Weak Interactions in Neutron Star Mergers

Let's get rid of modified Urca

Alexander Haber Mark Alford, Ziyuan Zhang, Liam Brodie

Alford, Haber, Zhang arXiv:2406.13717 INT Workshop INT-24-89W, Sep. 4th 2024 www.alex-haber.net

Question of the day:

Is there a consistent, systematically improvable way to calculate weak (nuclear) decay rates in dense matter?

Answer: Yes, we should:

- Forget about "modified" and "direct" Urca
- > Take in-medium collisonal broadening for all participating nucleons into account

Neutron Star Mergers

Hanauske, M.; Steinheimer, J. et al. Particles 2019

- ► Mergers test properties of dense matter at high densities (up to ≈ 4 − 7 n_{sat}) and high temperatures (up to T ≈ 60 − 80 MeV)
- If we want to use mergers to learn about nuclear matter, we need to include all the relevant physics in our simulations.

What does the weak interaction do for us?

Chemical equilibrium: neutron decay and electron capture balance

 $n + \cdots \rightarrow p + e^- + \dots \qquad p + e^- + \cdots \rightarrow n + \cdots$

- Only weak interactions can change particle content
- In equilibrium: rates balance
- Cold equilibrium: $\mu_n = \mu_p + \mu_e$
- finite *T* correction: Alford, Harris: 1803.00662, Zhang et al: 2108.03324, 2306.06180

Neutron Star Mergers

- Oscillations drive matter out of equilibrium
- Weak interactions try to drive matter back to equilibrium
- impact on mergers depends on timescale of oscillations and equilibration times

Ignore Equilibration in Simulations: Frozen Composition Hammond, Hawke, Andersson: 2108.08649

 $\mu_{\Delta} = \mu_{n} - (\mu_{p} + \mu_{e})$

Include Equilibration in Simulations Most, A.H., Harris, Zhang, Alford, Noronha; arXiv:2207.00442

Include Equilibration in Simulations

Most, A.H., Harris, Zhang, Alford, Noronha; arXiv:2207.00442

Gravitational Wave Signal

Difference same order as finite T, resolution effects, **uncertainty in EOS**, ... Alexander Haber | Washington University in Saint Louis

Urca processes

direct Urca (dU)

neutron decay: $n \rightarrow p + e^- + \bar{\nu}_e$ electron capture: $p + e^- \rightarrow n + \nu_e$

 Strongly degenerate npe-matter: dominated by particles on their Fermi surface (FS)

 $egin{aligned} &\Gamma_{dU,ND} \propto \prod_{i=1}^4 \int rac{d^3 p_i}{2E_i} \sum_{ ext{spins}} |M|^2 \delta^4 (E-p) imes f_n (1-f_p) (1-f_e) \end{aligned}$

Direct Urca Threshold

Below threshold: proton fraction too low

- ► Momentum conservation on FS demands k_{Fn} ≤ k_{Fp} + k_{Fe}
- If momentum cons. on FS not possible: rate heavily suppressed

Direct Urca Threshold

Above threshold: proton fraction \geq 11%

- ► Momentum conservation on FS demands $\vec{k}_{Fn} \leq \vec{k}_{Fp} + \vec{k}_{Fe}$
- If momentum cons. on FS possible: rate dominated by direct Urca

Direct Urca Threshold

- Momentum conservation on FS demands k̃_{Fn} ≤ k̃_{Fp} + k̃_{Fe}
- Proton fraction x_p is monotonic with density
- Need $x_p \approx 11\%$ for $k_{Fn} = k_{Fp} + k_{Fe}$
- Threshold density = direct Urca threshold
- Impact on cooling, bulk viscosity,

. . .

Below threshold: in-medium corrections important modified Urca

modified Urca (mU): dU with spectator

neutron decay: $n + N \rightarrow p + e^- + \bar{\nu}_e + N$

$$egin{aligned} &\Gamma_{mU,ND} \propto \prod_{i=1}^6 \int rac{d^3 p_i}{2E_i} \sum_{ ext{spins}} |\mathcal{M}|^2_{mU} \delta^4(E-p) imes \ &f_n f_N (1-f_p) (1-f_e) (1-f_N) \end{aligned}$$

Direct Urca and Modified Urca Matrix Element

Approximations for internal propagator

Propgator for off-shell nucleon

How to deal with propagator G_n for internal, off-shell nucleon?

Direct Urca and Modified Urca T = 1 MeV - neutrino transparent, IUF-EQS

standard approximation for mU: $G_n = 1/\mu_e$

Full phase space calculation for direct Urca: arXiv:2306.06180, arXiv:2108.03324

Improved modified Urca is worse? Divergent rate in Shternin et al. 2018

- ✓ Improved treatment: $G_n^{-1} \propto (E^2 \varepsilon_N^2(k))$
- X Divergence at dU threshold
- X Internal nucleon goes on shell!

direct Urca from bubble diagram

modified Urca from bubble diagram

Total Rate

. . .

Dyson Schwinger Equation

Nucleon Width Approximation NWA Alford, Haber, Zhang, 2406.13717

21

- Fixed the IR divergence by including nucleon width $W \propto \Sigma$
- Corresponds to summing over an arbitrary number of collisions with the medium
- Collisional broadening taken into account for for all baryons

$$G_a^{\mathrm{NWA}}(k, M_a^*, W_a) = \int_{-\infty}^{\infty} dm \, G_a^{\mathrm{mf}}(k, m) \, R_a(m) \; ,$$

with the Breit-Wigner spectral function

$$R_a(m) \equiv rac{1}{\pi} rac{W_a/2}{(m-M_a^*)^2+W_a^2/4}$$

Kuksa, 1408.6994

Nucleon Width Approximation - NWA

$$\Gamma^{
m NWA} = \int_{-\infty}^{\infty} \!\! dm_{
m n} dm_{
m p} \Gamma^{
m dUrca}(m_{
m n},m_{
m p}) \, R_{
m n}(m_{
m n}) R_{
m p}(m_{
m p}) \, dm_{
m p}$$

NWA rates

NWA - results

- smooth transition from "mU-regime" to "dU-regime"
- constant nucleon width $(W_n = W_p = T^2/(5 \text{ MeV}) \text{ obtained from}$ Brueckner theory calculation for pure neutron matter using the Paris NN potential by Sedrakian astro-ph/0002228
- Allows us to go beyond Fermi-surface for mU
- Enhancement of low density rate by order of magnitude (see Shternin et al.)
- No divergence
- Matches dU calculation above threshold

NWA - advantages

26

- Consistent, simple approach to Urca
- Systematically improvable scheme
- Allows us to go beyond Fermi-surface for mU
- NWA can be applied in any context where dUrca rates can be calculated
 - finite temperature
 - matter with non-equilibrium neutrino distributions
 - strong magnetic fields
 - decays in some models of dark matter, hyperonic matter, quark matter ...

Alexander Haber | Washington University in Saint Louis

- There is room for improvement concerning the microphysics in merger simulations
- Missing or inaccurate microphysics can hamper our aspirations to measure the EOS
- mU is crude, inconsistent, hard to improve, and wrong
- NWA is easy to implement alternative that gives more accurate results

Outlook

- Calculate neutron width using different models
- Include vertex corrections
- Implement NWA rates/opacities in merger simulations

Summary & Outlook

NWA - dU - mU framework

Mass Integral

Alexander Haber | Washington University in Saint Louis

NWA results QMC-RMF3 Alford, Brodie, Haber, Tews 2205.10283

NWA temperature dependence

Alexander Haber | Washington University in Saint Louis

Bulk Viscosity: Resonant Behavior Alford, Haber, Zhang, 2306.06180

$$\zeta \propto \gamma/(\omega^2+\gamma^2)$$

- $\gamma = 1/\tau \propto$ (ND-rates EC-rates)
- γ strong *T* and *n*_B dependence
- Resonant behavior: $\gamma \approx \omega$
- QMC-RMF models: Alford, Brodie, Haber, Tews: 2205.10283 (Compose)

Bulk Viscosity from Beta Equilibration Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium

What would you measure?

Masquerade Problem We need to go beyond the Equation of State

Bulk Viscosity from Beta Equilibration

Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium

Bulk Viscosity from Beta Equilibration

Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium

Total Urca in Cold Beta-Equilibrium T = 3 MeV - neutrino transparent

- ► IUF-results show clear dU threshold
- Electron-capture and neutron-decay differ by 1 – 2 orders of magnitude
- Cold beta-equilibrium clearly violated

Reason:

electron-capture and neutron-decay are not inverse processes: neutrino switches side

Warm Beta Equilibrium

 $\mu_n = \mu_p + \mu_e + \Delta \mu(n_B)$ where $\Delta \mu(n_B)$ is chosen s.t. $\Gamma_{nd} = \Gamma_{ec}$

Corrected Rates for IUF EOS at T = 3 MeV

direct Urca electron capture dominates over modified Urca

New Model for Nuclear Matter Alford, Brodie, A.H., Tews Phys.Rev.C 106 (2022) arXiv:2205.10283

Relativistic mean field theories:

Based on meson-exchange Lagrangians: nucleons interact via meson exchange

- ✓ Applicable to density/temperature range of NS mergers
- $\checkmark \ \text{Fully relativistic model} \to \text{always causal}$
- ✓ Provide microscopical model: dispersion relations, ...
- ✓ Solvable on my laptop
- X Mean field approx. not a controlled approximation (better at high densities)

Coupling constants: fit to saturation properties of (nearly) symmetric nuclear matter

Neutron stars are \approx 90% neutrons!

Common RMFs

QMC-RMFx EOS

Name	n _{sat}	$\mathcal{E}(n_{sat})$	$\kappa(n_{sat})$	$J(n_{\rm sat})$	$L(n_{\rm sat})$
	[fm ⁻³]	[MeV]	[MeV]	[MeV]	[MeV]
Exp.				31.6 ± 3.2	58.7 ± 28.1
QMC-RMF1	0.159	-16.03	258	32.8	44.4
QMC-RMF2	0.160	-16.03	258	32.6	40.4
QMC-RMF3	0.158	-15.99	229	33.7	49.2
QMC-RMF4	0.162	-16.05	275	30.4	31.2

- Homogeneous, neutron-rich part: QMC-RMF
- Low-density crust and close to iso-spin symmetric: HS(IUF) Hempel, Schaffner-Bielich, Nuc.Phys. A 837 (2010), Fattoyev, Horowitz, Piekarewicz and Shen, PRC 82

combined in a thermodynamically consistent way to create **tabulated EOS** as function of n_B , T, and x_P

Full 3D-table available on Compose now! 2304.07836

QMC-RMFx EOS II Mass-Radius Curves

- Within 2σ of PSR J0740+6620:
 M = 2.072 ± 0.066 *M*_☉
- consistent with NICER
 *R*_{1.34} = 12.71 ± 1.84 km
- consistent with NICER+XMM+multi messanger constraints from P. T. H. Pang, I. Tews, M. W. Coughlin, M. Bulla, C. Van Den Broeck, and T. Dietrich, Astrophys. J. 922, 14 (2021)
- no direct Urca threshold