
From Mathematics to Algorithms—
Obtaining Spectral Information from Real-
and Imaginary-Time Response Functions

Emanuel Gull

Jani Fei, Chia-Nan Yeh, Dominika Zgid, Lei Zhang, Yang Yu, Lex Kemper, Chao Yang

Funding by NSF QIS (for Prony fitting) and DOE SciDAC (for projections)



Obtaining spectral functions
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FIG. 2. Integrated real axis error err(A) =
R
R d!|A � Acont|

for the discrete (left) and continuous (right) case as a function
of control parameter ". Also indicated is the number of poles
M . Inset: spectrum A(!). Other parameters are � = 200,
n0 = 30 (left) and 0 (right), �n = 1 and N! = 2001.

Finally, we map the poles back onto the original domain
and evaluate the spectral function.

Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem

�����Gk �
K�1X

i=0

wi�
k
i

�����  " for all 0  k  2N (2)

for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.

⇢
w = g(z) = zs �

p
z2s + 1 with zs =

z�i!m
�!h

z = g�1(w) = �!h
2 (w � 1

w ) + i!m
, (3)

where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form

G̃(w) =
MX

l=1

Ãl

w � ⇠̃l
+ analytic part , (4)

the integrals over the unit circle

hk :=
1

2⇡i

Z

@D̄
G̃(w)wkdw (5)

yield its moments and, via the residue theorem, pole in-
formation [47, 48]:

hk =
X

l

Ãl⇠̃
k
l , k � 0 . (6)

Additional simplification of Eq. 5 yields

hk=

(
i
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) sin(k + 1)✓d✓

1
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) cos(k + 1)✓d✓

, (7)

for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M

significant Ãl and ⇠̃l are extracted and the resulting poles
and weights are recovered as

⇠l = g�1(⇠̃l) =
�!h

2
(⇠̃l �

1

⇠̃l
) + i!m , (8)

Al = Res[G(z), ⇠l] =
�!h

2
(1 +

1

⇠̃2l
)Ãl . (9)

Eqs. 8 and 9 yield a minimal pole approximation of the
form of Eq. 1 that is accurate to within " and reveals
the analytic structure of the function. To evaluate the
corresponding spectral function A(!) = � 1

⇡ ImG(!), we

• Spectrum looks like this!

• Give me the spectrum!

• Here’s a correlation function! 3
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FIG. 2. Left panel: Imaginary time Green’s function corresponding to a semicircular density of states at U = 0 and � = 100
showing the exact data, data obtained with CT-HYB using the imaginary time estimator of Ref. [6] (‘⌧ ’) and the Legendre
estimator of Ref. [27] (‘Leg’). Middle panel: Zoom with ⌧ data and projection. Right panel: Zoom with Legendre data and
projection.

(iii) Values of correlation functions at ⌧ = 0 or ⌧ = � are
often known to much higher precision than values
at arbitrary times since they correspond to static
expectation values. The M ⇥ M matrix B (M =
N

2 +1) with fixed values at the (0, 0) and/or (M, M)
position closest to a given matrix A is obtained
simply by replacing the values of A at (0, 0) and
(M, M) by the desired values. If A is a PSD Hankel
matrix, B retains the Hankel structure but is in
general not PSD. The set of matrices with fixed
values at (0, 0) and (M, M) is convex.

At least one positive definite Hankel matrix with a given
value at ⌧ = 0 and � exists, since the exact solution to
the problem satisfies these properties. Since the inter-
section of these convex sets is not empty, it is possible
to use Dykstra’s algorithm [30] to find the intersection
point of these convex sets closest to any given set of noisy
data. Dykstra’s algorithm performs repeatedly projec-
tions onto PSD matrices, onto the two Hankel matrices
of Fig. 1, and onto matrices with fixed values at (0, 0)
and (M, M) until convergence is achieved within a prede-
fined tolerance. The PSD projections may enforce both
the PSD structure of H and the PSD structure of the
submatrix illustrated in Fig. 1. While the convergence
of the algorithm may be slow, for typical numbers of
time slices (50-5000) the numerical e↵ort remains negli-
gible compared to the QMC simulation cost for obtaining
data. Projections typically take less than a second per
iteration on a single core. We provide an implementation
of the algorithm in Ref. [31].

IV. RESULTS

A. QMC data

We now discuss results of applying the denoising proce-
dure of Sec. III A to the example of quantumMonte Carlo

data. We first consider data obtained with the numeri-
cally exact hybridization expansion QMC method [6, 9].
Methods of this type form the backbone of modern real-
materials calculations within DFT+DMFT [32] and are
used for understanding minimal models of strongly corre-
lated quantum many-body systems [14]. Numerous gen-
eralizations [9, 33], improvements, and open source im-
plementations exist [34–37].
We apply the method to the fermionic imaginary time

Green’s function of the non-interacting (U = 0) half-
filled quantum impurity system coupled to a ‘semicircu-
lar’ density of states (for details see App. A). We calculate

G(⌧) = �Tr
⇥
⇢c(⌧)c†(0)

⇤
. (4)

This system corresponds to the exact solution of a Bethe
lattice model in the infinite coordination number limit
[38, 39] and is frequently studied in the context of dy-
namical mean field theory [40]. While the solution for
U = 0 is available analytically, its simulation within the
hybridization expansion requires the statistical sampling
of a large number of terms in a diagrammatic expansion.
In the hybridization expansion, G(⌧) can either be es-

timated using a binning method in imaginary time (we
designate this as the “⌧” estimator [6]) or by expanding
the solution into orthogonal polynomials and sampling
their coe�cients (we designate this the “Legendre” esti-
mator [27]).
Fig. 2 shows the improvement that can be obtained by

making use of the projection for this model. Results and
error bars are obtained from 64 independent Monte Carlo
runs. The left panel shows an imaginary-time Green’s
function obtained at temperature T = 1/100 (we set the
hopping parameter to t = 1). Data measured with both
estimators is consistent with the exact solution within
Monte Carlo error bars (not shown) but Monte Carlo
noise is clearly visible. The middle panel shows the same
⌧ estimator data, focused in on 8  ⌧  12. The result
from the projection of this noisy data is shown as a red

• Why?

• Do you believe it?

• Which feature?

• Can you exclude this scenario?

• I expect to see a bump around here. 
Can you give me the right spectrum?



This talk: 3 approaches

Can we put the AC problem on a rigorous 
mathematical footing?

Is there such a thing as ‘control’ & 
systematics, can we get ‘better’ 

continuations for better data? How about 
noise?

If time permits: Other things we can do with 
math, such as denoising & extending data



None of this is difficult, mostly 1920s math

…all of it comes with open source codes 
(MIT license). Test it with your own data. Ask 

me for help to get started!

…There will be translation problems 
between Condensed Matter & Nuclear / 

High Energy / Astro. Ask!

I will mostly limit to positive fermion spectral 
functions but bosons/anomalous/matrix-
valued extensions are straightforward.



Obtaining spectral functions
• Well-known problem with finite-temperature field theories: analytic continuation to 

the real axis to obtain spectral functions is ill conditioned.

A(!) =
�1

⇡
ImG(!)
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G(i!n) = � 1

⇡

Z
ImG(!)d!

i!n � !
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G(i!n) = K(i!n,!)G(!)

#
G(!) = [K(i!n,!)]

�1G(i!n)

• Little progress can be made where data is noisy. However, when data is accurate, 
progress is possible…

Jiani Fei

• Green’s functions satisfy mathematical (‘Nevanlinna’) properties 

• It is possible (and rather straightforward) to construct a numerical 
method that satisfies these mathematical properties

• Doing so vastly constrains the solution space and yields much 
better continuations.
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Im G�(z)  0 for z 2 C+

Phys. Rev. Lett. 126, 056402 (2021)



Obtaining spectral functions
Si, 6x6x6 lattice, self-consistent GW

Phys. Rev. Lett. 126, 056402 (2021)



Green’s functions & Lehmann Representation

G�(z) =
1

Z

X

m,n

|hm|c†� |ni|2

z + En � Em
(e��En + e��Em)
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A =
1

Z
|hm|c†� |ni|2(e��Eb + e��Em) > 0
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z = x+ iy
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Im G�(z)  0 for z 2 C+

Lehmann representation

G coincides with Matsubara Green’s function on imaginary axis, with 
retarded Green’s function just above real axis. Define
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ImS =
�Ay

(x+ En � Em)2 + y2

For

And therefore for any Green’s function, independent of the system:
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S =
A

(x+ En � Em) + iy
=

A(x+ En � Em � iy)

(x+ En � Em)2 + y2

Phys. Rev. Lett. 126, 056402 (2021)



Nevanlinna and Schur functions
Nevanlinna functions are functions with a positive imaginary part on the 
upper half of the complex plane.
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NG = �G Is a Nevanlinna function

Nevanlinna functions can be mapped onto Schur functions: Schur 
functions map the open unit disk D to the closed unit disk D 
(‘contractive’ functions). Every Schur function has a continued fraction 
expansion that can be recursively defined.
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D = {z : |z| < 1};
D = {z : |z|  1}

The invertible Möbius transform h maps the upper half plane to 
the unit disk
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h(z) : z ! z � i

z + i

Combine mapping to contractive functions with Schur’s continued fraction expansion to 
obtain an intrinsically causal expansion for Green’s functions

Rolf Nevanlinna

Phys. Rev. Lett. 126, 056402 (2021)



The Schur algorithm
Input data 

Issai Schur

Contractive 
interpolant.
Start the interpolation by constructing an interplant through Y1. Express 
this contractive interpolant as a function that is zero at Y1, and a 
constant λ1:

We want

Functional form Where 

Such that 

Note that θ1(z) is now an arbitrary contractive function. Express it as a sum of a function that is 
λ2 at Y2 and an arbitrary contractive function. Express that one as the sum of a function that is 
λ3 at Y3 and an arbitrary contractive function, iterate and repeat for all interpolation points.

This will result in an expression for all possible interpolants in terms of a remaining arbitrary 
Schur/Nevanlinna function. We will use this freedom later.

Phys. Rev. Lett. 126, 056402 (2021)
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g(xi) = yi (xi 2 D, yi 2 D)

Then a Schur interpolant to g can be found iff the  
Pick matrix is positive semi-definite. It has a unique solution  
if furthermore the Pick matrix is singular.
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Provides a straightforward check on any input data. Transform 
the data to the unit circle, evaluate Pick matrix, check if it has 
negative eigenvalues. If it does, there WILL NOT be a positive 
spectral function.

Interesting observation: Monte Carlo data never fulfills this criterion. GW data only if very 
well converged and not too many interpolation points. Synthetic benchmark data shows 
very high precision at high frequency needed to make it work. Sign of the very constrained 
nature of Nevanlinna/Schur function space.
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Old Technology vs Nevanlinna

Band structure is 
visible, individual bands 
can be separated

Fully self-consistent GW of 
Si, no quasiparticle or similar 
approximations, analytic 
continuation of fully 
interacting Green’s function.

Both continuations 
operating on same 
input data!

Phys. Rev. Lett. 126, 056402 (2021)

Analytic 
continuation



Constructing Approximate Nevanlinna functions
• While mathematically interesting, Nevanlinna continuation is not useful 

for noisy data. Even semi-analytic data is only accurate to ~14 digits.

• Don’t need interpolation. Need an approximation

• Traditional knowledge: lots of functions consistent within error bars, 
let’s pick the smoothest

arXiv:2312.10576

• Claim here: We need a new optimality criterion. Let’s pick the 
function with the least information in it.

• Every Schur (Nevanlinna) function has a continued fraction 
expansion. Every continued fraction expansion can be written as a 
pole expansion. Let’s pick the pole expansion with the fewest poles 
that is consistent with the data and has the right analytics.



Pole Representation
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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• Provide G at points z in the upper half of the complex plane (or on the real axis), together 
with tolerance. Algorithm needed to find minimal M and corresponding pole locations and 
weights.

• Question related to an old applied Math / signal processing problem (1796, Gaspard de 
Prony)

• Interpolation of a function by a sequence of decaying exponential terms. Appropriate 
truncation leads to stable numerical algorithm.

2

FIG. 2. Integrated real axis error err(A) =
R
R d!|A � Acont|

for the discrete (left) and continuous (right) case as a function
of control parameter ". Also indicated is the number of poles
M . Inset: spectrum A(!). Other parameters are � = 200,
n0 = 30 (left) and 0 (right), �n = 1 and N! = 2001.

Finally, we map the poles back onto the original domain
and evaluate the spectral function.

Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem

�����Gk �
K�1X

i=0

wi�
k
i

�����  " for all 0  k  2N (2)

for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.

⇢
w = g(z) = zs �

p
z2s + 1 with zs =

z�i!m
�!h

z = g�1(w) = �!h
2 (w � 1

w ) + i!m
, (3)

where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form

G̃(w) =
MX

l=1

Ãl

w � ⇠̃l
+ analytic part , (4)

the integrals over the unit circle

hk :=
1

2⇡i

Z

@D̄
G̃(w)wkdw (5)

yield its moments and, via the residue theorem, pole in-
formation [47, 48]:

hk =
X

l

Ãl⇠̃
k
l , k � 0 . (6)

Additional simplification of Eq. 5 yields

hk=

(
i
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) sin(k + 1)✓d✓

1
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) cos(k + 1)✓d✓

, (7)

for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M

significant Ãl and ⇠̃l are extracted and the resulting poles
and weights are recovered as

⇠l = g�1(⇠̃l) =
�!h

2
(⇠̃l �

1

⇠̃l
) + i!m , (8)

Al = Res[G(z), ⇠l] =
�!h

2
(1 +

1

⇠̃2l
)Ãl . (9)

Eqs. 8 and 9 yield a minimal pole approximation of the
form of Eq. 1 that is accurate to within " and reveals
the analytic structure of the function. To evaluate the
corresponding spectral function A(!) = � 1

⇡ ImG(!), we
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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• Data given on the real axis, approximated by pole approximation 



How compact is this approximation?
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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FIG. 2. Integrated real axis error err(A) =
R
R d!|A � Acont|

for the discrete (left) and continuous (right) case as a function
of control parameter ". Also indicated is the number of poles
M . Inset: spectrum A(!). Other parameters are � = 200,
n0 = 30 (left) and 0 (right), �n = 1 and N! = 2001.

Finally, we map the poles back onto the original domain
and evaluate the spectral function.

Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem

�����Gk �
K�1X

i=0

wi�
k
i

�����  " for all 0  k  2N (2)

for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.

⇢
w = g(z) = zs �

p
z2s + 1 with zs =

z�i!m
�!h

z = g�1(w) = �!h
2 (w � 1

w ) + i!m
, (3)

where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form

G̃(w) =
MX

l=1

Ãl

w � ⇠̃l
+ analytic part , (4)

the integrals over the unit circle

hk :=
1

2⇡i

Z

@D̄
G̃(w)wkdw (5)

yield its moments and, via the residue theorem, pole in-
formation [47, 48]:

hk =
X

l

Ãl⇠̃
k
l , k � 0 . (6)

Additional simplification of Eq. 5 yields

hk=

(
i
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) sin(k + 1)✓d✓

1
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) cos(k + 1)✓d✓

, (7)

for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M

significant Ãl and ⇠̃l are extracted and the resulting poles
and weights are recovered as

⇠l = g�1(⇠̃l) =
�!h

2
(⇠̃l �

1

⇠̃l
) + i!m , (8)

Al = Res[G(z), ⇠l] =
�!h

2
(1 +

1

⇠̃2l
)Ãl . (9)

Eqs. 8 and 9 yield a minimal pole approximation of the
form of Eq. 1 that is accurate to within " and reveals
the analytic structure of the function. To evaluate the
corresponding spectral function A(!) = � 1

⇡ ImG(!), we

• Smooth approximation on imaginary axis (first Prony)

• Joukowsky transform to unit circle
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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FIG. 2. Integrated real axis error err(A) =
R
R d!|A � Acont|

for the discrete (left) and continuous (right) case as a function
of control parameter ". Also indicated is the number of poles
M . Inset: spectrum A(!). Other parameters are � = 200,
n0 = 30 (left) and 0 (right), �n = 1 and N! = 2001.

Finally, we map the poles back onto the original domain
and evaluate the spectral function.

Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem

�����Gk �
K�1X

i=0

wi�
k
i

�����  " for all 0  k  2N (2)

for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.

⇢
w = g(z) = zs �

p
z2s + 1 with zs =

z�i!m
�!h

z = g�1(w) = �!h
2 (w � 1

w ) + i!m
, (3)

where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form

G̃(w) =
MX

l=1

Ãl

w � ⇠̃l
+ analytic part , (4)

the integrals over the unit circle

hk :=
1

2⇡i

Z

@D̄
G̃(w)wkdw (5)

yield its moments and, via the residue theorem, pole in-
formation [47, 48]:

hk =
X

l

Ãl⇠̃
k
l , k � 0 . (6)

Additional simplification of Eq. 5 yields

hk=

(
i
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) sin(k + 1)✓d✓

1
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) cos(k + 1)✓d✓

, (7)

for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M

significant Ãl and ⇠̃l are extracted and the resulting poles
and weights are recovered as

⇠l = g�1(⇠̃l) =
�!h

2
(⇠̃l �

1

⇠̃l
) + i!m , (8)

Al = Res[G(z), ⇠l] =
�!h

2
(1 +

1

⇠̃2l
)Ãl . (9)

Eqs. 8 and 9 yield a minimal pole approximation of the
form of Eq. 1 that is accurate to within " and reveals
the analytic structure of the function. To evaluate the
corresponding spectral function A(!) = � 1

⇡ ImG(!), we

• Calculation of moments (quadrature)

2

FIG. 2. Integrated real axis error err(A) =
R
R d!|A � Acont|

for the discrete (left) and continuous (right) case as a function
of control parameter ". Also indicated is the number of poles
M . Inset: spectrum A(!). Other parameters are � = 200,
n0 = 30 (left) and 0 (right), �n = 1 and N! = 2001.

Finally, we map the poles back onto the original domain
and evaluate the spectral function.

Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem

�����Gk �
K�1X

i=0

wi�
k
i

�����  " for all 0  k  2N (2)

for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.

⇢
w = g(z) = zs �

p
z2s + 1 with zs =

z�i!m
�!h

z = g�1(w) = �!h
2 (w � 1

w ) + i!m
, (3)

where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form
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for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M
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Finally, we map the poles back onto the original domain
and evaluate the spectral function.

Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
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i , where Gk =
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For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
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can be predetermined [50] such that the solution to the
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and yields an accurate solution to the Prony approxima-
tion problem
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on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.
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g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form
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for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M
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and weights are recovered as
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Eqs. 8 and 9 yield a minimal pole approximation of the
form of Eq. 1 that is accurate to within " and reveals
the analytic structure of the function. To evaluate the
corresponding spectral function A(!) = � 1
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and �i corresponding nodes.
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therefore employ a Prony approximation [50], rather than
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nitude to zero for i!n ! i1, only K / log(1/") out
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on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
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map the complex plane to the closed unit disk D̄.
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where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
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is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form
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for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
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Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem
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for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.
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z = g�1(w) = �!h
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where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form

G̃(w) =
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l=1

Ãl
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for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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w = g(z)

z = g�1(w)

!

i!n

1
!

FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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Finally, we map the poles back onto the original domain
and evaluate the spectral function.

Our input data consists of an odd number N! = 2N+1
of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
spacing �n, i.e., {i!n0 , i!n0+�n, · · · , i!n0+(N!�1)�n}.

Prony’s interpolation method [49] interpolates Gk as

a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem
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for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.
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where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form
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for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
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significant Ãl and ⇠̃l are extracted and the resulting poles
and weights are recovered as

⇠l = g�1(⇠̃l) =
�!h

2
(⇠̃l �

1

⇠̃l
) + i!m , (8)

Al = Res[G(z), ⇠l] =
�!h

2
(1 +

1

⇠̃2l
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and evaluate the spectral function.
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of Matsubara points G(i!n) that are uniformly spaced,
starting from a minimal non-negative frequency !n0 with
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a sum of exponentials Gk =
PN�1

i=0 wi�k
i , where Gk =

G(i!n0+k�n), 0  k  2N , wi denote complex weights
and �i corresponding nodes.

Prony’s interpolation method is unstable [51]. We
therefore employ a Prony approximation [50], rather than
an interpolation, of G between i!n0 and i!n0+(N!�1)�n.
For physical Matsubara functions, which decay in mag-
nitude to zero for i!n ! i1, only K / log(1/") out
of all N nodes in the Prony approximation have weights
|wi| > " [50]. More importantly, K significant nodes wi

can be predetermined [50] such that the solution to the
overdetermined problem for finding weights wi is stable
and yields an accurate solution to the Prony approxima-
tion problem

�����Gk �
K�1X

i=0

wi�
k
i

�����  " for all 0  k  2N (2)

for a predefined tolerance " > 0 via singular value de-
composition. By varying k continuously over the interval
[0, 2N ], we obtain an approximation of Matsubara data
on the continuous interval [i!n0 , i!n0+(N!�1)�n]. This
form of approximation employs a minimum number of ex-
ponential sums and is essential for regularizing the prob-
lem.

We then apply a holomorphic transform g(z), which
is a combination of linear transform and an inverse

Joukowsky transform [52] and is illustrated in Fig. 1, to
map the complex plane to the closed unit disk D̄.

⇢
w = g(z) = zs �

p
z2s + 1 with zs =

z�i!m
�!h

z = g�1(w) = �!h
2 (w � 1

w ) + i!m
, (3)

where !m = (!n0 + !n0+(N!�1)�n)/2 is the frequency
in the middle of the approximated interval, �!h =
(!n0+(N!�1)�n � !n0)/2 is half of the segment length,
and the branch of the square root in the first equation
is chosen such that |w|  1. The approximated Mat-
subara interval forms the unit circle, with g(i!n0) = �i,
g(i!n0+(N!�1)�n) = +i, and any other point splits into
two copies with identical y values. The real axis is
mapped onto a closed contour contained in the unit
disk with 1 mapped to the origin. Since the trans-
formed response function G̃(w) corresponds to Eq. 1 as
G̃(w) = G(z) and takes the form

G̃(w) =
MX

l=1

Ãl

w � ⇠̃l
+ analytic part , (4)

the integrals over the unit circle

hk :=
1

2⇡i

Z

@D̄
G̃(w)wkdw (5)

yield its moments and, via the residue theorem, pole in-
formation [47, 48]:

hk =
X

l

Ãl⇠̃
k
l , k � 0 . (6)

Additional simplification of Eq. 5 yields

hk=

(
i
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) sin(k + 1)✓d✓

1
⇡

R ⇡
2

�⇡
2
G(i(!m +�!h sin ✓)) cos(k + 1)✓d✓

, (7)

for k even and odd, respectively. Using the continuous
representation of G obtained in the last step and nu-
merical quadrature, these moments are obtained to high
precision. Note that since all ⇠̃l lie within the unit circle,
the moments hk decay quickly as a function of k and can
be truncated for hk ⌧ ".
Eq. 6 forms a second Prony problem. With Eq. 2, M

significant Ãl and ⇠̃l are extracted and the resulting poles
and weights are recovered as

⇠l = g�1(⇠̃l) =
�!h

2
(⇠̃l �

1

⇠̃l
) + i!m , (8)

Al = Res[G(z), ⇠l] =
�!h

2
(1 +

1

⇠̃2l
)Ãl . (9)

Eqs. 8 and 9 yield a minimal pole approximation of the
form of Eq. 1 that is accurate to within " and reveals
the analytic structure of the function. To evaluate the
corresponding spectral function A(!) = � 1

⇡ ImG(!), we

• Data given on 
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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w = g(z)
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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FIG. 3. Continuation of continuous spectral functions. From left to right: tight binding density of states of 2d square lattice with
nearest- and next-nearest neighbor hopping. Semicircular density of states. Tight-binding density of states of the anisotropic
triangular lattice. ‘Kondo’-like spectral function. Shown are the exact input A(!) in black, a continuation with Maximum
Entropy (blue), SOM (purple), and a Prony fit (this method) in red. Maximum Entropy parameters fine-tuned to yield best
spectra possible.

evaluate Eq. 1 for ! along R + i0+. By lowering ", the
precision can be systematically increased, at the cost of
adding additional poles. For the cases examined, this
pole representation is much more compact than com-
parable schemes [53–59] which typically do not yield a
systematically improvable representation of the spectral
function and may violate the analytic properties of the
response function.

Prony’s method has previously been used to study the
analytic continuation problem [47, 48]. The major di↵er-
ences to this work are that Ref. [48] employs a di↵erent
approximation procedure, either a causal projection onto
a finite real-axis grid or a spline interpolation, and di↵er-
ent grids and maps, as well as a di↵erent solution method
of the Prony problem. The methodology does not yield
the systematic error control observed here.

The supplement [60] to this paper contains a peda-
gogical implementation of this procedure that, given a
set of Matsubara points and a tolerance ", produces a
compact representation of the response function and its
corresponding spectral function. An open source imple-
mentation is also available as part of the Green software
package [61–63].

Results. We start our discussion with an examination
of the convergence of the spectrum as a function of the
error control parameter ". For a discrete (Fig. 2a) and
continuous (Fig. 2b) case we define a spectral function
A(!) on the real axis, transform it to the Matsubara axis,
and continue it back to the real axis within precision "
as Acont. We then show err(A) =

R
d!|A � Acont| as a

function of ". In striking di↵erence to the ‘ill-conditioned’
nature of a direct analytic continuation, we observe that
Acont rapidly converges to A as " is decreased. The ap-
proximation is indeed compact: in the discrete case, only
two poles are needed irrespective of the precision. In the
continuum case, increasing the precision of the di↵erence
of the integral to 10�3 requires an increase of the num-
ber of poles from M = 3 to M = 11. The supplement
[60] contains the precise analytical form of the functions

examined along a list of the poles.
We explore the robustness to the number of frequen-

cies and to temperature in the supplement [60]. We also
observe convergent behavior with limited number of fre-
quencies at high temperature, although the analytic con-
tinuation problem becomes inherently more di�cult.
In Fig. 3, we analyze the performance of the method for

four continuous noiseless scenarios: A continuous spec-
tral function with sharp band edges and a van Hove sin-
gularity, as it is encountered in a 2d tight binding calcula-
tion of the square lattice with nearest- and next-nearest-
neighbor hopping (left panel); a ‘semicircular’ density of
states with square-root singularities as encountered in
the non-interacting infinite coordination number Bethe
lattice with nearest neighbor hopping (middle panel); a
tight-binding band structure of an anisotropic triangular
lattice [64], and a simulated ‘Kondo’ setup with a sharp
peak and two side bands (right panel).
We proceed as in Fig. 2 by back-continuing the known

function A(!) to the Matsubara axis, approximating it
with " chosen close to machine precision (resulting in
M = 10, 9, 9, and 9), and plotting both A(!) and
Acont(!) as a function of frequency ! together with re-
sults from Maximum Entropy [15, 30] and the stochastic
optimization method (SOM) [39, 43].
All four functions are di�cult to analytically continue

with standard methods, since they contain both broad
and sharp features. The standard methodology of find-
ing the ‘smoothest’ function consistent with input data
within some error is not appropriate and introduces ar-
tificial ‘ringing’. While precise knowledge of the loca-
tion of the band edges and singularities could be used
in a Nevanlinna function interpolation [24] followed by
a Hardy function optimization [24] to pick the ‘correct’
function out of a Hardy function space, this knowledge
is often not available.
The low-rank representation of the Green’s function

produced by the Prony method provides an unbiased al-
ternative selection criterion that, in this case, is substan-

• Data given on the imaginary 
axis, continued by Maximum 
Entropy, Stochastic Analytic 
Continuation, and Prony 
approximation 
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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FIG. 4. Analytic continuation of non-positive spectral func-
tions. Black: Exact input. Red: Continuation. Panel (a/b):
o↵-diagonal continuous (a) and discrete (b) fermion case. (c)
diagonal boson case. (d) discrete o↵-diagonal boson case.

tially more precise than a smoothness criterion.
While a fermion Green’s function of an operator and

its corresponding adjoint corresponds to a positive spec-
tral function [65] whose poles lie in the lower half of the
complex plane [24], response functions of interest also in-
clude bosonic, anomalous, and o↵-diagonal cases which
have di↵erent analytical properties. Importantly, they
may not correspond to a probability distribution, rul-
ing out the straightforward application of Maximum En-
tropy and related methods. While the issue can be cir-
cumvented by continuing related quantities [66–70], the
procedure often amplifies errors [15].

The method presented here does not explicitly enforce
an analytic structure. It can therefore be applied di-
rectly to bosonic, o↵-diagonal, and anomalous Green’s
functions as well as to self-energies. As an example we
show the o↵-diagonal part of a continuous fermion spec-
tral function in Fig. 4a; a discrete o↵-diagonal fermion
system in Fig. 4b; a continuous diagonal boson system
in Fig. 4c; and a discrete o↵-diagonal boson system in
Fig. 4d. Note that the method for continuous and dis-
crete systems is identical; it is the low-rank representa-
tion that places a minimum number of poles very close
to the real axis to distinguish sharp (discrete) features
from smooth (continuous) ones.

Analytic continuation is commonly used on noisy
Monte Carlo data, where a response function is known
only within a given precision. The precision achievable
depends very much on the Monte Carlo algorithm and the

FIG. 5. Spectral functions for di↵erent levels of Gaussian
noise � on the imaginary axis. Upper panel: discrete case.
Lower panel: continuous case. Also indicated is the number
of poles M .

estimator used but is rarely better than 10�5, and errors
are often (but not always [71]) Gaussian distributed. In
that case, we substitute " as a proxy for the Monte Carlo
error bar.
For a discrete and a continuous scenario, the left panels

of Fig. 5 shows the convergence of the spectral function
in our method, Maximum Entropy [15] and SOM [39]
for simulated Gaussian errors with varying magnitude.
The right panel shows the integrated error err(A). It is
evident that already very loose error tolerance reproduces
the main features of the spectrum. As the simulated
Monte Carlo errors are decreased, our method rapidly
converges to the exact result whereas the spectrum is
not recovered in Maximum Entropy and SOM.
In conclusion, we have shown a method to systemat-

ically construct low-rank pole approximations to Mat-
subara response functions of quantum systems and used
it to analytically continue spectral functions. We have
demonstrated the control of the method in the sense that
the error in the real-frequency response functions can be
systematically reduced by improving the corresponding
Matsubara fit.
We have also demonstrated the wide applicability of

the method, including its suitability for diagonal, o↵-
diagonal, fermionic, bosonic, continuous, and discrete re-
sponse functions and we have examined the convergence
in the presence of noise. We note that the same approxi-
mation scheme can also be used to model real-frequency
response functions a short distance above the real axis,
which may be useful in cases where a Matsubara repre-

4

FIG. 4. Analytic continuation of non-positive spectral func-
tions. Black: Exact input. Red: Continuation. Panel (a/b):
o↵-diagonal continuous (a) and discrete (b) fermion case. (c)
diagonal boson case. (d) discrete o↵-diagonal boson case.

tially more precise than a smoothness criterion.
While a fermion Green’s function of an operator and

its corresponding adjoint corresponds to a positive spec-
tral function [65] whose poles lie in the lower half of the
complex plane [24], response functions of interest also in-
clude bosonic, anomalous, and o↵-diagonal cases which
have di↵erent analytical properties. Importantly, they
may not correspond to a probability distribution, rul-
ing out the straightforward application of Maximum En-
tropy and related methods. While the issue can be cir-
cumvented by continuing related quantities [66–70], the
procedure often amplifies errors [15].

The method presented here does not explicitly enforce
an analytic structure. It can therefore be applied di-
rectly to bosonic, o↵-diagonal, and anomalous Green’s
functions as well as to self-energies. As an example we
show the o↵-diagonal part of a continuous fermion spec-
tral function in Fig. 4a; a discrete o↵-diagonal fermion
system in Fig. 4b; a continuous diagonal boson system
in Fig. 4c; and a discrete o↵-diagonal boson system in
Fig. 4d. Note that the method for continuous and dis-
crete systems is identical; it is the low-rank representa-
tion that places a minimum number of poles very close
to the real axis to distinguish sharp (discrete) features
from smooth (continuous) ones.

Analytic continuation is commonly used on noisy
Monte Carlo data, where a response function is known
only within a given precision. The precision achievable
depends very much on the Monte Carlo algorithm and the

FIG. 5. Spectral functions for di↵erent levels of Gaussian
noise � on the imaginary axis. Upper panel: discrete case.
Lower panel: continuous case. Also indicated is the number
of poles M .

estimator used but is rarely better than 10�5, and errors
are often (but not always [71]) Gaussian distributed. In
that case, we substitute " as a proxy for the Monte Carlo
error bar.
For a discrete and a continuous scenario, the left panels

of Fig. 5 shows the convergence of the spectral function
in our method, Maximum Entropy [15] and SOM [39]
for simulated Gaussian errors with varying magnitude.
The right panel shows the integrated error err(A). It is
evident that already very loose error tolerance reproduces
the main features of the spectrum. As the simulated
Monte Carlo errors are decreased, our method rapidly
converges to the exact result whereas the spectrum is
not recovered in Maximum Entropy and SOM.
In conclusion, we have shown a method to systemat-

ically construct low-rank pole approximations to Mat-
subara response functions of quantum systems and used
it to analytically continue spectral functions. We have
demonstrated the control of the method in the sense that
the error in the real-frequency response functions can be
systematically reduced by improving the corresponding
Matsubara fit.
We have also demonstrated the wide applicability of

the method, including its suitability for diagonal, o↵-
diagonal, fermionic, bosonic, continuous, and discrete re-
sponse functions and we have examined the convergence
in the presence of noise. We note that the same approxi-
mation scheme can also be used to model real-frequency
response functions a short distance above the real axis,
which may be useful in cases where a Matsubara repre-
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Analytic continuation is a central step in the simulation of finite-temperature field theories in
which numerically obtained Matsubara data is continued to the real frequency axis for physical
interpretation. Numerical analytic continuation is considered to be an ill-posed problem where
uncertainties on the Matsubara axis are amplified exponentially. Here, we present a systematic and
controlled procedure that approximates any Matsubara function by a minimal pole representation to
within a predefined precision. We then show systematic convergence to the exact spectral function
on the real axis as a function of our control parameter for a range of physically relevant setups. Our
methodology is robust to noise and paves the way towards reliable analytic continuation in many-
body theory and, by providing access to the analytic structure of the functions, direct theoretical
interpretation of physical properties.

Quantum field theory simulations at finite tempera-
ture are typically performed on the imaginary axis [1].
In a post-processing step, real-frequency information is
obtained via analytic continuation for physical inter-
pretation. Simulations that require continuation range
from perturbative calculations [2–4] to lattice [5] and
continuous-time [6] quantum Monte Carlo and lattice
QCD [7–9] simulations, as well as algorithms for the sim-
ulation of bosonic systems [10] including He [11, 12], su-
persolids [13], and warm dense matter [14].

Due to the ill-conditioned nature of the analytic con-
tinuation step [15], a variety of numerical continuation
methods have been developed. Among these are Padé
[16] continued fraction fits of Matsubara data [17–22],
an interpolation with Nevanlinna functions [23, 24], the
Maximum Entropy (MaxEnt) method [15, 25–34], sparse
modeling [35, 36], stochastic analytic continuation (SAC)
and variants [36–43], genetic algorithms and machine
learning [12, 44, 45], causal projections [46] and Prony
fits [47, 48]. In all of these methods, it is di�cult in
practice to systematically converge the spectral function,
even given high-precision Matsubara data.

In this Letter, we revisit the continuation problem from
the perspective of a compact low-rank representation of
response functions in terms of a pole expansion that ap-
proximates Matsubara data within a predetermined pre-
cision ". Remarkably, as we show below, the spectral
function systematically converges to the exact answer as
the precision of the Matsubara fit is increased. Even
‘di�cult’ spectral functions containing both sharp and
smooth features at low and at high energies are well ap-
proximated.

The method is generally applicable to all response
functions, including diagonal and o↵-diagonal fermionic
and bosonic response functions of continuous and discrete
systems. Examining the application of the methodology
to data polluted with stochastic noise we find, similarly,
that a fit to within the known precision of the input data
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FIG. 1. Holomorphic functions g(z) and g�1(w) mapping
the complex plane to the unit disk and an interval on the
imaginary axis to the unit circle. Also shown are points on
and near the real axis as triangles, along with their image
under g.

results in physically reasonable spectral functions that
are systematically improved as the uncertainty on the
Matsubara axis is reduced.
Theory and Method. We construct an approximation

of Matsubara data in the upper half of the complex plane
by

G(z) =
MX

l=1

Al

z � ⇠l
, (1)

where the ⇠l 2 C denote M pole locations in the lower
half of the plane and Al 2 C the corresponding complex
weights, in four steps. First, we approximate Matsubara
data on a finite interval of the non-negative imaginary
axis using Prony’s approximation method [49, 50]. Sec-
ond, we map this interval onto the unit circle using a
holomorphic mapping. We then evaluate the moments of
the approximated function numerically and use Prony’s
approximation for a second time to extract a compact
representation in terms of pole weights and locations.
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FIG. 4. Analytic continuation of non-positive spectral func-
tions. Black: Exact input. Red: Continuation. Panel (a/b):
o↵-diagonal continuous (a) and discrete (b) fermion case. (c)
diagonal boson case. (d) discrete o↵-diagonal boson case.

tially more precise than a smoothness criterion.
While a fermion Green’s function of an operator and

its corresponding adjoint corresponds to a positive spec-
tral function [65] whose poles lie in the lower half of the
complex plane [24], response functions of interest also in-
clude bosonic, anomalous, and o↵-diagonal cases which
have di↵erent analytical properties. Importantly, they
may not correspond to a probability distribution, rul-
ing out the straightforward application of Maximum En-
tropy and related methods. While the issue can be cir-
cumvented by continuing related quantities [66–70], the
procedure often amplifies errors [15].

The method presented here does not explicitly enforce
an analytic structure. It can therefore be applied di-
rectly to bosonic, o↵-diagonal, and anomalous Green’s
functions as well as to self-energies. As an example we
show the o↵-diagonal part of a continuous fermion spec-
tral function in Fig. 4a; a discrete o↵-diagonal fermion
system in Fig. 4b; a continuous diagonal boson system
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