The Big-Bang Nucleosynthesis (BBNS) within the Scale-Invariant Vacuum (SIV) paradigm

Vesselin G. Gueorguiev^{1,2} and Andre Maeder³

¹ Institute for Advanced Physical Studies (IAPS), Sofia, Bulgaria, ²Ronin Institute for Independent Scholarship, Montclair, NJ, USA, ³Geneva Observatory, Geneva, Switzerland.

Week 3 Workshop of the program INT-24-3 on Quantum Few- and Many-Body Systems in Universal Regimes, INT, Seattle, WA, USA

(□) (何) (르) (르) 크는 이익어

∢ 트 ▶ ◀ 트 ▶ - 트 트 - 이익企

- 1 [Motivation Einstein GR, Weyl Geometry, and SIV](#page-2-0)
- 2 [Background standard BBNS and the SIV analytic expressions](#page-9-0)
- 3 [Method values of](#page-13-0) $a(T)$, $\tau(T)$, and $\rho(T)$ during the BBNS
- 4 [Results abundances of the light elements](#page-20-0)

[Einstein GR and Weyl Integrable Geometry.](#page-5-0) [Prior Applications of the Scale Invariant Vacuum \(SIV\)](#page-7-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Einstein GR (EGR) and Weyl Integrable Geometry (WIG) [\[1,](#page-26-0) [2,](#page-26-1) [3\]](#page-26-2)

Einstein GR guarantees $\delta \|\overrightarrow{v}\|=0$ along a geodesic.

- Q: Could the DM and DE phenomena be artifacts of non-zero $\delta \|\vec{v}\|$, but often negligible $\delta \|\vec{v}\| \approx 0$ and almost zero value, that accumulates over cosmic distances?
	- In Weyl Integrable Geometry $\oint \delta \|\vec{v}\| = 0$ along a closed loop - this defeats the Einstein's inital objection!
	- Not implementing re-parametrization invariance in a model could lead to un-proper time parametrization [\[4\]](#page-26-3) that seems to induce "fictitious forces" in the equations of motion similar to the forces derived in the weak field SIV regime.

[Einstein GR and Weyl Integrable Geometry.](#page-5-0) [Prior Applications of the Scale Invariant Vacuum \(SIV\)](#page-7-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Einstein GR (EGR) and Weyl Integrable Geometry (WIG) [\[1,](#page-26-0) [2,](#page-26-1) [3\]](#page-26-2)

- Einstein GR guarantees $\delta \|\overrightarrow{v}\|=0$ along a geodesic.
- Q: Could the DM and DE phenomena be artifacts of non-zero $\delta \|\vec{v}\|$, but often negligible $\delta \|\vec{v}\| \approx 0$ and almost zero value, that accumulates over cosmic distances?
	- In Weyl Integrable Geometry $\oint \delta \|\vec{v}\| = 0$ along a closed loop - this defeats the Einstein's inital objection!
	- Not implementing re-parametrization invariance in a model could lead to un-proper time parametrization [\[4\]](#page-26-3) that seems to induce "fictitious forces" in the equations of motion similar to the forces derived in the weak field SIV regime.

[Einstein GR and Weyl Integrable Geometry.](#page-5-0) [Prior Applications of the Scale Invariant Vacuum \(SIV\)](#page-7-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Einstein GR (EGR) and Weyl Integrable Geometry (WIG) [\[1,](#page-26-0) [2,](#page-26-1) [3\]](#page-26-2)

- Einstein GR guarantees $\delta \|\overrightarrow{v}\|=0$ along a geodesic.
- Q: Could the DM and DE phenomena be artifacts of non-zero $\delta \|\vec{v}\|$, but often negligible $\delta \|\vec{v}\| \approx 0$ and almost zero value, that accumulates over cosmic distances?
	- In Weyl Integrable Geometry $\oint \delta \|\vec{v}\| = 0$ along a closed loop - this defeats the Einstein's inital objection!
	- Not implementing re-parametrization invariance in a model could lead to un-proper time parametrization [\[4\]](#page-26-3) that seems to induce "fictitious forces" in the equations of motion similar to the forces derived in the weak field SIV regime.

[Einstein GR and Weyl Integrable Geometry.](#page-2-0) [Prior Applications of the Scale Invariant Vacuum \(SIV\)](#page-7-0)

K □ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (^

Einstein GR (EGR) and Weyl Integrable Geometry (WIG) [\[1,](#page-26-0) [2,](#page-26-1) [3\]](#page-26-2)

- Einstein GR guarantees $\delta \|\overrightarrow{v}\|=0$ along a geodesic.
- Q: Could the DM and DE phenomena be artifacts of non-zero $\delta \|\vec{v}\|$, but often negligible $\delta \|\vec{v}\| \approx 0$ and almost zero value, that accumulates over cosmic distances?
	- In Weyl Integrable Geometry $\oint \delta \|\vec{v}\| = 0$ along a closed loop - this defeats the Einstein's inital objection!
	- Not implementing re-parametrization invariance in a model could lead to un-proper time parametrization [\[4\]](#page-26-3) that seems to induce "fictitious forces" in the equations of motion similar to the forces derived in the weak field SIV regime.

[Einstein GR and Weyl Integrable Geometry.](#page-2-0) [Prior Applications of the Scale Invariant Vacuum \(SIV\)](#page-7-0)

ৰ ≣ ▶ ৰ ≣ ▶ - ≣ | ≌ | শ প থ (^

SIV based Cosmology: first in [1977](#page-26-2) by Canuto et al. [\[3\]](#page-26-2) then in [2017](#page-26-4) by Maeder [\[6\]](#page-26-4)

$g'_{\mu\nu} = \lambda g_{\mu\nu}$

The FLRW equations within the Weyl Integrable Geometry:

$$
\frac{8\pi G\rho}{3} = \frac{k}{a^2} + \frac{\dot{a}^2}{a^2} + 2\frac{\dot{\lambda}\dot{a}}{\lambda a} + \frac{\dot{\lambda}^2}{\lambda^2} - \frac{\Lambda_E\lambda^2}{3},
$$
(1)

$$
G = \frac{k}{a^2} + 2\frac{\ddot{\lambda}}{a} + \frac{\dot{a}^2}{a^2} + 4\frac{\dot{a}\dot{\lambda}}{a^2} + \frac{\dot{\lambda}^2}{a^2} - \frac{\Lambda_E\lambda^2}{a^2}
$$
(2)

$$
-8\pi Gp = \frac{\kappa}{a^2} + 2\frac{a}{a} + 2\frac{\kappa}{\lambda} + \frac{a}{a^2} + 4\frac{a\kappa}{a\lambda} - \frac{\kappa}{\lambda^2} - \Lambda_E\lambda^2.
$$
 (2)

In SIV gauge, $\lambda = t_0/t$, the cosmological constant disappears:

$$
\frac{8\pi G\rho}{3} = \frac{k}{a^2} + \frac{\dot{a}^2}{a^2} + 2\frac{\dot{a}\dot{\lambda}}{a\lambda},
$$
\n(3)

$$
-8\pi G p = \frac{k}{a^2} + 2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + 4\frac{\dot{a}\dot{\lambda}}{a\lambda}.
$$
 (4)

talk by V.G. Gueorguiev on Oct. 22nd 2024 [BBNS within the SIV paradigm arXiv:2307.04269](#page-0-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Where the Scale Invariant Vacuum (SIV) idea has been applied? [\[5\]](#page-26-5)

Today: Primordial Nucleosynthesis within the SIV paradigm.

X The SIV cosmology is a viable alternative to ΛCDM. – In the SIV gauge the cosmological constant disappears. – Diminishing differences for higher densities $(\lambda \rightarrow 1)$ [\[6,](#page-26-4) [7\]](#page-26-6).

- $\sqrt{\ }$ Radial Acceleration Relation (RAR) for dwarf spheroidals [\[8\]](#page-26-7).
- $\sqrt{\ }$ SIV has fast enough growth of the density fluctuations [\[9\]](#page-26-8).
- $\sqrt{\ }$ Early inflation is natural within the SIV cosmology [\[10\]](#page-26-9)! – SIV exhibits a graceful exit from inflation.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

Where the Scale Invariant Vacuum (SIV) idea has been applied? [\[5\]](#page-26-5)

- Today: Primordial Nucleosynthesis within the SIV paradigm.
- $√$ The SIV cosmology is a viable alternative to ΛCDM. – In the SIV gauge the cosmological constant disappears. – Diminishing differences for higher densities $(\lambda \rightarrow 1)$ [\[6,](#page-26-4) [7\]](#page-26-6).
- $\sqrt{}$ Radial Acceleration Relation (RAR) for dwarf spheroidals [\[8\]](#page-26-7).
- $\sqrt{\ }$ SIV has fast enough growth of the density fluctuations [\[9\]](#page-26-8).
- $\sqrt{\ }$ Early inflation is natural within the SIV cosmology [\[10\]](#page-26-9)! – SIV exhibits a graceful exit from inflation.

[Standard BBNS within PRIMAT \[11\]](#page-11-0) [SIV analytic expressions](#page-12-0)

The time variable τ is obtained from the FLRW equation

$$
\dot{a}/a = H = \sqrt{\frac{8}{3}\pi G\rho(a)} \Rightarrow \tau(a), \text{ while } a(T) = a_0 T_0 / (TS^{1/3}).
$$

The usual reaction rates for production and reduction of a nucleus are re-expressed from the traditional reaction form $i + j \leftrightarrow k + l$ (P131) into a new form (P136) using $Y_i = n_i/n_b$ where Γ-s are in units of s^{-1} :

$$
\begin{aligned}\n\text{(P131)} \quad \dot{n}_i &\supset n_k n_l \gamma_{kl \to ij} - n_i n_j \gamma_{ij \to kl}, & \gamma_{ij \to kl} &= \langle \sigma \, v \rangle_{ij \to kl}, & \text{(P132)} \\
\text{(P136)} \quad \dot{Y}_i &\supset Y_k \gamma_l \Gamma_{kl \to ij} - Y_i \gamma_j \Gamma_{ij \to kl}, & \Gamma_{ij \to kl} &= n_b \gamma_{ij \to kl}. & \text{(P137)}\n\end{aligned}
$$

Here, the standard reaction rate $\gamma_{j...\to j...}$ is in units cm³/s. Based on (P136), one has for the transition from EGR to WIG (SIV):

$$
\frac{dY_i}{d\tau'}=Y_kY_j\Gamma'_{kl\to ij}-Y_iY_j\Gamma'_{ij\to kl}, \Rightarrow \frac{1}{\lambda}\frac{dY_i}{d\tau}=Y_kY_l\Gamma'_{kl\to ij}-Y_iY_j\Gamma'_{ij\to kl},
$$

where $d\tau' = \lambda\ d\tau$ based on the EGR \leftrightarrow WIG (SIV) relation $g'_{\mu\nu} = \lambda^2 g_{\mu\nu}$.

[Standard BBNS within PRIMAT \[11\]](#page-11-0) [SIV analytic expressions](#page-12-0)

The time variable τ is obtained from the FLRW equation

$$
\dot{a}/a = H = \sqrt{\frac{8}{3}\pi G\rho(a)} \Rightarrow \tau(a), \text{ while } a(T) = a_0 T_0 / (TS^{1/3}).
$$

The usual reaction rates for production and reduction of a nucleus are re-expressed from the traditional reaction form $i + j \leftrightarrow k + l$ (P131) into a new form (P136) using $Y_i = n_i/n_b$ where Γ-s are in units of s^{-1} :

$$
\begin{aligned}\n(P131) \quad \dot{n}_i &\supset n_k n_l \gamma_{kl \to ij} - n_i n_j \gamma_{ij \to kl}, & \gamma_{ij \to kl} &= \langle \sigma \, v \rangle_{ij \to kl}, & (P132) \\
(P136) \quad \dot{Y}_i &\supset Y_k \, Y_l \Gamma_{kl \to ij} - Y_i \, Y_j \Gamma_{ij \to kl}, & \Gamma_{ij \to kl} &= n_b \gamma_{ij \to kl}. & (P137)\n\end{aligned}
$$

Here, the standard reaction rate $\gamma_{j...\to j...}$ is in units cm $^3/$ s. Based on (P136), one has for the transition from EGR to WIG (SIV):

$$
\frac{dY_i}{d\tau'}=Y_kY_j\Gamma'_{kl\to ij}-Y_iY_j\Gamma'_{ij\to kl}, \Rightarrow \frac{1}{\lambda}\frac{dY_i}{d\tau}=Y_kY_j\Gamma'_{kl\to ij}-Y_iY_j\Gamma'_{ij\to kl},
$$

where $d\tau' = \lambda\ d\tau$ based on the EGR \leftrightarrow WIG (SIV) relation $g'_{\mu\nu} = \lambda^2 g_{\mu\nu}$.

[Standard BBNS within PRIMAT \[11\]](#page-9-0) [SIV analytic expressions](#page-12-0)

The time variable τ is obtained from the FLRW equation

$$
\dot{a}/a = H = \sqrt{\frac{8}{3}\pi G\rho(a)} \Rightarrow \tau(a), \text{ while } a(T) = a_0 T_0 / (TS^{1/3}).
$$

The usual reaction rates for production and reduction of a nucleus are re-expressed from the traditional reaction form $i + j \leftrightarrow k + l$ (P131) into a new form (P136) using $Y_i = n_i/n_b$ where Γ-s are in units of s^{-1} :

$$
\begin{aligned}\n(P131) \quad \dot{n}_i &\supset n_k n_l \gamma_{kl \to ij} - n_i n_j \gamma_{ij \to kl}, & \gamma_{ij \to kl} &= \langle \sigma \, v \rangle_{ij \to kl}, \\
(P136) \quad \dot{Y}_i &\supset Y_k \gamma_l \Gamma_{kl \to ij} - Y_i \, Y_j \Gamma_{ij \to kl}, & \Gamma_{ij \to kl} &= n_b \gamma_{ij \to kl}. \\
(P137)\n\end{aligned}
$$

Here, the standard reaction rate $\gamma_{j...\to j...}$ is in units cm $^3/$ s. Based on (P136), one has for the transition from EGR to WIG (SIV):

$$
\frac{dY_i}{d\tau'}=Y_kY_j\Gamma'_{kl\to ij}-Y_iY_j\Gamma'_{ij\to kl}, \Rightarrow \frac{1}{\lambda}\frac{dY_i}{d\tau}=Y_kY_j\Gamma'_{kl\to ij}-Y_iY_j\Gamma'_{ij\to kl},
$$

where $d\tau' = \lambda\, d\tau$ based on the EGR \leftrightarrow WIG (SIV) relation $g'_{\mu\nu} = \lambda^2 g_{\mu\nu}$.

[Motivation](#page-2-0) [Background](#page-9-0) [Method](#page-13-0) [Results](#page-20-0) [Summary](#page-23-0) [Standard BBNS within PRIMAT \[11\]](#page-9-0) [SIV analytic expressions](#page-12-0)

SIV analytic expressions [\[12\]](#page-26-11)

The prefix "A" is used to indicate that the subsequent equation number refers to the corresponding original equation in ref. [\[12\]](#page-26-11) $(\lambda = t_0/t)$:

$$
(A27) \t v_{eq} = K_0 \rho_{\gamma 0} / (\Omega_m \rho_{c0}), \t c_2 = (v_{eq}^2 + \sqrt{v_{eq}^4 + C_{rel}}) / t_{eq}^2, (A21)
$$

\n
$$
(A20) \t C_m = 4\Omega_m / (1 - \Omega_m)^2, \t C_{rel} = C_m v_{eq},
$$

\n
$$
(A25) \t t_{eq} = 2^{-2/3} \left(v_{eq}^{3/2} (1 - \Omega_m) + \sqrt{v_{eq}^3 (1 - \Omega_m)^2 + 4\Omega_m} \right)^{2/3},
$$

\n
$$
(A29) \t t_{in} = C_{rel}^{1/4} / c_2^{1/2}, \t \Delta t = (t_0 - t_{in}) \tau / \tau_0,
$$

\n
$$
(A33) \t a(\Delta t) = \sqrt{2c_2 t_{in}^3 \Delta t}, \t \tau(T) = \frac{T_0^2 \tau_0}{2(t_0 - t_{in}) \sqrt{C_{rel}}} \frac{1}{T^2},
$$

\n
$$
(A37) \t \rho_r(\Delta t) = \rho_{\gamma 0} \frac{K_0}{4C_{rel} \Delta t^2}, \t \rho_m(\Delta t) = \rho_{m 0} \frac{c_2^{1/4}}{C_{rel}^7 (2\Delta t)^{3/2}}.
$$

talk by V.G. Gueorguiev on Oct. 22nd 2024 [BBNS within the SIV paradigm arXiv:2307.04269](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 바) 이익(어

Values of $a(T)$, $\tau(T)$, and $\rho(T)$ [during the BBNS](#page-13-0) [Temperature dependence of the expansion factor a\(T\).](#page-16-0) [The time label during the expansion factor evolution.](#page-17-0) [Energy-density during the BBNS.](#page-18-0)

 \circ

Values of $a(T)$, $\tau(T)$, and $\rho(T)$ during the BBNS.

Table 1: Values of $a(T)$, $\tau(T)$, and $\rho(T)$ for PRIMAT and SIV using standard cosmological parameters for $\Omega_{CDM} = 0.26$, $\Omega_b = 0.05$, and $h = 0.677$. The PRIMAT ρ_{tot2} corresponds to the densities that use an effective number of neutrino flavors $N_V = 3.01$. The densities ρ are in g/cm³.

The PRIMAT densities in the case of decoupled neutrinos:

$$
\rho_{\gamma} = a_{BB} (k_B T)^4 / c^2 \left(1 + \delta \rho(T) + \frac{7}{8} N_V \left(\frac{\langle T_V \rangle}{T} \right)^4 \right) = T^4 \overline{\rho}_{\gamma},
$$
\n
$$
\rho_m = \frac{n_b \sigma m_b \sigma}{c^2 a^3} \left(1 + \Omega_{c0} / \Omega_{b0} + \frac{3}{2} k_B T / m_{b0} \right) = \frac{a_0^3 \rho_m \sigma(T)}{a^3}.
$$

talk by V.G. Gueorguiev on Oct. 22nd 2024 [BBNS within the SIV paradigm arXiv:2307.04269](#page-0-0)

Values of $a(T)$, $\tau(T)$, and $\rho(T)$ [during the BBNS](#page-13-0) [Temperature dependence of the expansion factor a\(T\).](#page-16-0) [The time label during the expansion factor evolution.](#page-17-0) [Energy-density during the BBNS.](#page-18-0)

イロト イ押 トイヨ トイヨト

暑目 のへぐ

Figure 1: Expansion factor $a(t)$, $a(T)$, and temperature $T(t)$, along with the distortion $S(t)$ in $a(T)$ due to particle annihilations.

Conserved quantity within SIV: $a^{3(1+\omega)}\rho\lambda^{(1+3\omega)}$, where $\omega = \rho/\rho$.

Values of $a(T)$, $\tau(T)$, and $\rho(T)$ [during the BBNS](#page-13-0) [Temperature dependence of the expansion factor a\(T\).](#page-16-0) [The time label during the expansion factor evolution.](#page-17-0) [Energy-density during the BBNS.](#page-18-0)

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ (로) > (모) X 0 Q (여

Values of $a(T)$, $\tau(T)$, and $\rho(T)$ [during the BBNS](#page-13-0) [Temperature dependence of the expansion factor a\(T\).](#page-16-0) [The time label during the expansion factor evolution.](#page-17-0) [Energy-density during the BBNS.](#page-18-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Figure 3: $T \times a(T) \rightarrow T_0$ for $\Omega_m = 0.999$ ($\lambda = 1$) coincides with PRIMAT's function at low $T < 1$ GK. In agreement with $\lambda = 1/t_{\text{in}} \to 1$ as $t_{\text{in}} \to 1$ while $\Omega_m \to 1$. At high-temperatures (T > 1GK) PRIMAT a(T) is smaller than the SIV for $\Omega_m = 0.31$, but bigger than the SIV case of $\Omega_m = \Omega_b = 0.05$. PRIMAT is running with $\Omega_m = 0.31$ and $\Omega_b = 0.05$; that is, $\Omega_{CDM} = 0.26$, but this value or any other nearby value do not have an impact on the BBNS within PRIMAT! The high-temperature ($T > 1$ GK) regime in PRIMAT is due to the neutrino physics and e^+e^- annihilation. The high-temperature limit of $\mathcal{T} \times \mathcal{A}(\mathcal{T})$ for PRIMAT is based on the numerical value of the distortion factor $S(T) \rightarrow S_{max} = 11/4 \approx T_0$ at $T \gg 1$ GK.

Figure 4: The SIV constant $\tau(a)/a^2$ is $\tau_0 f(\Omega_m)$. As it can bee seen $\tau(a)/a^2$ decreases with Ω_m but aways stays above the PRIMAT value. The gap between $\Omega_m = 1$ ($\lambda = 1$) and the PRIMAT $\tau(a)$ can be resolved by the λ -scaling of $8\pi G\rho$ as seen in the bottom curves. The bottom line is the asymptotic limit of τ(a)/a 2 for PRIMAT based on the integration of $\sqrt{8\pi/3\,G\rho_{\gamma{\bf 0}}}$ using the low-temperature radiation density limit for PRIMAT density $\rho.$ The label on the vertical axes is set to be $t[{\mathfrak s}]/a^{\bf 2}$ in order to remind us that within PRIMAT time t is in seconds; thus, this t[s] is not the SIV dimensionless time $t \in [0,1]$, but actually it is the $\tau[s]$ within the SIV since it is in seconds since the BB.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 K 9 Q (연

Values of $a(T)$, $\tau(T)$, and $\rho(T)$ [during the BBNS](#page-13-0) [Temperature dependence of the expansion factor a\(T\).](#page-16-0) [The time label during the expansion factor evolution.](#page-17-0) [Energy-density during the BBNS.](#page-18-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Figure 5: The $\rho(T)/T^4$ for SIV (ρ_{tot} and radiation ρ_r) at $\Omega_m = 0.999$ are below the PRIMAT $\rho(T)$ function at high temperatures ($T > 1$ GK) due to the plasma corrections in this regime. The top line represents the high-temperature limit as evaluated at $N_v = 3$ and $\delta \rho_{max} \approx 1.742$ at $T = 100$ GK. At low-temperatures (T < 1GK) PRIMAT $ρ(T)$ coincides with the SIV $ρ_{tot}$ for $Ω_m = 0.31$. It matches the value $\mathcal{K}_0\rho_{\gamma0}/\mathcal{T}_0^4$. Note that $\Omega_m=1$ is not realistic limit since the BBNS is in the radiation epoch but can be viewed as another way to say $\lambda = 1$. There are three lines near 14 that are very close and practically on top of each other.

Values of $a(T)$, $\tau(T)$, and $\rho(T)$ [during the BBNS](#page-13-0) [Temperature dependence of the expansion factor a\(T\).](#page-16-0) [The time label during the expansion factor evolution.](#page-17-0) [Energy-density during the BBNS.](#page-18-0)

K 등 K K 등 X (동)들 X 9 Q @

Figure 6: Relevant Energy-Densities, neutrinos, photons, both together as radiation, and matter densities during the Standard and SIV BBNS.

[Naive SIV, SIV with](#page-20-0) λ -scaling, and $S(T)$ distorted SIV [SIV-motivated deviations from the LTDEq](#page-22-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 K 9 Q (연

Table 2: The observational uncertainties are 1.6% for Y_P , 1.2% for D/H, 18% for T/H, and 19% for Li/H. FRF is the forwards rescale factor for all reactions, while mŤ and Q/Ť are the corresponding rescale factors in the revers reaction formula based on the local thermodynamical equilibrium. The SIV λ-dependences are used when these factors are different from 1; that is, in the sixth and ninth columns where FRF= λ , mŤ= $\lambda^{-1/2}$, and Q/Ť= $\lambda^{+1/2}$. The columns denoted by fit contain the results for perfect fit on Ω_b and Ω_m to ⁴He and D/H, while fit* is the best possible fit on Ω_b and Ω_m to the ⁴He and D/H observations for the model considered as indicated in the columns four and seven. The last three columns are usual PRIMAT runs with modified $a(\mathcal{T})$ such that $\bar{a}/\lambda = a_{S\!/\!/} S^{\mathbf{1/3}},$ where \bar{a} is the PRIMAT's $a(\mathcal{T})$ for the decoupled neutrinos case. Column seven is actually $a_{\mathcal{S} \mathcal{W}}/S^{\mathbf{1/3}},$ but it is denoted by \bar{a}/λ to remind us about the relationship $a' = a\lambda$; the run is based on Ω_b and Ω_m from column five. The smaller values of $\eta_{\bf 10}$ are due to smaller $h^2\Omega_b$, as seen by noticing that $\eta_{\bf 10}/\Omega_b$ is always \approx 1.25.

[Naive SIV, SIV with](#page-20-0) λ -scaling, and $S(T)$ distorted SIV [SIV-motivated deviations from the LTDEq](#page-22-0)

Kロト K同ト

 $\mathbf{y} \rightarrow \mathbf{z}$. If $\mathbf{y} \rightarrow \mathbf{z}$

4 重

重目 のへぐ

Figure 7: Left: the Standard BBNS at $\Omega_m = 31\%$. Right: SIV BBNS at $\Omega_m = 6\%$

[Naive SIV, SIV with](#page-20-0) λ -scaling, and $S(T)$ distorted SIV [SIV-motivated deviations from the LTDEq](#page-22-0)

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Abundances of the light elements for modified \mathcal{T}^{β} term in revers reaction formulas.

Table 3: Abundances of the light elements within the standard and SIV BBNS. The observational uncertainties are 1.6% for Y_P , 1.2% for D/H, 18% for T/H, and 19% for Li/H. The first five columns are the same as in Table [2](#page-20-1) to facilitate the easy comparisons with the remaining columns. λ^n indicates the chosen scaling mŤ $=$ λ $^{\prime\prime}$ for the temperature $\,T^\beta\,$ in the revers reaction formulas. There is no rescaling of the forward reaction factors (FRF), nor for the $exp(y/T_9)$ factor, or any other temperature dependencies. The last five columns were fitted to reproduce ⁴He and D/H.

SIV with λ [-scaling, and RISS with](#page-25-0) $\sum_{i=1}^{\infty}$ distorted a(T)

∢ 트 ▶ ◀ 트 ▶ - 트 트 - 이익企

- The BBNS within the SIV paradigm results in:
	- Compatible abundances to the standard BBNS at lower baryon and cold dark matter contend.
	- SIV-guided deviation from the local statistical equilibrium insensitivity of the \mathcal{T}^β terms to the λ -scaling.
- Other research directions
	- BBNS within the reparametrization invariance paradigm.
	- o Testing SIV cosmology against ΛCDM successes CMB etc.

SIV with λ [-scaling, and RISS with](#page-25-0) $\sum_{i=1}^{\infty}$ distorted a(T)

∢ 트 ▶ ◀ 트 ▶ - 트 트 - K) Q (연

- The BBNS within the SIV paradigm results in:
	- Compatible abundances to the standard BBNS at lower baryon and cold dark matter contend.
	- SIV-guided deviation from the local statistical equilibrium insensitivity of the \mathcal{T}^β terms to the λ -scaling.
- Other research directions
	- BBNS within the reparametrization invariance paradigm.
	- o Testing SIV cosmology against ΛCDM successes CMB etc.

SIV with λ [-scaling, and RISS with](#page-25-0) $S(T)$ distorted $a(T)$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K 9 Q (N

Table 4: The observational uncertainties are 1.6% for Y_P , 1.2% for D/H, 18% for T/H, and 19% for Li/H. TFR is the temperature scaling factor, while mŤ and Q/Ť are the corresponding rescale factors in the revers reaction formula based on the local thermodynamical equilibrium. The SIV λ-dependences are used when these factors are different from 1; that is, TRF $=$ λ^{nT} along with λ factor within $\sqrt{\mathsf{G}\rho}$ The last four columns are usual PRIMAT runs with modified $\mathsf{a}(\mathsf{T})$ such that $\bar s/\lambda =$ $a_{SIV}/S^{1/3}$, where $\bar s$ is the PRIMAT's $a(T)$ for the decoupled neutrinos case. Column seven is actually $a_{S\!/\!V}/S^{\bf 1/3}$, but it is denoted by $\bar a/\lambda$ to remind us about the relationship $a'=a\lambda$.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 K 9 Q (연

References

- [1] Weyl, H. 1923, Raum, Zeit, Materie. Vorlesungen über allgemeine Relativitätstheorie. Re-edited by Springer Verlag, Berlin (1970).
- [2] Dirac, P. A. M. 1973, Proc. R. Soc. Lond. A, 333, 403 (1973).
- [3] Canuto, V., Adams, P. J., Hsieh, S.-H., & Tsiang, E., 1977, Phys. Rev. D 16, 1643 (1977).
- [4] Gueorguiev, V. G., Maeder, A., Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces. Symmetry 13, 379 (2021). e-Print: [1907.05248 \[math-ph\].](https://arxiv.org/abs/1907.05248)
- [5] Gueorguiev, V. G., Maeder, A., The Scale Invariant Vacuum Paradigm: Main Results and Current Progress. Universe 2022, 8 (4) 213; [DOI:10.3390/universe8040213,](https://www.mdpi.com/2218-1997/8/4/213) [e-Print:2202.08412 \[gr-qc\].](https://arxiv.org/abs/2202.08412)
- [6] Maeder, A. 2017, An Alternative to the LambdaCDM Model: the case of scale invariance, Astrophys. J. , 834, 194 (2017). e-Print: [1701.03964 \[astro-ph.CO\].](https://arxiv.org/abs/1701.03964)
- [7] Maeder, A.; Gueorguiev, V.G. 2020, The Scale-Invariant Vacuum (SIV) Theory: A Possible Origin of Dark Matter and Dark Energy, Universe 6, 46 (2020). DOI: [10.3390/universe6030046.](https://www.mdpi.com/2218-1997/6/3/46)
- [8] Maeder, A.; Gueorguiev, V.G. Scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf spheroidals, MNRAS492, 2698 (2019). e-Print: [2001.04978 \[gr-qc\]](https://arxiv.org/abs/2001.04978)
- [9] Maeder, A., Gueorguiev, V., G., The growth of the density fluctuations in the scale-invariant vacuum theory, Phys. Dark Univ. 25, (2019) 100315. e-Print: [1811.03495 \[astro-ph.CO\]](https://arxiv.org/abs/1811.03495)
- [10] Maeder, A., Gueorguiev, V. G., Scale invariance, horizons, and inflation. MNRAS 504, 4005 (2021). e-Print: [2104.09314 \[gr-qc\].](https://arxiv.org/abs/2104.09314)
- [11] Pitrou, C., Coc, A., Uzan, J.-P., Vangioni, E. "Precision big bang nucleosynthesis with improved Helium-4 predictions." Physics Reports 754, 1–66 (2018). e-Print: [1801.08023.](https://arxiv.org/abs/1801.08023)
- [12] A. Maeder, "Evolution of the early Universe in the scale invariant theory," e-Print: [1902.10115.](https://arxiv.org/abs/1902.10115)