(In-Medium) Similarity Renormalization Group and Effective Field Theory

Heiko Hergert

Facility for Rare Isotope Beams & Department of Physics and Astronomy Michigan State University

Similarity Renormaliztion Group

Similarity Renormalization Group

Basic Idea

continuous unitary transformation of the Hamiltonian to banddiagonal form w.r.t. a given "uncorrelated" many-body basis

• flow equation for Hamiltonian $H(s) = U(s)HU^{\dagger}(s)$:

$$\frac{d}{ds}H(s) = \left[\eta(s), H(s)\right], \qquad \eta(s) \equiv \frac{dU(s)}{ds}U^{\dagger}(s) = -\eta^{\dagger}(s)$$

• choose $\eta(s)$ to achieve desired behavior, e.g.,

$$\eta(s) \equiv \left[H_d(s), H_{od}(s) \right]$$

to suppress (suitably defined) off-diagonal Hamiltonian

• consistent evolution for all observables of interest

Similarity Renormalization Group

Induced Interactions

- SRG is a **unitary** transformation in **A-body space**
- up to **A-body interactions** are **induced** during the flow:

- state-of-the-art: evolve in three-body space, truncate induced four- and higher many-body forces
- flow parameter dependence of eigenvalues is a diagnostic for size of omitted induced interactions

What is "Magic" about EM1.8/2.0?

Roland Wirth

(now at DWD, Offenbach, Germany)

What is "Magic" about EM1.8/2.0?

- The **"magic" NN+3N interaction**, EM1.8/2.0 yields excellent ground-state energies across the nuclear chart, all the way to ²⁰⁸Pb [Simonis et. al., PRC **96**, 014303; Hu et al., Nat. Phys. **18**, 1196]
- **Construction:** [Hebeler et. al., PRC 83, 031301(R)]
 - **NN:** Entem-Machleidt N³LO @ 500 MeV cutoff, SRG evolved to $\lambda = 1.8 \text{ fm}^{-1}$
 - **3N:** N²LO, nonlocal regulator with $\Lambda_{3N} = 2.0 \text{ fm}^{-1}$, c_D and c_E fit to ³H g.s. energy and ⁴He charge radius
- Assumption: Induced 3N terms can be absorbed into c_D and c_E
- **Test:** Evolve EM2.0/2.0 to $\lambda = 1.8 \text{ fm}^{-1}$ and project 3N force onto N²LO topologies

Projecting 3N Forces

- Use chiral N²LO operators $O_{1,3,4,D,E}$ with $\Lambda_{3N} = 2.0 \, \text{fm}^{-1}$ as a basis for 3N force
 - represented as three-body Jacobi HO matrices
- Frobenius inner product:

$$\left\langle U, V \right\rangle \equiv \sum_{J^{\pi}T} \operatorname{tr} \left(U_{J^{\pi}T}^{\dagger} V_{J^{\pi}T} \right)$$

 $G\mathbf{c} = \mathbf{y}$

• basis is **not orthogonal** - introduce **metric** $G_{ij} \equiv \langle O_i, O_j \rangle$

• compute
$$\mathbf{y} = \left(\langle O_1, V \rangle, \dots, \langle O_E, V \rangle \right)^T$$
 and solve

• c contains the LECs of the projected interaction

Structure of N²LO Topologies

 $|\langle EJ^{\pi}T | V_{123}(\lambda = \infty) | E'J^{\pi}T \rangle|$

 $\hbar\omega = 36 \,\mathrm{MeV}$

- $n_{\rm reg} = 4$
- $\Lambda = 2.0 \, \mathrm{fm}^{-1}$
- low E, low J
- c_D similar to c_3
- c_E is S-wave only

Structure of N²LO Topologies

 $|\langle EJ^{\pi}T | V_{123}(\lambda = \infty) | E'J^{\pi}T \rangle|$

 $\hbar\omega = 36 \,\mathrm{MeV}$

$$n_{\rm reg} = 4$$

 $\Lambda = 2.0 \, {\rm fm}^{-1}$

- low E, low J
- c_D similar to c_3
- c_E is S-wave only

Evolving from $2.0 \,\mathrm{fm}^{-1}$ to $1.8 \,\mathrm{fm}^{-1}$

- SRG evolution in **three-body space**
- unitary transformation obeys

$$\frac{dU}{d\lambda} = -\frac{4}{\lambda^5}\eta(\lambda)U(\lambda)$$

• can use $U(\lambda)$ to separate induced 3N interaction, $V_{2\rightarrow 3}(\lambda)$, from evolved initial 3N interaction $V_{3\rightarrow 3}(\lambda)$

Structure of Induced Interactions

$$|\langle EJ^{\pi}T | V_{2\to 3} | E'J^{\pi}T \rangle|$$

$$\hbar\omega = 36 \,\text{MeV}$$

$$\lambda = 1.8 \, \mathrm{fm}^{-1}$$

- contributions from all energies (up to model space truncation)
- dominant diagonal
- different from N²LO topologies

Structure of Induced Interactions

Evolved 3N Interaction

- $|\langle EJ^{\pi}T | V_{3\to 3} | E'J^{\pi}T \rangle|$ $\hbar\omega = 36 \,\text{MeV}$
 - $\lambda = 1.8 \, \mathrm{fm}^{-1}$

- shape is similar to initial 3N force
- weak compared to $V_{2\rightarrow 3}$

LEC	2.0/2.0	2.0/2.0 →1.8		1.8/2.0
		Full	c_D, c_E	
<i>c</i> ₁	-0.81	-0.67	-0.81	-0.81
c_3	-3.20	-2.92	-3.20	-3.20
c_4	5.40	5.14	5.40	5.40
c_D	1.26	1.38	1.45	1.27
c_E	-0.12	-0.13	-0.11	-0.13

- Full: 10% correction to c_i s, 2PE suppressed, contacts enhanced
- c_D, c_E only: D term enhanced, E term (slightly) suppressed
- Final values quite different from EM1.8/2.0

- "Magic" of EM1.8/2.0 seems to be an accidental cancellation: induced 3N terms and excluded higher order NN, 3N, 4N, ... cancel, except for contact terms
- c_D, c_E have the **right size** to fit few-body observables and provide **correct shift** in E/A
- Use this protocol to analyze Δ -full interactions, impact of new 3N forces

SRG in Many-Body Systems

SRG Scales

- split the Hamiltonian: $H(s) = H_d(s) + H_{od}(s)$
- assume that

$$H_d(s) |n\rangle = E_n(s) |n\rangle, \qquad \langle n | H_{od}(s) | n\rangle = 0$$

• **generator** - e.g., Wegner:

$$\begin{split} \langle i | \eta | j \rangle &= \sum_{k} \left(\langle i | H_{d} | k \rangle \langle k | H_{od} | j \rangle - \langle i | H_{od} | k \rangle \langle k | H_{d} | j \rangle \right) \\ &= - \left(E_{i} - E_{j} \right) \langle i | H_{od} | j \rangle \end{split}$$

• flow equation:

$$\frac{d}{ds}\langle i | H | j \rangle = -(E_i - E_j)^2 \langle i | H_{od} | j \rangle$$
$$+ \sum_k (E - i + E_j - 2E_k) \langle i | H_{od} k \rangle \langle k | H_{od} | j \rangle$$

SRG Scales

 assume H_{od}(s) is small - should be a good assumption for some s > s₀ if the SRG flow is working as intended (or if there are perturbative arguments)

$$\frac{d}{ds}E_i = \frac{d}{ds}\langle i | H_d | i \rangle = 2\sum_k (E_i - E_k) |\langle i | H_{od} | k \rangle|^2 \approx 0$$

$$\frac{d}{ds}\langle i|H|j\rangle = \frac{d}{ds}\langle i|H_{od}|j\rangle \approx -(E_i - E_j)^2\langle i|H_{od}|j\rangle$$

• integrate:

$$\langle i | H_{od}(s) | j \rangle = \langle i | H_{od}(s_0) | j \rangle e^{-(E_i - E_j)^2 (s - s_0)}$$

- White generator: e^{-s}
- imaginary time / Brillouin: $e^{-|E_i E_j|s}$

- s characterizes decoupling of energy scales in the manybody system
 - $s \sim f(\Delta E^{-1})$
 - concrete interpretation depends on choice of generator
- carries forward from many-body states to operator
 formulation in IMSRG applies in the same way to 0B, 1B, 2B, ... operators
- Can this be used (more) ?

In-Medium SRG

Operator Bases for the IMSRG

 choose a basis of operators to represent the flow (might involve an educated guess about physics):

$$H(s) = \sum_{i} c_{i}(s)O_{i}, \qquad \eta(s) = \sum_{i} f_{i}(\{c(s)\})O_{i}$$

• close algebra by truncation, if necessary:

$$\left[O_i, O_j\right] = \sum_{ijk} g_{ijk} O_k$$

• flow equations for the coefficient (coupling constants):

$$\frac{d}{ds}c_k = \sum_{ij} g_{ijk} f_i(c)c_j$$

• "obvious" choice for many-body problems

$$\{O_{pq}, O_{pqrs}, \dots\} = \{a_p^{\dagger}a_q, a_p^{\dagger}a_q^{\dagger}a_s a_r, \dots\}$$

Transforming the Hamiltonian

Decoupling in A-Body Space

goal: decouple reference state $|\Phi\rangle$ from excitations

Flow Equation

IMSRG(2) Flow Equations

IMSRG(2) Flow Equations

2-body Flow

Examples of (IM)SRG Invariance

HH et al., Phys. Rept. **621**, 165 M. Frosini et al., EPJA **58**, 64

observables should be invariant under unitary evolution

 (tunable) combination of relevant operators in basis + degrees of freedom of many-body Hilbert space

Examples of (IM)SRG Invariance

S. K. Bogner et al., PPNP 65, 94

• explicit exponential ansatz for unitary transformation:

$$U(s) = S \exp \int_0^s ds' \ \eta(s') = e^{\Omega(s)}$$

• flow equation for Magnus operator:

$$\frac{d}{ds}\Omega = \sum_{k=0}^{\infty} \frac{B_k}{k!} \operatorname{ad}_{\Omega}^k(\eta), \quad \operatorname{ad}_{\Omega}(O) = [\Omega, O]$$

(B_k : Bernoulli numbers)

- construct $O(s) = U(s)OU^{\dagger}(s)$ using Baker-Campbell-Hausdorff expansion (Hamiltonian + effective operators)
- Magnus(2): two-body truncation (as in NO2B, IMSRG(2))

Magnus vs. Direct Integration

Perturbative Treatment of Subleading Forces

- Magnus formulation is convenient for treating specific interactions perturbatively or non-perturbatively
 - possible in MR-IMSRG formalism as well, but much more cumbersome can be used for cross-checks in the future
- generate $\Omega_0(s)$ nonperturbatively
- construct $H_1(s) = e^{\Omega_0(s)}H_1(0)e^{-\Omega_0(s)}$ and treat in finite-order MBPT
 - first tests with interactions from pionless EFT see
 Matthias Heinz' talk
- challenge: implementation of 4N force at NLO
 - will explore normal-ordered approximations

Epilogue

- Projection methods to help analyze 3N (or other) nuclear forces / operators
- Opportunities from **embracing the RG** in IMS**RG** ?
- IMSRG offers convenient pathways for treating specific components of the Hamiltonian perturbatively instead of non-perturbatively see Matthias Heinz' talk

nowledgments

T. S. Blade, S. K. Bogner, B. Clark, P. Cook, M. A. McCov	
Gajdosik, P. Gysbers, M. Hjorth-Jensen, D. Lee Argonne National Laboratory FRIB, Michigan State University	
C. Ding, J. M. Yao, E. F. Zhou Lawrence Livermore National Laboratory	
NKS to Smyrt-erol aporators: M. Caprio, B. He, S. R. Stroberg, S. Vittal T. R. Rodríguez Universidad de Seville	
Oniversity of Notre Dame S Bofos, M. Frosini	
OLI, F. F. Elpetkonstantinou, A. Guntner, CBA receive and a rut,	
nder, A. Galci, L. Langhammer V. Cirigliano, W. Dekens, CY. Seng Institute for Nuclear Theory	
t für Kernphysik, TU Darmstadt A. Belley	
MIT hank you for your attention!	
CMSE, Michigan State University S. König	
, Michigan State University. Schwenk, A. Tichai, C. Wenz North Carolina State University	
TU Darmstadt B. Bally, T. Duguet, V. Somà, L. Zurek Florida State University	
CEA Saclay and many more	
Support: US DOE-SC DE-SC0023516, DE-SC0023175 (SciDAC NUCLEI Collaboration), DE-SC0023663 Topical Collaboration), NSE PHY-2402275 (@NDBD Eurodamental Research Hub)	(NTNP

Supplements

Decoupling

Decoupling

Decoupling

absorb correlations into RG-improved Hamiltonian

$$U(s)HU^{\dagger}(s)U(s)|\Psi_{n}\rangle = E_{n}U(s)|\Psi_{n}\rangle$$

 reference state is ansatz for transformed, less correlated eigenstate:

$$U(\mathbf{s}) \left| \Psi_n \right\rangle \stackrel{!}{=} \left| \Phi \right\rangle$$

Emulators for the IMSRG

Davison, HH, J. Crawford, S. Bogner, arXiv:2504.xxxx

- non-invasive ROM
 emulator based on
 Dynamic Mode
 Decomposition
 - Δ NNLO_{GO}, NN+3N, $e_{max} = 12, E_{3max} = 14$
- O(10M) samples computational effort reduced by 5+ orders of magnitude

Parametric Matrix Model Emulators

B. Clark, P. Cook, ... also see: S. Yoshida, Particles 2025, 8

- DMD fails for Magnus operator if snapshots are taken during initial stages of flow...
- ... but PMMs seem to work

Parametric Matrix Model Emulators

B. Clark, P. Cook, ... also see: S. Yoshida, Particles 2025, 8

- DMD fails for Magnus operator if snapshots are taken during initial stages of flow...
- ... but PMMs seem to work