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Obtaining spectral functions

y : : e
e Here’s a correlation function! ‘j:r-'

¢ Give me the spectrum!

—L L. .1 e Spectrum looks like this!
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< * Do you believe it?
e Why? e Which feature?
-4 0 4 0.0, Can you exclude this scenario?
w e | expect to see a bump around here.

Can you give me the right spectrum?



This talk: 3 approaches

Can we put the AC problem on a rigorous
mathematical footing?

Is there such a thing as ‘control’ &
systematics, can we get ‘better’
continuations for better data”? How about
noise?

If time permits: Other things we can do with
math, such as denoising & extending data



None of this is difficult, mostly 1920s math

...all of it comes with open source codes
(MIT license). Test it with your own data. Ask
me for help to get started!

... IThere will be translation problems
between Condensed Matter & Nuclear /
High Energy / Astro. Ask!

| will mostly limit to positive fermion spectral
functions but bosons/anomalous/matrix-
valued extensions are straightforward.



Obtaining spectral functions

e Well-known problem with finite-temperature field theories: analytic continuation to
the real axis to obtain spectral functions is ill conditioned.

Gliw,) = 1 / ImG(w)dw Gliwy) = K (iwp, w)G(w)

T 1wy — W !
Alw) = ;ImG(w) Glw) = [K (iwy, )] G (iwy)

e |ittle progress can be made where data is noisy. However, when data is accurate,
progress is possible...

-« Green’s functions satisfy mathematical (‘Nevanlinna’) properties

Im G,(z) <0 for z € C™T

- It is possible (and rather straightforward) to construct a numerical
method that satisfies these mathematical properties

 Doing so vastly constrains the solution space and yields much
better continuations.

Jiani Fel

Phys. Rev. Lett. 126, 056402 (2021)



Obtaining spectral functions

Si, 6x6x6 lattice, self-consistent GW

X W ppystRev. Lett. 1282056402 (2021)



Green’s functions & Lehmann Representation

Lehmann representation

1 [(m|c]|n)
G =22 E - F

m,n

| 2

(e_BEn _I_ e_BEm)

G coincides with Matsubara Green’s function on imaginary axis, with
retarded Green’s function just above real axis. Define

1
A= —\(m\cﬂn)\z(e_ﬁEb + e FEm) > 0
For ny 4
Z2=x+1
G _ 7/ A - Az + E, — E,, —iy)
- (z+E,—FE,)+iy (z+E,—E,,)?+y?

Ay
(x 4+ B, — Ep)? + y?

And therefore for any Green’s function, independent of the system:

Im G,(z) <0 for z € C™T

ImS =

Phys. Rev. Lett. 126, 056402 (2021)



Nevanlinna and Schur functions

Nevanlinna functions are functions with a positive imaginary part on the
upper half of the complex plane.

NG = -G Is a Nevanlinna function

The invertible Mobius transform h maps the upper half plane to
the unit disk

“ D={z:|z| <1};
z—1 [ \. 7o)

Nevanlinna functions can be mapped onto Schur functions: Schur
functions map the open unit disk D to the closed unit disk D
(‘contractive’ functions). Every Schur function has a continued fraction
expansion that can be recursively defined.

Combine mapping to contractive functions with Schur’s continued fraction expansion to
obtain an intrinsically causal expansion for Green’s functions

Phys. Rev. Lett. 126, 056402 (2021)



The Schur algorithm

Input data f)=¢G i=12,...M Y; = iwy € C* and G; € C*
Qontractlve B8(Y) = A =h(C)=S"" i=12,.. .M
interpolant. Ci+i

Start the interpolation by constructing an interplant through Y1. Express
this contractive interpolant as a function that is zero at Y1, and a
constant A+:

Issai Schur

We want 8(Y)) =M, |A] <1

J. Schur, Uber potenzreihen, die im innern des einheit-
4)( Z) + Aq z—Y skreises beschrinkt sind, Journal fiir die reine und angewandte

Functional form 6(z) = Aig(2) + 1 Where ¢(z) = 2-Y: 61(z)  Mathematik 1918, 122 (1918).

Such that ¢ € Band ¢(Y1) =0

Note that 81(z) is now an arbitrary contractive function. Express it as a sum of a function that is
A2 at Y2 and an arbitrary contractive function. Express that one as the sum of a function that is
As at Y3 and an arbitrary contractive function, iterate and repeat for all interpolation points.

This will result in an expression for all possible interpolants in terms of a remaining arbitrary
Schur/Nevanlinna function. We will use this freedom later.

Phys. Rev. Lett. 126, 056402 (2021)



it g(x;) =vy; (z; €D,y; € D)

Then a Schur interpolant to g can be found iff the
Pick matrix is positive semi-definite. It has a unique solution
If furthermore the Pick matrix is singular.

G. Pick, Uber die beschrinkungen analytischer funktionen,
welche durch vorgegebene funktionswerte bewirkt werden-
ber die beschrinkungen analytischer funktionen, welche durch
vorgegebene funktionswerte bewirkt werden, Math. Ann. 78,

1 — y/[,y; 270 (1917).

R
1 —z;x]

-1

Pz’j:

Provides a straightforward check on any input data. Transform
the data to the unit circle, evaluate Pick matrix, check if it has
negative eigenvalues. If it does, there WILL NOT be a positive
spectral function.

Interesting observation: Monte Carlo data never fulfills this criterion. GW data only if very
well converged and not too many interpolation points. Synthetic benchmark data shows
very high precision at high frequency needed to make it work. Sign of the very constrained
nature of Nevanlinna/Schur function space.

Phys. Rev. Lett. 126, 056402 (2021)



Old Technology vs Nevanlinna

Band structure is Both continuations
_ visible, individual bands operating on same
111 can be separated input data!

1
o Ll N w BN w (0)] ~

———

w G X W L G

Maxent, orbital- and k-resolved

Fully self-consistent GW of
Si, no quasiparticle or similar
approximations, analytic
continuation of fully
interacting Green’s function.

Analytic >
continuation

Y G X W L G

Nevanlinna, orbital- and k-resolved
Phys. Rev. Lett. 126, 056402 (2021)



Constructing Approximate Nevanlinna functions

e While mathematically interesting, Nevanlinna continuation is not useful
for noisy data. Even semi-analytic data is only accurate to ~14 digits.

e Don’t need interpolation. Need an approximation

e Traditional knowledge: lots of functions consistent within error bars,
let’s pick the smoothest

¢ (Claim here: We need a new optimality criterion. Let’s pick the
function with the least information in it.

e Every Schur (Nevanlinna) function has a continued fraction
expansion. Every continued fraction expansion can be written as a
pole expansion. Let’s pick the pole expansion with the fewest poles
that is consistent with the data and has the right analytics.

arXiv:2312.10576



Pole Representation

M
Al ¢ € C denote M pole locations
G(x) =" - f

: — f l 7 A; € C the corresponding complex weights
=1

e Provide G at points z in the upper half of the complex plane (or on the real axis), together
with tolerance. Algorithm needed to find minimal M and corresponding pole locations and
weights.

e (Question related to an old applied Math / signal processing problem (1796, Gaspard de
Prony)

K—1
Gk—Zwi’yf <gforall 0 <k<2N

1=0

¢ |nterpolation of a function by a sequence of decaying exponential terms. Appropriate
truncation leads to stable numerical algorithm.

arXiv:2312.10576



How compact is this approximation?

G( Al ¢ € C denote M pole locations
) i .
z — f l A; € C the corresponding complex weights
[=1
M=24,e=10"" 040 M =28, e=10"12
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e Data given on the real axis, approximated by pole approximation

arXiv:2312.10576



How compact is this approximation?

M
G(Z) B Z Al ¢ € C denote M pole locations
- Z — f l 7 A; € C the corresponding complex weights

1.0
2.0 A
1.5 A
0.8
1.0 A
0.5 A 0.6
N £
g 0.0 o
©
= g
~0.5 - 0.4
—1.0 4
0.2
—1.51
°
—2.0 1
T . 00
-2 -1 0 1 2

Real(z) arXiv:2312.10576



Prony AC in a nutshell

e Smooth approximation on imaginary axis (first Prony)

1wy,

K—1
G — Zwﬂf <egforall 0 <k <2N
i=0

e Joukowsky transform to unit circle w9t g y
. | =< 3 1 pa |
{w:g(z) = 25 — /25 + 1 with z, = === [ 77N p3 /
— —1 _ Awh 1 ‘ I \ D2 /
z =g (w) =2 (w— =)+ iwn | P
$ . ] \ _/ N >
D1 D2 D3 D4 W
e (alculation of moments (quadrature) e Residue theorem for poles is a Prony problem
1 ~ _ A ¢k
hi == — G(w)wkdw h ZAlfl , k>0.
271 oD [

_ e Transform poles back after mapping
e Residue theorem for poles says

=07 (6) = MG - ) i
_ i ck
hk - ZAlfl ) k > 0. A; = Res[G(2),&] = %(l—l—é)ﬁl.
[ z

e All poles inside unit circle, so moments decay quickly
arXiv:2312.10576



Prony Analytic Continuation

Al FIG. 2. Integrated real axis error err(A) = [, dw|A — Acont]
G o _ for the discrete (left) and continuous (right) case as a function
- ° of control parameter €. Also indicated is the number of poles
Z —_ gl M. Inset: spectrum A(w). Other parameters are 8 = 200,
l: 1 no = 30 (left) and 0 (right), An =1 and N, = 2001.
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arXiv:2312.10576



Prony representation

e Data given on the imaginary

axis, continued by Maximum

M Entropy, Stochastic Analytic
Al Continuation, and Prony

G (Z) — approximation
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FIG. 3. Continuation of continuous spectral functions. From left to right: tight binding density of states of 2d square lattice with
nearest- and next-nearest neighbor hopping. Semicircular density of states. Tight-binding density of states of the anisotropic
triangular lattice. ‘Kondo’-like spectral function. Shown are the exact input A(w) in black, a continuation with Maximum
Entropy (blue), SOM (purple), and a Prony fit (this method) in red. Maximum Entropy parameters fine-tuned to yield best

spectra possible.
arXiv:2312.10576



Prony representation

FIG. 4. Analytic continuation of non-positive spectral func-
tions. Black: Exact input. Red: Continuation. Panel (a/b):
off-diagonal continuous (a) and discrete (b) fermion case. (c)
diagonal boson case. (d) discrete off-diagonal boson case.

arXiv:2312.10576



Prony and noise
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FIG. 5. Spectral functions for different levels of Gaussian
noise 0 on the imaginary axis. Upper panel: discrete case.
Lower panel: continuous case. Also indicated is the number

of poles M.
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