Towards the Unitarity Limit in EFTs with Pions

H. W. Grießhammer

Institute for Nuclear Studies The George Washington University, DC, USA

Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY

- Emergent Phenomena in Nuclear Physics: "Order From Chaos"
- What Is The Unitarity Limit? And Why Should I Care?
- Unitarity Expansion With Perturbative Pions in NN
- Concluding Hypothesis and Questions

How to root Nuclear Physics in QCD? What is the underlying principle that makes simple structures emerge from complex nuclear dynamics? Office of Nuclear Physics

König/hg/Hammer/van Kolck: *Phys. Rev. Lett.* **118** (2017) 202501 [1607.04623 [nucl-th]] Teng/hg: MSc Thesis GW 2023 and [2410.09653 [nucl-th]]

1. Emergent Phenomena in Nuclear Physics: "Order From Chaos"

1.1

2. What Is The Unitarity Limit? And Why Should I Care?

(a) Use Unitarity Expansion Only for Channels with Large NN Phase Shifts!

(b) Symmetries in the Unitarity Limit

yEFT cannot explain anomalous scatt. lengths/shallow binding: Worlds with $a \lesssim \frac{1}{m_{\pi}}$!

Noether Theorem 1918 [physics/0503066]:

Symmetries and their breaking result in conserved quantities.

 $\operatorname{kcot}\delta = 0 \iff S = e^{2\mathrm{i}(\delta = \frac{\pi}{2})} = -1$

(1) Amplitude saturated at Unitarity Limit: $\sigma = \frac{4\pi}{k^2}$ maximal (probability conservation).

(2) Scale Invariance: $\vec{k} \rightarrow e^{\lambda} \vec{k}$. and Conformal Symmetry...

(3) Wigner-SU(4) Symmetry of combined spin-isospin rotations $\begin{pmatrix} P \\ p \downarrow \\ n \uparrow \end{pmatrix} \rightarrow U \begin{pmatrix} P \\ p \downarrow \\ n \uparrow \end{pmatrix}$ Wigner, Hund 1937 for heavy nuclei cf. Mehen/Stewart/Wise 1999

In NN:
$$= \frac{4\pi}{M} \frac{1}{-\frac{1}{a} - ik} = A_{NN}({}^{3}S_{1}) = A_{NN}({}^{1}S_{0}) \text{ if } a({}^{3}S_{1}) = a({}^{1}S_{0}).$$

Theorists love Unitarity Limit as Nontrivial Fixed Point characterised by high symmetry: Wigner-SU(4)+ scale-invariance close to FP protected in renormalisation.

What About Nature?

(c) Unitarity Expansion in EFT(*t*)

König/hg/Hammer/van Kolck: PRL 2017 [1607.04623] reviews: van Kolck [2003.09974]; Kievsky/... [2102.13504]

LO: No NN scale. \implies Nuclear Physics correlated to just one 3N RG scale fixed by B_3 via Efimov effect. PARADIGM SHIFT: Unitarity de-emphasises details of NN & pions, emphasises 3N scale & Universality. Information Theory in EFT: lossless compression into smallest number of parameters at given accuracy.

 \implies Explore Sweet Spot for patterns, unique signals of QCD:

bound weakly enough to be insensitive to interaction details ($\frac{kr}{2} \ll 1$),

but strongly enough to be insensitive to exact large system size ($ka \gg 1$).

(d) χ EFT Should Work In the Unitarity Expansion!

Explore transition "no \rightarrow nonperturbative pions" via Perturbative ("KSW") Pions (only undisputedly consistent χ EFT).

 \implies Apply Unitarity Expansion to N²LO amplitudes already computed analytically

by Rupak/Shoresh $\frac{PRC60 (2000) 0540004}{[nucl-th/9902077]}$ (¹S₀) and Fleming/Mehen/Stewart $\frac{NPA677 (2000) 313}{[nucl-th/9911001]}$ (¹S₀, ³S₁).

3. Unitarity Expansion With Perturbative Pions in NN

based on Rupak/Shoresh [nucl-th/9902077] (¹S₀), (a) $\chi \text{EFT}(\mathbf{p}\pi)_{\text{UE}}$ at N²LO with $Q \sim \frac{1}{ka}, \frac{kr}{2}, \frac{k.m\pi}{\Lambda_{\text{NN}}} \ll 1$ Fleming/Mehen/Stewart [nucl-th/9911001] (¹S₀, ³S₁) mod, for unitarity Teng/hg MSc thesis GW 2023, [2410.09653] $\mathcal{O}(Q^{-1})$ (LO): Nonperturbative; no scale, perfect Wigner, pure S wave. $\mathcal{O}(Q^0)$ (NLO): Scaling and Wigner broken by contacts determined to reproduce PWA values of a, r. Non-iterated OPE: central only, does not break Wigner but scaling; first non-analyticity: branch point $\pm i \frac{m\pi}{2}$. $A_0^{(S)} = \left(\underbrace{-}_{+} + \underbrace{-}_{+} \right) \otimes \left(\underbrace{-}_{+} + \underbrace{-}_{+} \right) \otimes \left(\underbrace{-}_{+} + \underbrace{-}_{+} \right)$ LOS wave LOS wave \implies Unitarity, Wigner-SU(4) spin-isospin symmetry align naturally for Perturbative Pions at NLO. $\mathcal{O}(Q^1)$ (N²LO): Contacts adjusted to keep a, r at PWA values; multiplied with non-iterated OPE (central only). Once-iterated OPE added: first and second non-analyticity: branch points $\pm i \frac{m_{\pi}}{2}$, $\pm i m_{\pi}$. $A_{1\text{sym}}$: Central $S \to S \to S$ does not break Wigner but scaling: identical in ${}^{1}S_{0}$ and ${}^{3}S_{1}$. A_{1} break: Tensor $S \rightarrow D \rightarrow S$ breaks Wigner and scaling: only in ${}^{3}S_{1}$. $A_{1}^{(S)} = \underbrace{\left(\begin{array}{c} + \\ \end{array}\right)} \otimes \underbrace{\left(\begin{array}{c} \\ \end{array}\right)} \otimes \underbrace{\left(\begin{array}{c} \\ \\ \end{array}\right)} \otimes \underbrace{\left(\begin{array}{c} \\ \end{array}\right)} \otimes \underbrace{\left(\end{array}\right)} \otimes \underbrace{\left(\begin{array}{c} \\ \end{array}\right)} \otimes \underbrace{\left(\end{array}\right)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$ LO S wave LOS wave \implies Is breaking of Wigner-SU(4) spin-isospin symmetry for Perturbative Pions at N²LO indeed small? ・ロト ・同ト ・ヨト ・ヨト ヨヨ のへで

(c) Perturbative Pions at N²LO: ${}^{1}S_{0}$

perturbative pions to N²LO: Rupak/Shoresh 2000, Fleming/Mehen/Stewart 2000 unitarity for them: Teng/hg MSc Thesis GW 2023, [2410.09653]

(d) Perturbative Pions at N²LO: ${}^{3}S_{1}$

perturbative pions to N²LO: Fleming/Mehen/Stewart 2000 unitarity for them: Teng/hg MSc Thesis GW 2023, [2410.09653]

(d) Perturbative Pions at N²LO: ${}^{3}S_{1}$

perturbative pions to N²LO: Fleming/Mehen/Stewart 2000 unitarity for them: Teng/hg MSc Thesis GW 2023, [2410.09653]

(e) ³SD₁ Mixing: Full vs. Wigner

4. Concluding Hypothesis and Questions

 χ EFT with Perturbative Pions in Unitarity Expansion $Q \sim \frac{1}{ka}, \frac{kr}{2}, \frac{m_{\pi}}{\overline{\Lambda_{NN}}} \ll 1$: needs $\delta \rightarrow \frac{\pi}{2} \Longrightarrow {}^{1}S_{0}, {}^{3}S_{1}$ only! **Chiral Physics:** $m_{\pi}, f_{\pi}, (\vec{\sigma}_1 \cdot \vec{q})(\vec{\sigma}_2 \cdot \vec{q})(\tau_1 \cdot \tau_2)$ seem opposed to Wigner, but NN/few-N projection forces into it.

Hypothesis (at least for Perturbative Pions): Tensor/Wigner-SU(4) symmetry-breaking part of One-Pion Exchange is *super-perturbative* in few-N systems, i.e. does *not enter before* N³LO. \iff *Persistence:* Footprint of Symmetries in Unitarity Limit extends far into $p_{typ} \gtrsim m_{\pi}$, more relevant than χ iral symmetry in few-N?! \iff Better lossless compression of Information!

Evidence: NN S-waves at N²LO converge order-by-order and to PWA inside all of Unitarity Window 30 MeV $\lesssim k \lesssim \overline{\Lambda}_{NN} \approx 300$ MeV. Successful extension of EFT(t) to pions. +xsym equall

Appeal: Fine-Tuning \implies High Symmetry at Nontrivial Fixed Point:

Universality/scaling + Wigner-SU(4)

protected in renormalisation at FP \implies weakly broken in vicinity.

 χ iral symmetry not explicit at FP: less protected? \implies Quantify!

No Wigner in meson/1N sector \implies no change to χ PT, HB χ PT PC.

"Coincidence": N²LO Perturbative Pions overpredict ${}^{3}SD_{1}$ mixing, ${}^{3}D_{1} \implies$ Zero without tensor int. at N²LO.

イロト イロト イミト イミト 三日 のくで

Some Crucial Tests: If either fails without good reason, Hypothesis falsified.

N³LO cf. Beane/ Kaplan/Vuorinen 9 Kaplan 2020

 $d\pi \rightarrow d\pi, \gamma d \rightarrow \pi d$ Nd scattering cf. Borasoy/hg 2003

cf. Bedague/hg 2000

Nonperturbative Pions to N²LO in strict perturbation LO: hg 2023

nontrivial FP

perfect scaling+Wigner

important

Unitarity:

Wigner-sym

dominates

(a) What is the Small Parameter?: Entanglement? Large-N_c?

Need expansion parameter related to Wigner-SU(4) to characterise tensor suppression near Fixed Point.

Candidate Entanglement: Deviation from direct product position \otimes spin \otimes isospin. Beane/Kaplan/Klco/Savage [1706.06550] Farrell/Beane/...2020-Robin/Savage [2405.10268]

NN-scattering without higher waves & mixing: $S = \frac{1}{4} \left[\left(3e^{2i\delta^3 s_1} + e^{2i\delta^1 s_0} \right) \mathbb{1} + \vec{\sigma}_1 \cdot \vec{\sigma}_2 \left(e^{2i\delta^3 s_1} - e^{2i\delta^1 s_0} \right) \right]$

⇒ Unitarity Window around Fixed Point irrelevant??

(a) What is the Small Parameter?: Entanglement? Large-N_c?

Need expansion parameter related to Wigner-SU(4) to characterise tensor suppression near Fixed Point.

Candidate Large-N_c Expansion: Kaplan/Savage [hep-ph/9509371] Kaplan/Manohar [nucl-th/9612021] Calle Cordón/Ruiz Arriola [0807.2918]

Predicts that all V_{NN} in S waves are suppressed against central (Wigner-SU(4)) – except tensor \not .

Way out?: Wigner-SU(4) only realised in long-range parts, strongly broken in short-range?? Calle Cordón/Ruiz Arriola

Here: Wigner-SU(4) breaking only in LECs: short-range – long-range ($k \rightarrow 0$) still Wigner-SU(4) symmetric.

Way out?!: $1/N_c$ expansion assumes that coefficients "of natural size".

Wigner-SU(4)/proximity to Unitarity *forces* leading- $1/N_c$ coefficient of tensor- $V_{\rm NN}$ to be exact zero.

Advantage: Guaranteed to survive renormalisation by Unitarity FP symmetry.

(b) Nonperturbative Pions at LO: Maybe Not Hopeless

(c) Leading Questions

Unitarity & KSW, INT XEFT New Perspectives 45+15', 17.03.2025

You have much skill in expressing yourself to be effective.

(a) Use Unitarity Expansion Only for Channels with Large NN Phase Shifts!

1.1

(b) Whence the Hockey Stick in ${}^{3}S_{1}$?

(c) Convergence to Data

Landau/Páez/Bordeianu: Comp. Phys., Lepage 1997 Teng/hg [2410.09653]

(d) NLO & N²LO Bayesian Truncation Uncertainties

hg/...[1203.6834], Cacciari/Houdeau [1105.5152] BUQEYE [1506.01343], hg/...[1511.01952] Teng/hg [2410.09653]

Apply "max" criterion to $\cot \delta$ order-by-order: Unitarity: $k \cot \delta_{LO} = 0 \Rightarrow$ "-ik" sets scale. Bayesian N²LO truncation uncertainty at k: $\pm Q^3 \max \left\{ \frac{\cot \delta_0(k) - \cot \delta_0(0)}{Q}; \frac{\cot \delta_1(k)}{Q^2} \right\}$ with $Q = \frac{\max\{k; m_\pi\}}{\overline{\Lambda}_{NN} \sim 300 \text{ MeV}}$

NLO: rescaled to 68% DoB, assuming uniform&log-uniform prior.

Only Wigner-symmetric forms have \$\$N^2LO\$ uncertainties consistent with NLO, \$\$and NLO&N^2LO\$ consistent with PWA.

(e) Different Ways To Extract Phase Shifts at NLO and N²LO

(f) Different Renormalisation/Parameter-Determination Points

Teng/hg [2410.09653]

(g) Virtual/Real Bound-State Pole Positions and Residues

Teng/hg [2410.09653]

