tzzTLgqZE4qv6SjRBNCsbyB_uIZCIHnSJYtkPJmun3uc-miYheMplZI
https://arxiv.org/abs/2310.04635
https://journals.aps.org/prc/pdf/10.1103/PhysRevC.106.054322
https://arxiv.org/abs/2310.19419
https://www.youtube.com/watch?v=sQvrK8AGCAo&list=PLMrJAkhIeNNR6DzT17-MM1GHLkuYVjhyt&index=4&t=775s
https://www.youtube.com/watch?v=NxAn0oglMVw&t=743s
https://jmlr.org/papers/volume24/22-0365/22-0365.pdf

Dimensionality
Reduction

Model Order Reduction:

“Emulated”
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(Challenge 2): repeated models

P(yneW|Y) = 7




(Challenge 2): repeated models

Bayesian
P(ynewlf, Y)P(f|Y)  averasin
P(yneW|Y) = + NS
P(ynewlg, Y)P(gY)
b
— f(a, )
— g(a, )




(Challenge 2): repeated models
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(Challenge 2): repeated models

Truly different
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(Challenge 2): repeated models

Truly different
model
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Computation paradigm
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Computation paradigm
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develop (and share!) emulators for managing computational costs and facilitating
model mixing for comprehensive inference and better predictive performance.
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https://www.int.washington.edu/sites/default/files/schedule_session_files/Ekstrom_A_0.pdf
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Computation paradigm
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Computation paradigm
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“A future where models are not
defined by parameter values, but

| rather by distributions constantly
updated with new data”

Perspectives for Accessible and Reproducible Bayesian
Workflows Thursday
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How It wor
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How it works

Error

CAT plot

High
Fidelity
N ~5000 variables
Reduced
Model

71 ~50 variables

BE
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How it works

Reducing your model in two easy steps:

1) Find good reduced coordinates

2) Find equations for them -
=) T - "Nk
i) ——)

Me talking for an hour about this ss



https://www.youtube.com/watch?v=HBlbG6JgR4U&t=1473s

How it works

Reducing your model in two easy steps:

1) Find good reduced coordinates

e
24 o g "
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2) Find equations for them
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How it works

Reducing your model in two easy steps:

1) Find good reduced coordinates

3 translations

2) Find equations for them

4

3 rotations
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How it works

Reducing your model in two easy steps:

1) Find good reduced coordinates

3 translations <4 3 rotations

2) Find equations for them

l

.
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How it works

Quantum Harmonic Oscillator

Hoo() = 15 +aa® ) oa) = Moo
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Quantum Harmonic Oscillator

Hoo() = 15 +aa® ) oa) = Moo

Harmonic Oscillator Solutions
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How it works

Quantum Harmonic Oscillator

Hoo() = 15 +aa® ) oa) = Moo

Harmonic Oscillator Solutions
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How it works
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Quantum Harmonic Oscillator
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Takeaways

About Dimensionality Reduction

* Two clear steps:

) ) Allows you to be
1) Find good reduced coordinates creative’f mix and

match, and read*

2) Find equations for them

*Yes, please read, we really need to read more
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Forecasting the future of artificial intelligence (2023)

Lowering the Barrier
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RECOMMENDATION 1

The highest priority of the nuclear science com-
munity is to capitalize on the extraordinary oppor-
tunities for scientific discovery made possible by
the substantial and sustained investments of the

United States We must draw on the talents of all in
the nation to achieve this goal.
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Educational Programs B Coming up to speed 2024

ablo 2023 FRIB-TA Organiz

Hello! Welcome to the online space for all of our coming up to speed summer course needs. This is
a space for everyone to write some introductions before the course actually starts to get the ball
rolling on socialization efforts and creating a team!

| am Pablo Giuliani and Il be part of the team that will go on this journey with yall during this
summer. | am super into cool physics and math topics, with machine learning and statistics
sparkling everything. | like running with my doggie Dirac (see picture), eating a lot of good food with
friends, playing piano. and starting reading Dune but never finishing it.

i 1
Super excited to meet you all! 154
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towards a new era of discovery
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Thank-yous
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Bayesian Analysis of Nuclear Dynamics

SEREAMUNE .
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Special thanks: ChatGPT
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Daniel Lay

Eric Flynn

Michelle Kuchera
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Andrew
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George
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Jacob Kozera

Dirac
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FRIB-TA Summer School: Practical
Uncertainty Quantification and
Emulator Development in Nuclear
Physics

https://forum.ascsn.net/t/about-the-2023-frib-ta-summer-school/42

Link to
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Watch
the

recordin


https://drive.google.com/drive/folders/1VBe6mzwq7YA5IDh4bd00xEV-WN85sT2K?usp=sharing
https://drive.google.com/drive/folders/1VBe6mzwq7YA5IDh4bd00xEV-WN85sT2K?usp=sharing
https://drive.google.com/drive/folders/1VBe6mzwq7YA5IDh4bd00xEV-WN85sT2K?usp=sharing
https://www.youtube.com/watch?v=sgpIW-IbQXA
https://www.youtube.com/watch?v=sgpIW-IbQXA
https://www.youtube.com/watch?v=sgpIW-IbQXA
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