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Plan for this talk:

• The adiabatic hyperspherical toolkit, nuts and bolts
• Key results about N-body continua, building intuition, N=3,4,5…
• Application #1: nonexistence of 3-neutron and 4-neutron

resonances (with Kievsky and Viviani, led by Michael Higgins)

• Application #2: Threshold laws near unitarity  (Y-H Chen,MH)
• Application #3: how Efimov physics operates for general 

N-body continuum states, and the faux-Efimov effect (Y-H Chen,MH)

• Application #4: 5-body continuum physics with identical bosons 
and in nuclear systems (w/MH)

• Conclusions



Strategy of the adiabatic hyperspherical representation:  convert the 
partial differential Schroedinger equation into an infinite set of coupled 
ordinary differential equations:

To solve: 

Now solve the fixed-R Schroedinger
equation, for eigenvalues Un(R):

Next expand the desired solution             
into the complete set of eigenfunctions

And the original T.I.S.Eqn. is transformed into the following set (coupled 
ODEs) which can be truncated on physical grounds, with the eigenvalues 
interpretable as adiabatic potential curves, in the Born-Oppenheimer sense.

First, we set:

(in order to 
eliminate 1st

order- R-
derivatives in 
K.E. operator)

Look Ma, no !



The adiabatic hyperspherical representation then reduces the few- or many-particle problem to 
motion along potential curves in a single coordinate, with nonadiabatic couplings that mediate 
transitions between channels (potentials)

Note that there will be at least one potential curve converging at R→ infinity to each possible 
energy level of the fragmented system.

Note also that the noninteracting problem is exactly solvable and gives a separated Schroedinger 
equation with potential curves proportional to 1/R2 at all R values, which we like to write (for 
channel ) as:                                                                                       which mimics our usual 3D form

Examples for different systems: 3 distinguishable particles or 3 identical bosons (0+) has 

3 fermions, 2 spin up 1 spin down, L=1
-

symmetry, has

3 identical spin-polarized fermions, L=1
+

symmetry, has

And this controls the 
Wigner threshold law, 

i.e.:

Eigenfunctions are the hyperspherical 

harmonics Y(symmetrized appropriately)



Next suppose there are s-wave interactions among some subset of the particles, with scattering length a, 
represented by a Fermi pseudopotential ~ 1/R3:

Treating this in perturbation theory gives a modified adiabatic hyperradial potential curve, namely:

Here the constant C depends on the symmetry L and the 
fermion/bose nature of particles and their number, e.g. 
for 3 or 4 fermions:

M. D. Higgins, C. H. Greene, A. Kievsky, and M. Viviani,

Comprehensive study of the three- and four-neutron systems at

low energies, Phys. Rev. C 103, 024004 (2021).



Now imagine what happens in the unitary limit, as

Of course the nature of the long range potential must change, and 
what happens in every case is that the coefficient of 1/R2 changes 
(or in some cases stays the same): 

And where

e.g. in the Efimov effect, ~ -5/4 < 15/4
Or more precisely,

3 non-interacting 
bosons

3 bosons at
Unitarity

EFIMOV EFFECT

And for N identical bosons in the 0+ symmetry, this long 
range potential can be computed analytically in general:



We sometimes compute the potential curves and couplings ANALYTICALLY, e.g. using zero range 
potentials and a hyperangular Green’s function (Rittenhouse, Mehta, CHG, PRA 82 022706)
But for 3 particles and finite-range potentials, we use a finite-element or B-spline basis set 
numerical method to solve for Un(R) and for the nonadiabatic couplings.  This results in solution of 
a 2-dimensional PDE for J=0 states, or for O(J+1) coupled 2-dimensional PDEs for J>0.

Our first study of the 3-boson problem was: 
J. Phys. B: At. Mol. Opt. Phys. 29 (1996) L51–L57  (Esry, CHG, Zhou, Lin)

Distances here are in 
units of the 2-body 
potential range

Key conclusions:
• Negative a<0 U has a local 

maximum and a minimum
• Positive a>0 U has a 3-body 

potential curve that’s 
completely repulsive, and 
negative energy dimer 
channel potentials (not shown 
here)

At this point, we understood that Efimov’s 
result is not limited to zero-range models!



One tends to think of the Efimov physics reduction of the unitary long range 1/R2 potential 
as a unique case, but in fact this happens at unitarity for S-waves and for P-waves very 
often in other cases as well.  Here are several examples for 3 or 4 fermions:

3 fermions, 
2 spin components

4 fermions, 
2 spin components

D. Blume, J. Von Stecher, and C. H. Greene, Universal Properties

of a Trapped Two-Component Fermi Gas at Unitarity, PRL99, 233201 (2007).

F.Werner and Y. Castin, Unitary Quantum Three-Body Problem

in a Harmonic Trap, PRL 97, 150401 (2006).

present



Summary of basic properties of adiabatic hyperspherical potential energy curves:

1. The hyperangular operator 2 is Hermitian and has R-independent eigenvalues, which means that the diagonal 
potentials Un(R) for the NONINTERACTING system (V=0) are all known analytically, for all N

e.g. for 3 bosons, the lowest 
value of         is 3/2, whereas 
for 4 bosons, the lowest value 
of          is 3.  This is important 
for discerning threshold laws 
of transition matrix elements 
to and/or from the N-body 
continuum states, as in 
recombination, i.e. for any 
short range dominated 
process, 

2. For every possible fragmentation threshold of the 
N-body system allowed for the symmetry being 
considered, there must be at least one potential 
curve converging to its energy at R → infinity

3. When an Efimov effect is present, at least one 
potential curve converging to E=0 is negative, 
meaning that 

4. For s-wave -function interactions in 3D 
with finite a, the asymptotic potentials 
converging to the N-body continuum have the 
form:



This leads us to adopt the following terminology, inspired by 
the nature of the adiabatic hyperspherical potential curves :

1.“Efimov Physics” is the reduction of the 1/R2 long range 
barrier at unitarity for a channel in the N-body continuum

2.The “Efimov effect” is when that coefficient is more 
negative than (-1/8 ), resulting in an infinite geometric 
series of bound or resonant states with decreasing binding 
energy➔log periodicity in E=0 solution, Jis0(kR) in general

3.Later we will consider a third category that apparently arises 
only at P-wave unitarity, the “faux-Efimov effect”



Next, let’s look at our application of the 
hyperspherical picture to the tri-neutron 
and tetra-neutron systems, and see why 
it CLEARLY and UNAMBIGUOUSLY 
demonstrates why there are NO bound or 
resonant states in either system

Higgins                                Kievsky                       Viviani

PRL 125, 052501 (2020)

Phys. Rev. C 103, 024004 (2021)

These calculations utilized the correlated 
Gaussian hyperspherical method (CGHS).

See Daily & CHG, PRA  89, 012503 (2014)



Rakshit and Blume, Phys. Rev. A 86, 062513 (2012) found that as 
a-> - infinity, the 0+ lowest hyperspherical potential is entirely 
repulsive, at |a|>> :

First Conclusion:  The true potential for 4n in this symmetry is expected 
to be less attractive than the lower of these two potential curves, making 
the possibility of a bound state for this symmetry unlikely.

Whereas in the noninteracting limit the asymptotic 
potential for two spin-up and two spin-down identical 
fermions is known to be:

Considerations about the UNITARY limit for 4 fermions

Aside:  This reduction of the coefficient of the asymptotic 12 potential 
in the unitary limit, again, is analogous to the Efimov physics...

a(nn)=-18.98 fm for the Argonne AV8’ 
potential, similar for AV18.



J =0+ Hyperspherical potentials for 4 fermions:  both 
noninteracting and unitary limit a→-infinity

Non-interacting 

unitary limit 

a(nn)=-18.98 fm for the Argonne 
AV8’ potential, similar for AV18.



After failing to get satisfactory convergence at 
very long range using a hyperspherical 
harmonic expansion, we decided to implement 
our stochastic correlated Gaussian 
hyperspherical basis set method CGHS, using 
the AV8’ potential, which had been fitted to 
Gaussians by Emiko Hiyama and provided to us.

Side note:  in order to be thorough, we also treated other nuclear force models, i.e. 
AV8’, AV18, Minnesota potential, a chiral EFT potential (NV2-Ia)  , and with or 
without the 3-body n-n-n term from the Urbana and Illinois (e.g. IL) interaction.  
Minimal differences are observed with these different interactions



0+

The most attractive hyperspherical potential curves for the 4n and 3n 

systems, obtained using the AV8’ n-n interaction potentials (magenta)

The converged potentials are clearly totally 

repulsive, with no sign of a local maximum that can 

trap probability in a resonance.

HH expansion, unconverged at 

large r



0+

The most attractive hyperspherical potential curves for the 4n and 3n 

systems, obtained using the AV8’ n-n interaction potentials (magenta)

The converged potentials are clearly totally 

repulsive, with no sign of a local maximum that can 

trap probability in a resonance.

HH expansion, unconverged at 

large r

NI=non-interacting

UN

NI

UN
=Unitarity

PRL 125, 052501 (2020)



Main conclusions about the tetra-neutron and tri-neutron study:  

(a) There is strong attraction in the system at each hyperradius that lowers the potential 
energy, associated with a(nn) ~ -19 fm (in the singlet channel)

(b) The attraction diminishes with increasing hyperradius, such that the tetraneutron always 
experiences an outward force, as shown in the cartoon



Let’s talk about threshold laws and their modifications near unitarity

Reference:

Point #1:  The true threshold behavior for a process is controlled by the longest range 
potential in that channel which is approaching that channel’s threshold energy, and if 
that potential varies asymptotically as a repulsive potential of the form 

Then the threshold behavior associated with that channel for any collision process 
entering or exiting at an energy just above threshold will be the Wigner threshold law 
for that value of             namely:   



Fit to the asymptotic 3n and 4n potentials, multiplied by    2m 2/hbar2

8.75 + b/ + c/^2 + d/^3 + f/^4  is the blue dashed fit below

Noninteracting (5/2)(7/2)=8.75

Unitary limit  1.2727 x 2.2727 ~ 2.9 
(“unparticle” of Hammer & Son)

This is a study of the 3n,4n long range attractions, showing a very slow convergence of the potentials 

3n   (3/2)-

3n   (3/2)-
4n   0+

Unitary limit  ~2x3=6
(“unparticle” of Hammer & Son)

Noninteracting 5x6=30

30 + b/ + c/^2 + d/^3 + f/^4  is the blue dashed fit



Next, let’s investigate the energy dependent 

probability of the 3n and 4n systems to reach small

hyperradii, which gives the energy dependence 

relevant to any matrix element of an operator that 

produces 3n or 4n via a short-range process

I will now argue that this analysis can be carried out 

accurately using WKB to calculate the tunneling under 

the centrifugal barrier down to short distances, as a 

generalization of the Wigner threshold law

(we also carried out the calculations by directly solving the 

radial Sch. Eqn and obtain the same results, but I will give here 

the simpler WKB-based analysis which works perfectly)



Aside on the interpretation of Wigner threshold law factors as a tunneling integral



Demonstration that this WKB argument gives the correct Wigner 
threshold law for an L=2 energy-normalized wavefunction

For this d-wave example, we 
confirm that both the exact 

spherical Bessel solution AND the 
WKB tunneling calculation agree 

on the Wigner threshold law 
energy dependence at low energy, 

namely Psi ~ k(L+1/2)

Centrifugal potential (L=2)

energy

Radial wavefunction 

Power law k5/2

Exact (sph Bessel)
WKB tunneling



Checking the expected threshold behavior of a transition matrix element involving 
the 3-neutron 1- final state wavefunction as a function of the relative energy

expected threshold exponent 3 very close 
to threshold (non-interacting exponent)

expected unitary exponent ~1.77 very close 
to threshold (unitarity limit, Hammer & Son 
PNAS suggest that ~1.77 should be the 
observable threshold exponent for the 3n 
system in 1- symmetry)

Analysis is based on the 
following tunneling integral 
with our 3n hyperspherical 

potential curves



Similarly can get the expected threshold behavior of a transition matrix element involving 
the 4-neutron 0+ final state wavefunction as a function of the relative energy

expected threshold exponent 5.5 very 
close to threshold (non-interacting exponent)

expected unitary exponent ~2.51 very close 
to threshold (unitarity limit, Hammer & Son 
PNAS state that ~2.5 to 2.6 should be the 
observable threshold exponent)



A theoretical study of low energy processes that 
produce three neutrons in the 3-particle continuum

Idea of Hammer & Son, PNAS 2021:  They can test the unitarity-modified threshold law by looking at a 
detailed theoretical calculation that produces 3 low energy neutrons in the continuum, from 2 papers:
J. Golak et al., Radiative pion capture in 2H, 3He and 3H. Phys. Rev. C 98, 054001 (2018).
J. Golak et al., Muon capture on 3H. Phys. Rev. C 94, 034002 (2016).

On this scale, the agreement with the unitarity-modified threshold exponent appears to be pretty 
satisfactory.   BUT, let’s take a more detailed study by plotting these results on a log scale



Unitarity
Threshold 
Law

NI

Even though the data are relatively sparse here at low energy (6 calculated points from 
Golak et al), the energy dependence of the short range wavefunction is better described by 
the hyperspherical potential curve prediction, and it shows the expected (NI) Wigner 
threshold law below about 0.15 MeV.  So even the 3n system is “not THAT close to unitarity”

M. Higgins & CHG, preliminary
Note that the red and blue points
are computed using our lowest
3n hyperspherical potential curve



On p-wave universality and the faux-Efimov effect:          
(note: “faux” means “false”)

Background:  
(1) For single component fermionic trimers, a P-wave Efimov effect in the 

symmetry L=1- was initially predicted by Macek and Sternberg  (2006 PRL), 
but the prediction was shown by Braaten & Hammer and by Nishida (2012 
PRA) because the states computed by Macek and Sternberg had negative 
probability and were not normalizable.

(2) Another prediction of a fermionic P-wave Efimov effect was made by Braaten, 
Hagen, Hammer, and Platter, in an article titled: Renormalization in the three-
body problem with resonant p-wave interactions, PRA 86, 012711;  this 
prediction of an Efimov effect for                                                was also shown to 
be incorrect by Nishida for essentially the same reason.

CONCLUSION:  there is something interesting and unusual that resulted in these 
predictions, so let’s see how the phenomenon can be explained within the 
adiabatic hyperspherical viewpoint



First of all, here is the 
terminology we use:

Note that the Born-
Oppenheimer version 
neglecting Q(diagonal) 
is sometimes studied 
because it gives a 
LOWER BOUND.

But in this context it is 
dangerous to omit it.



Example of a case with a faux-Efimov 
effect in a spin-polarized fermionic 
trimer.

Here L = 1-

The green and red rescaled potentials 
are obtained for zero 2-body scattering 
volume, and they are highly repulsive.

The blue and orange channels potentials 
are completely new when the 2-body 
scattering volume is infinite.

The dashed curves are Born-
Oppenheimer and the lowest blue 
dashed curve is “faux-Efimov”.  When 
the diagonal correction is added (solid), 
the resulting (physical) adiabatic 
potential has coefficient very close to 
0/R2 and no Efimov effect

Here we multiply U or W by R2 to look at the asymptotic coefficient of 1/R2.



Illustration of the non-universal nature of the (unphysical) faux-Efimov Born-
Oppenheimer potentials (rescaled) at R → infinity, i.e. by considering different 
p-wave poles with different numbers of two-body bound states, but the universal 
(physical) potentials nevertheless collapse to 0/R2

Side note:  The system of 
4 spin-polarized fermions with 
unitary p-wave interactions 
also has a faux-Efimov effect 
in the 0+ symmetry.  See
Higgins & CHG, PRA 2022

This figure is for the two component 
fermionic trimer at p-wave unitarity for 
same spins, and s-wave unitarity 
between unlike spins



Unitarity reductions of the 
centrifugal barrier constant 
le for Fermionic 3-body 
systems of different 
symmetries

Yu-Hsin Chen & CHG
arXiv:2408.08993

Universal trimers with p-
wave interactions and the 
faux-Efimov effect

See also 2022 PRA

The corrected values of
In the faux-Efimov cases 
appear to always equal
integers within our
numerical accuracy level



Aside: beyond the recombination of 3 identical bosons 
→ 3 spin polarized fermions!

Recombination of Three Ultracold Fermionic Atoms

H. Suno, B. D. Esry, and CHG   -- PRL 90, 053202 (2003), 

appeared back-to-back in PRL with an experimental paper from Deborah Jin’s group:

Regal et al., PRL 90, 053201 (2003)

Motivation for this study:
    The hope was that by making the fermionic atoms spin polarized, the Pauli antisymmetrization should lead to a 
huge suppression of 3-body recombination in the ultracold degenerate Fermi gas.

Key results:  The Pauli antisymmetrization changes the lowest value of leff →7/2 in the 3-body continuum whereas 
it was leff = 3/2 for bosons, and the Wigner threshold law for the recombination matrix element must scale with 
energy as 

Sb,fff ~ k2leff+1  → (k Vp1/3)2leff+1

Where Vp is the p-wave scattering volume and Vp1/3 is called the ``p-wave scattering 
length‘‘.  Thus the recombination rate should scale with energy as K3 ~ E2



3-body recombination rate coefficient for spin-polarized fermionic 40K atoms, 
experiment-theory comparison, experiment from Regal and Jin, 2003 PRL

To our surprise, and to the 
experimentalists’ 
disappointment, the 
recombination rate still 
can approach the unitarity 
limit to within about 30-
50%, despite the Pauli 
exclusion principle.

H. Suno, B. D. Esry, and CHG   -- PRL 90, 053202 (2003), 

appeared back-to-back in PRL with an experimental paper from 

Deborah Jin’s group:

Regal et al., PRL 90, 053201 (2003)



A first study of 5-body nuclear physics:  the +4n system, 8He
arXiv:2407.17668 by Higgins & CHG

One interesting thing about 
this system that we have not 
seen before is that there are 
no true 2-body 
fragmentation channels at 
low energy.  The lowest 
channels converge 
asymptotically to 6He+n+n,
And there are an infinity of
such potentials



H=

Another challenge:  5-body recombination for 5 free 

bosonic atoms with pairwise additive forces

i.e. the reaction A+A+A+A+A→ A3+A2 or A4+A or…

Start with the time-independent Schroedinger equation:

After eliminating the center-of-mass degree of 

freedom, we’re left with a 12-dimensional PDE to 

solve, which can be reduced to a mere 9 

dimensions for J=0 states after going to the body 
frame.



Mulliken-

style 

potential 

energy 

versus 

hyperradius 

R for 5 free 

Cs atoms 

(solid red) or 

harmonicall

y trapped 

(dashed)
NJP 2013



Our article with the Innsbruck group: finally published by the New Journal 

of Physics, accepted for publication about 1 year later!

Woohoo!

New Journal of Physics 15 (2013) 043040



NJP 15 (2013) 043040, 

Zenesini et al. 



Schematic qualitative 

hyperspherical 

potential curve for 5 

bosons at negative 

scattering length, 

“Mulliken style”

Recomb. threshold

NJP 15 (2013) 043040, 

Zenesini et al. 



4-body recomb 

only

5-body recomb 

only

Position of the 

predicted 4-body 

resonance and 

the 5-body 

resonance is in 

agreement with 

experiment!  

Kewl!

NJP 15 (2013) 043040, 

Zenesini et al. 

A combined theoretical and 

experimental study of 5-body

recombination

 Separating the different N-body contributions
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At the time of our 5-body recombination article with the Innsbruck 
group, we could not yet calculate the actual 5-boson potential energy 
curve that serves as the entrance channel for 5-body recombination.  
Now, a talented (former) PhD student, now a postdoc in my group, 
Michael Higgins, has succeeded in computing it:

Lowest 5-boson potential curve vs. hyperradius, 
at several negative scattering lengths

Lowest several potential curves at a more 
negative a where there is now one bound 
4-boson universal state

PRELIMINARY!
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Preliminary:  calculated 5-boson recombination rate versus scattering 

length  (note that there are TWO five-body resonances occurring before the first 
4-body state binds

Where in a WKB-style approximation the 
recombination probability is given by:



43

Summary:
Our study of 3- and 4-fermion systems has given us a broader view of 
Efimov and faux-Efimov physics, with s-wave and/or p-wave interactions, 

--plus-- we are learning how to think about threshold laws near unitarity

And, by the way, there are no 3n and no 4n bound or resonant states

We are gaining experience with 5-particle hyperspherical calculations, and 
our preliminary 5-boson recombination calculations look promising

One goal for the future:  
adiabatic hyperspherical study of D+T → +n

The adiabatic hyperspherical representation devised by Macek and promoted by the `Fano 
school’ has promise for treating increasingly complex systems, but difficulties remain.  
Nevertheless,……“One must try” (Dirac)
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