Bulk viscosity in neutron star merger remnants from neutron decays to dark baryons

Steven Harris Indiana University (NP3M Fellow) INT workshop: EOS Measurements with Next-Generation Gravitational-Wave Detectors September 4, 2024 SPH, Chuck Horowitz (in progress)

Outline

- Thermodynamics of neutron star mergers
- Beta equilibration and bulk viscosity in npe matter
- Neutron lifetime anomaly
 - Solve by introducing dark sector χ and ϕ
- Beta equilibrium and bulk viscosity in $npe\chi$ matter

If a slowly-decaying (but thermally equilibrated¹) particle species exists in neutron stars, what consequences does that have?

¹With itself and with the *npe* matter.

Neutron star merger conditions

The collision of two neutron stars heats them from $T \sim \mathcal{O}(\text{keV})$ to $T \sim 30$ MeV.

Remnant lifetime is typically tens of milliseconds. GW170817 lifetime was likely about 1 sec.

Density oscillations in neutron star mergers

Fluid elements in inviscid neutron star merger simulation:

Nuclear matter fluid elements change density at $\omega \approx 2\pi \times 1$ kHz.

This is related to the time sound takes to cross NS: 1/t = v/x = (c/2)/25 km = 6 kHz.

Beta equilibrium in npe⁻ matter

 e^{-}

Beta-equilibrated npe^- matter is described (at a given $\{n_B, T\}$) by 1 parameter, x_p .

If the system is pushed out of beta equilibrium, the Urca process acts at rate γ to restore it

$$n
ightarrow p + e^- + ar{
u}_e$$

 $\bar{
u} + p
ightarrow n +
u_e$

 γ depends strongly on temperature.

Bulk viscosity from beta equilibration

Track the path of a fluid element as it is compressed and uncompressed.

 $n_B(t) = n_B^0 + \delta n_B \cos\left(\omega t\right)$

Fluid element traverses a path in the $x_p n_B$ (or, PV) plane, indicating that work is done on the fluid element. This is bulk-viscous dissipation.

$$n_B \frac{dx_p}{dt} = \Gamma_{n \to p + e^- + \bar{\nu}} - \Gamma_{e^- + p \to n + \nu}$$

npe bulk viscosity

7 / 22

npe bulk viscosity

Bulk viscosity is largest at $T \approx 3$ MeV.

This is where $\gamma(n_B, T) \approx \omega = 2\pi \times 1$ kHz. Damping times as small as 5 ms.

Alford & SPH arXiv:1907.03795

Neutron decay anomaly

Recently, precise neutron lifetime experiments have been conducted:

- Bottle method
 - Ultracold neutrons held in a bottle
 - Periodically counted to see how many are left
 - Beam method
 - Neutron beam shot through Penning trap
 - Protons counted to see how many neutrons have decayed

Fornal arXiv:2306.11349

Resolution: Maybe neutrons decay into particles other than protons!

If 1% of neutron decays are into dark sector, the neutron decay anomaly is solved.

Dark matter solution to the anomaly

Assume the neutron can decay into a dark baryon χ and a dark scalar ϕ $n \rightarrow \chi + \phi$

п m..+m₄ [MeVI 939.5 938.0 -11.0-11.5 -12.0 $\log_{10}(g_{\phi}) = 12.5$ -13.0 800 600 m_-m_ [MeV] 200

 $\mathcal{L} \supset \mathbf{g}_{\phi}(\bar{\chi}\mathbf{n} + \bar{\mathbf{n}}\chi)\phi$

$$\overline{m_{n \to \chi \phi}} = rac{{g_{\phi}}^2}{16 \pi m_n^3} \left[(m_n + m_{\chi})^2 - m_{\phi}^2 \right]^{3/2} \\ imes \left[(m_n - m_{\chi})^2 - m_{\phi}^2 \right]^{1/2}$$

Neutron decay anomaly is solved for $\{g_{\phi}, m_{\chi}, m_{\phi}\}$ such that $\Gamma_{n \to \chi \phi} = \Gamma_n/100$.

What if the χ is dark matter?

- \blacktriangleright Nucleon-DM cross section $\sigma \lesssim 10^{-45} \ {\rm cm^2}$
 - terrestrial experiments
- DM-DM cross section $\sigma \lesssim 10^{-25} \text{ cm}^2 \left(\frac{m_{\chi}}{1 \text{ MeV}}\right)$
 - Needed to solve core-cusp problem
- We assume the χ dark baryons are thermally equilibrated² with the *npe* matter and with themselves³. There is one *npe*χ fluid⁴.

²But, not chemically equilibrated!

³In other words, both cross sections are sufficiently large

⁴Otherwise, should use 2-fluid formalism, yielding multiple bulk viscosity coefficients.

Neutron stars containing dark baryons

Free fermi gas of dark baryons χ unacceptably soften the EoS.

Need to add a $\chi - \chi$ repulsion term to stiffen the EoS.

$$\begin{aligned} P_{\mathsf{dark}} &= P_{\mathsf{kinetic}} + \frac{1}{2} \mathbf{G}' n_{\chi}^2 \qquad \varepsilon_{\mathsf{dark}} = \varepsilon_{\mathsf{kinetic}} + \frac{1}{2} \mathbf{G}' n_{\chi}^2 \\ & 50 \lesssim \mathbf{G}' / (\mathsf{fm}^2) \lesssim 1000 \end{aligned}$$

Dark baryons in neutron stars

- ▶ Use IUF-II relativistic mean field (RMF) theory for *npe* ▶ Add dark baryons χ (n_B = n_n + n_p + n_χ and μ_χ = μ_n)
- vector repulsion between χ's. (Repulsion strength G'.)

Weakly repulsive DM

Strongly repulsive DM

Dark baryons in neutron stars

Dark baryons slightly move direct Urca threshold
 n → χ + φ, in medium, is strongly Boltzmann suppressed.
 Look at *modified* processes instead: n + n → n + χ + φ

Chemical equilibration in $npe\chi$ matter

$$n_B \frac{dx_p}{dt} = \Gamma_{n \to p+e^- + \bar{\nu}} - \Gamma_{e^- + p \to n+\nu} \sim \gamma_1 (n_p - n_p^0)$$
$$n_B \frac{dx_{\chi}}{dt} = \Gamma_{n \to \chi+\phi} - \Gamma_{\chi \to n+\phi} \sim \gamma_2 (n_{\chi} - n_{\chi}^0)$$

<u>Urca</u>

Boltzmann suppression of dUrca overcome for $T\gtrsim 1$ MeV. Do full phase space integral. Neglect modified Urca.

Neutron dark decay

 $n \rightarrow \chi \phi$ is Boltzmann suppressed even at high temperatures. Calculate *modified* process

Chemical equilibration in $npe\chi$ matter

Bulk viscosity in $npe\chi$ matter

$$\zeta = \frac{\lambda_1 \lambda_2 \left[(A_2 B_1 - A_1 B_2)^2 \lambda_1 + (A_2 B_2 - A_1 C_2)^2 \lambda_2 \right] + (A_1^2 \lambda_1 + A_2^2 \lambda_2) \omega^2}{(B_2^2 - B_1 C_2)^2 \lambda_1^2 \lambda_2^2 + (B_1^2 \lambda_1^2 + 2B_2^2 \lambda_1 \lambda_2 + C_2^2 \lambda_2^2) \omega^2 + \omega^4}$$

Weakly repulsive DM

Strongly repulsive DM

Bulk viscosity in $npe\chi$ matter

$$\zeta = \frac{\lambda_1 \lambda_2 \left[(A_2 B_1 - A_1 B_2)^2 \lambda_1 + (A_2 B_2 - A_1 C_2)^2 \lambda_2 \right] + (A_1^2 \lambda_1 + A_2^2 \lambda_2) \omega^2}{(B_2^2 - B_1 C_2)^2 \lambda_1^2 \lambda_2^2 + (B_1^2 \lambda_1^2 + 2B_2^2 \lambda_1 \lambda_2 + C_2^2 \lambda_2^2) \omega^2 + \omega^4}$$

Weakly repulsive DM

Strongly repulsive DM

Bulk viscosity in npe matter

- Bulk viscosity exceeds 10²⁹ g/cm/s.
- 1 resonant peak
- Damping times as small as 10 ms.

Bulk viscosity in $npe\chi$ matter

- $n \rightarrow \chi \phi$ reaction yields new peak in ζ at $T \gtrsim 50$ MeV

Damping times in $npe\chi$ matter

• Presence of χ particles

- Increases damping time to (at least) hundreds of ms
- Quickens damping at high temperatures

Conclusions

- Neutron decay anomaly can be solved by introducing dark baryon χ and dark scalar φ such that n → χ + φ. What are the consequences of χ in neutron stars?
 - n → χ + φ is slow (even in medium), giving rise to a second peak in the bulk viscosity at T ≥ 50 MeV. Its effect on the EoS also reduces the Urca peak in the bulk viscosity.
- Future:
 - ▶ Improve $n + n \rightarrow n + \chi + \phi$ rate calculation (c.f. Alex Haber's talk)
 - Implement $n \rightarrow \chi + \phi$ in NS merger simulation
 - Other neutron decay anomaly solutions, like $n \rightarrow \tilde{\chi} + \tilde{\chi} + \tilde{\chi}$