Bulk viscosity in neutron star merger remnants from neutron decays to dark baryons

Steven Harris Indiana University (NP3M Fellow) INT workshop: EOS Measurements with Next-Generation Gravitational-Wave Detectors September 4, 2024 SPH, Chuck Horowitz (in progress)

Outline

- ▶ Thermodynamics of neutron star mergers
- Beta equilibration and bulk viscosity in npe matter
- ▶ Neutron lifetime anomaly
	- ▶ Solve by introducing dark sector χ and ϕ
- \blacktriangleright Beta equilibrium and bulk viscosity in $npe\chi$ matter

If a slowly-decaying (but thermally equilibrated 1) particle species exists in neutron stars, what consequences does that have?

¹With itself and with the *npe* matter.

Neutron star merger conditions

The collision of two neutron stars heats them from $T \sim \mathcal{O}(keV)$ to $T \sim 30$ MeV.

Remnant lifetime is typically tens of milliseconds. GW170817 lifetime was likely about 1 sec.

Density oscillations in neutron star mergers

Fluid elements in inviscid neutron star merger simulation:

Nuclear matter fluid elements change density at $\omega \approx 2\pi \times 1$ kHz.

This is related to the time sound takes to cross NS: $1/t = v/x = (c/2)/25$ km = 6 kHz.

Beta equilibrium in *npe*[−] matter

 e

Beta-equilibrated npe[−] matter is described (at a given $\{n_B, T\}$) by 1 parameter, x_n .

If the system is pushed out of beta equilibrium, the Urca process acts at rate γ to restore it

$$
n \to p + e^- + \bar{\nu}_e
$$

$$
- + p \to n + \nu_e
$$

 γ depends strongly on temperature.

Bulk viscosity from beta equilibration

Track the path of a fluid element as it is compressed and uncompressed.

 $n_B(t) = n_B^0 + \delta n_B \cos(\omega t)$

Fluid element traverses a path in the $x_p n_B$ (or, PV) plane, indicating that work is done on the fluid element. This is bulk-viscous dissipation.

$$
n_B \frac{dx_p}{dt} = \Gamma_{n \to p + e^- + \bar{\nu}} - \Gamma_{e^- + p \to n + \nu}
$$

npe bulk viscosity

npe bulk viscosity

Bulk viscosity is largest at $T \approx 3$ MeV.

This is where $\gamma(n_B, T) \approx \omega = 2\pi \times 1$ kHz. Damping times as small as 5 ms.

Alford & SPH arXiv:1907.03795

Neutron decay anomaly

Recently, precise neutron lifetime experiments have been conducted:

- ▶ Bottle method
	- ▶ Ultracold neutrons held in a bottle
	- ▶ Periodically counted to see how many are left
- ▶ Beam method
	- ▶ Neutron beam shot through Penning trap
	- ▶ Protons counted to see how many neutrons have decayed

Fornal arXiv:2306.11349

Resolution: Maybe neutrons decay into particles other than protons!

If 1% of neutron decays are into dark sector, the neutron decay anomaly is solved.

Dark matter solution to the anomaly

Assume the neutron can decay into a dark baryon χ and a dark scalar ϕ $n \to \chi + \phi$

Φ n $m.+m.$ [MeV] 939.5 938.0 -11.0 -11.5 -12.0 $log_{10}(g_a)$ -12.5 -13.0 800

> 600 $-m.$ [MeV]

 $\mathcal{L} \supset g_{\phi}(\bar{\chi}n + \bar{n}\chi)\phi$

$$
\Gamma_{n\to\chi\phi} = \frac{g_{\phi}^{2}}{16\pi m_{n}^{3}} \left[(m_{n} + m_{\chi})^{2} - m_{\phi}^{2} \right]^{3/2}
$$

$$
\times \left[(m_{n} - m_{\chi})^{2} - m_{\phi}^{2} \right]^{1/2}
$$

Neutron decay anomaly is solved for $\{g_{\phi}, m_{\chi}, m_{\phi}\}\$ such that $\Gamma_{n\to\chi\phi} = \Gamma_n/100$.

What if the χ is dark matter?

- ▶ Nucleon-DM cross section $\sigma \lesssim 10^{-45}$ cm²
	- \blacktriangleright terrestrial experiments
- ▶ DM-DM cross section $\sigma \lesssim 10^{-25}$ cm² $\left(\frac{m_{\chi}}{1 \text{ M/s}}\right)$ 1 MeV \setminus

▶ Needed to solve core-cusp problem

 \blacktriangleright We assume the χ dark baryons are thermally equilibrated² with the npe matter and with themselves $^3.$ There is one $npe\chi$ fluid $^4.$

²But, not chemically equilibrated!

³In other words, both cross sections are sufficiently large

⁴Otherwise, should use 2-fluid formalism, yielding multiple bulk viscosity coefficients.

Neutron stars containing dark baryons

Free fermi gas of dark baryons χ unacceptably soften the EoS.

Need to add a $\chi - \chi$ repulsion term to stiffen the EoS.

$$
\begin{array}{l} P_{\mathsf{dark}} = P_{\mathsf{kinetic}} + \frac{1}{2}\mathit{G}'\mathit{n}_{\chi}^{2}\\ 50 \lesssim \mathit{G}'/(\mathsf{fm}^{2}) \lesssim 1000 \end{array} \quad \ \ \mathit{\varepsilon_{\mathsf{dark}}} = \mathit{\varepsilon_{\mathsf{kinetic}}} + \frac{1}{2}\mathit{G}'\mathit{n}_{\chi}^{2}\\ \ \, \substack{\mathsf{September}\ \mathsf{4, 2024}}\\ \ \, \mathsf{12/22}} \quad \ \ \, \mathsf{12/22}
$$

Dark baryons in neutron stars

- ▶ Use IUF-II relativistic mean field (RMF) theory for npe
- Add dark baryons χ ($n_B = n_n + n_p + n_\chi$ and $\mu_\chi = \mu_n$)
- vector repulsion between χ 's. (Repulsion strength G' .)

Strongly repulsive DM

Dark baryons in neutron stars

▶ Dark baryons slightly move direct Urca threshold \triangleright $n \to \chi + \phi$, in medium, is strongly Boltzmann suppressed.

▶ Look at *modified* processes instead: $n + n \rightarrow n + \chi + \phi$

Chemical equilibration in $npe\chi$ matter

$$
n_B \frac{dx_p}{dt} = \Gamma_{n \to p+e^- + \bar{\nu}} - \Gamma_{e^- + p \to n+\nu} \sim \gamma_1 (n_p - n_p^0)
$$

$$
n_B \frac{dx_\chi}{dt} = \Gamma_{n \to \chi + \phi} - \Gamma_{\chi \to n+\phi} \sim \gamma_2 (n_\chi - n_\chi^0)
$$

Urca

Boltzmann suppression of dUrca overcome for $T \geq 1$ MeV. Do full phase space integral. Neglect modified Urca.

Neutron dark decay

 $n \to \chi \phi$ is Boltzmann suppressed even at high temperatures. Calculate modified process

Chemical equilibration in $npe\chi$ matter

Bulk viscosity in $npe\chi$ matter

$$
\zeta=\frac{\lambda_1\lambda_2\left[\left(A_2B_1-A_1B_2\right)^2\lambda_1+\left(A_2B_2-A_1C_2\right)^2\lambda_2\right]+\left(A_1^2\lambda_1+A_2^2\lambda_2\right)\omega^2}{\left(B_2^2-B_1C_2\right)^2\lambda_1^2\lambda_2^2+\left(B_1^2\lambda_1^2+2B_2^2\lambda_1\lambda_2+C_2^2\lambda_2^2\right)\omega^2+\omega^4}
$$

Weakly repulsive DM

Strongly repulsive DM

.

Bulk viscosity in $npe\chi$ matter

$$
\zeta=\frac{\lambda_1\lambda_2\left[\left(A_2B_1-A_1B_2\right)^2\lambda_1+\left(A_2B_2-A_1C_2\right)^2\lambda_2\right]+\left(A_1^2\lambda_1+A_2^2\lambda_2\right)\omega^2}{\left(B_2^2-B_1C_2\right)^2\lambda_1^2\lambda_2^2+\left(B_1^2\lambda_1^2+2B_2^2\lambda_1\lambda_2+C_2^2\lambda_2^2\right)\omega^2+\omega^4}
$$

Weakly repulsive DM

Strongly repulsive DM

.

Bulk viscosity in npe matter

- Bulk viscosity exceeds 10^{29} g/cm/s.
- ▶ 1 resonant peak
- Damping times as small as 10 ms.

Bulk viscosity in $npe\chi$ matter

- \blacktriangleright χ dark baryons suppress the Urca peak in the bulk viscosity
- \triangleright $n \rightarrow \chi \phi$ reaction yields new peak in ζ at $T \geq 50$ MeV

Damping times in $npe\chi$ matter

 \blacktriangleright Presence of χ particles

- ▶ Increases damping time to (at least) hundreds of ms
- ▶ Quickens damping at high temperatures

Conclusions

- ▶ Neutron decay anomaly can be solved by introducing dark baryon χ and dark scalar ϕ such that $n \to \chi + \phi$. What are the consequences of χ in neutron stars?
	- \triangleright $n \to \chi + \phi$ is slow (even in medium), giving rise to a second peak in the bulk viscosity at $T \gtrsim 50$ MeV. Its effect on the EoS also reduces the Urca peak in the bulk viscosity.

▶ Future:

- ▶ Improve $n + n \rightarrow n + \gamma + \phi$ rate calculation (c.f. Alex Haber's talk)
- ▶ Implement $n \to \chi + \phi$ in NS merger simulation
- ▶ Other neutron decay anomaly solutions, like $n \to \tilde{\chi} + \tilde{\chi} + \tilde{\chi}$