Opening up baryon-numberviolating operators

Julian Heeck

INT Workshop on Baryon Number Violation

1/16/2025

Standard Model Effective Field Theory

• EFT (with Majorana neutrinos): [Weinberg, '79 & '80]

• Some symmetry/hierarchy has to exist, otherwise

$$\Lambda \sim \langle {\sf H}
angle^2/{\sf M}_
u \sim 10^{14}\,{
m GeV}$$
 — Fast proton decay!

- BNV sensitive to d >> 6, unlike any other experiment.
- ΔB dominated by d = 6, unless forbidden by symmetry!
 [Weinberg, '80]

INT '25

Example for Weinberg's selection rules:

Impose $U(1)_{3B-L}$ on SMEFT, then the lowest BNV operators have $\Delta B = \Delta L/3 = 1$ and arise at d = 9.

Probing the landscape point by point?

$\Delta B = \Delta L = 1$

- 546 d=6 operators: $y_{abcd}^{1} \epsilon^{\alpha\beta\gamma} (\overline{d}_{a,\alpha}^{C} u_{b,\beta}) (\overline{Q}_{i,c,\gamma}^{C} \epsilon_{ij} L_{j,d})$ [Weinberg '79 & '80; Wilczek & Zee '79] $+ y_{abcd}^{2} \epsilon^{\alpha\beta\gamma} \epsilon_{il} \epsilon_{jk} (\overline{Q}_{i,a,\alpha}^{C} Q_{j,b,\beta}) (\overline{Q}_{k,c,\gamma}^{C} L_{l,d})$ $+ y_{abcd}^{3} \epsilon^{\alpha\beta\gamma} (\overline{Q}_{i,a,\alpha}^{C} \epsilon_{ij} Q_{j,b,\beta}) (\overline{u}_{c,\gamma}^{C} \ell_{d})$ $+ y_{abcd}^{4} \epsilon^{\alpha\beta\gamma} (\overline{d}_{a,\alpha}^{C} u_{b,\beta}) (\overline{u}_{c,\gamma}^{C} \ell_{d}) + h.c.$
- All induce 2-body nucleon decays, even those with c,b,t,τ .

[Marciano, NPB '95; Hou++, hep-ph/0509006; Dong++, 1107.3805; Gargalionis++, 2401.04768; Beneke++, 2404.09642; JH & Watkins, 2405.18478; Gisbert++, 2409.00218]

 d=6 BNV "covered" via simple two-body searches.
 [JH & Takhistov, PRD '20]

Not necessarily the fastest mode!

Two-body nucleon decays (38)

Channel	$\Gamma^{-1}/10^{30}{ m yr}$	Year
$p \to e^+ + \gamma$	41000	2018
$p \to e^+ + \pi^0$	16000	2016
$p \to e^+ + \eta$	10000	2017
$p \to e^+ + \rho^0$	720	2017
$p \to e^+ + \omega$	1600	2017
$p \to e^+ + K^0$	1000	2005
$p \rightarrow e^+ + K^{*,0}$	84	1999
$p \to \mu^+ + \gamma$	21000	2018
$p \to \mu^+ + \pi^0$	7700	2016
$p \to \mu^+ + \eta$	4700	2017
$p \to \mu^+ + \rho^0$	570	2017
$p \to \mu^+ + \omega$	2800	2017
$p \to \mu^+ + K^0$	1600	2012
$p \rightarrow \nu + \pi^+$	390	2013
$p \rightarrow \nu + \rho^+$	162	1999
$p \rightarrow \nu + K^+$	5900	2014
$p \rightarrow \nu + K^{*,+}$	130	2007

Many of these limits are decades old.

$n \to e^- + \pi^+$	65	1988
$n \to e^- + \rho^+$	62	1988
$n \to e^- + K^+$	32	1991
$n \to e^- + K^{*,+}$		
$n \to e^+ + \pi^-$	5300	2017
$n \to e^+ + \rho^-$	217	1999
$n \to e^+ + K^-$	17	1999
$n \to e^+ + K^{*,-}$		
$n \to \mu^- + \pi^+$	49	1988
$\overline{n \to \mu^- + \rho^+}$	7	1988
$n \to \mu^- + K^+$	57	1991
$n \to \mu^+ + \pi^-$	3500	2017
$n \to \mu^+ + \rho^-$	228	1999
$n \to \mu^+ + K^-$	26	1999
$n \to \nu + \gamma$	550	2015
$n \to \nu + \pi^0$	1100	2013
$n \rightarrow \nu + \eta$	158	1999
$n \to \nu + \rho^0$	19	1988
$n \rightarrow \nu + \omega$	108	1999
$n \to \nu + K^0$	130	2005
$n \to \nu + K^{*,0}$	78	1999

[JH & Takhistov, PRD '20]

$\Delta B = \Delta L = 1$ covered?

INT '25

 $U(1)_{\mathsf{B}} \times U(1)_{\mathsf{L}} \times U(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}} \times U(1)_{\mathsf{L}_{\mu}+\mathsf{L}_{\tau}-2\mathsf{L}_{\mathsf{e}}}$

INT '25

Proton decay = lepton flavor violation

Proton decay = lepton flavor violation

Proton decay = lepton flavor violation

 $\Delta B = \Delta L = 1$

Currently being probed: Old results:

Doable:

 $\Delta B = \Delta L = 1$

Currently being probed: Old results: Doable:

[**JH** & Watkins, 2405.18478] $\Delta(L_{\mu}-L_{\tau})$ Better: $\mathbf{p} \rightarrow \ell^+ \ell'^\pm \pi^\mp \nu_\tau$ τ^+ $\rightarrow \overline{p}\mu^+\mu^+$ $\rightarrow \overline{p}\mu^+ e^+$ au^+ $\mu^+\mu^+e^$ p – $\mu^+\pi^0$ $\rightarrow \overline{p}e^{\dagger}$ *p* - $p \rightarrow e^+ \pi^0$ $\Delta(L_{\mu} + L_{\tau} - 2L_e)$ $\rightarrow \overline{p}\mu^+e^$ au - $\tau
ightarrow \overline{p} \pi^0$ $p
ightarrow e^+ e^+ \mu^ \rightarrow \tau \not\models \tau^+$ $\tau \rightarrow \overline{p}e^+\mu^$ pe^+ Better: $\tau \rightarrow \overline{p}e^+e^+\mu^-\mu^$ $p\mu^+ \to \tau^+ \tau^+$ $p \rightarrow \pi^+ \bar{\nu}_{\tau}$ [Marciano, NPB '95] [JH & Watkins, 2405.18478]

 $\Delta B = \Delta L = 1$

$\Delta B = \Delta L = 1$ covered now?

Beyond SMEFT

- So far: SMEFT + " $U(1)_B \times U(1)_L \times U(1)_{L_{\mu}-L_{\tau}} \times U(1)_{L_{\mu}+L_{\tau}-2L_e}$ " to identify potentially dominant BNV.
- Now, find UV completions for BNV operators:
 - Generates a *physically motivated* operator basis;
 - Could have interesting *accidental symmetries*;
 - Useful to have in case of a BNV observation.
- Analogous to UV completions of ΔL=2 Weinberg operator.
 [too many to cite; exhaustive up to d=11: Gargalionis & Volkas, 2009.13537]
- UV completions for all SMEFT operators exist up to d = 8.
 [Li++, 2309.15933]

Opening up d = 6 operators

Leptoquark	spin	representation	Leptoquark	spin	representation
\mathcal{S}_1	0	$(ar{{f 3}},{f 1},1/3)$	\mathcal{S}_3	0	$(\bar{3}, 3, 1/3)$
$ ilde{\mathcal{S}}_1$	0	$(ar{3},1,4/3)$	\mathcal{V}_2	1	$(ar{{f 3}},{f 2},5/6)$
$ar{\mathcal{S}}_1$	0	$(ar{f 3}, {f 1}, -2/3)$	$\tilde{\mathcal{V}}_2$	1	$(\bar{3}, 2, -1/6)$

duQL	$\mathcal{S}_1,\mathcal{V}_2,\widetilde{\mathcal{V}}_2$
$QQu\ell$	$\mathcal{S}_1,\mathcal{V}_2$
QQQL	$\mathcal{S}_1, \mathcal{S}_3$
$duu\ell$	$\mathcal{S}_1, ilde{\mathcal{S}}_1$

[Buchmuller, Ruckl, Weyler, '87; Dorsner++, 1603.04993]

• For example:

$$\begin{split} \mathsf{L}_{\tilde{\mathcal{S}}_{1}} &\supset -\mathsf{m}_{\tilde{\mathcal{S}}_{1}}^{2} |\tilde{\mathcal{S}}_{1}|^{2} + \left(\tilde{y}_{1\,\mathsf{ab}}^{\mathsf{RR}}\,\bar{d}_{\mathsf{R}\,\mathsf{a}}^{\mathsf{C}}\tilde{\mathcal{S}}_{1}^{\mathsf{e}_{\mathsf{R}\,\mathsf{b}}} + \tilde{z}_{1\,\mathsf{ab}}^{\mathsf{RR}}\,\bar{u}_{\mathsf{R}\,\mathsf{a}}^{\mathsf{C}}\tilde{\mathcal{S}}_{1}^{*}\mathsf{u}_{\mathsf{R}\,\mathsf{b}} + \mathrm{h.c.}\right) \\ &\rightarrow \frac{2}{\frac{\mathsf{y}_{1\,\mathsf{ad}}^{\mathsf{RR}}}{\mathsf{m}_{2\,\mathsf{bc}}^{\mathsf{2}}}}{\mathsf{e}^{\alpha\beta\gamma}} \tilde{\mathsf{d}}_{\mathsf{a},\alpha}^{\mathsf{C}}\mathsf{u}_{\mathsf{b},\beta}) (\overline{\mathsf{u}}_{\mathsf{c},\gamma}^{\mathsf{C}}\ell_{\mathsf{d}}) + \mathrm{h.c.} \end{split}$$

• $\tilde{z}_{1 ab}^{RR}$ is antisymmetric \rightarrow charm or top quark BNV!

[Dong++, 1107.3805; Dorsner, Fajfer, Kosnik, 1204.0674]

UV completions shed different light on BNV

- Collect all SMEFT BNV operators, trivial with Sym2Int. [Renato M. Fonseca, 1703.05221 & 1907.12584]
- Exponential growth of "operators" (~field strings):

- Generate all irreducible tree-level topologies.
- Exponential growth:

- For each operator, pick topology and distribute fields.
- Multiply group representations using GroupMath.
- E.g. ddLQHH:

[Renato M. Fonseca, 2011.01764]

- For each operator, pick topology and distribute fields.
- Multiply group representations using GroupMath.
- E.g. ddLQHH:

[Renato M. Fonseca, 2011.01764]

[**JH**, D. Sokhashvili, Thapa, to appear]

- Also include global Lorentz $SU(2)_{left} \times SU(2)_{right}$ for spin.
- Then permute external particles over topology and repeat...

INT '25

Derivative operators

- So far only BNV operators without derivatives. Why?
- More complicated, not always tree-level completion.
- Generically sub-dominant at tree-level:

- Same UV completions, dominant only through finetuning.
- Exception: operators with $HD_{\mu}H$ that vanish without D_{μ} . [Gargalionis & Volkas, 2009.13537]

- Code fast enough to reach $d \sim 15$.
- Similar code developed for $\Delta L=2$ operators. [Gargalionis & Volkas, '21]
- Already revealed some mistakes in literature.
- Can be used to open up **any** (non-derivative) EFT operator.

- Code fast enough to reach $d \sim 15$.
- Similar code developed for $\Delta L=2$ operators. [Gargalionis & Volkas, '21]
- Already revealed some mistakes in literature.
- Can be used to open up **any** (non-derivative) EFT operator.
- Find accidentally protected operators. [Weinberg, '80]
- E.g. add Dirac fermion (3,3,2/3) and vector LQ (3,3,-1/3).
 - Only generates BNV operator QQdeHH (d=8, B=L=1).
 - Could be dominant but *not* protected by symmetry.
 - Gives genuine loop realization of d=6 BNV operator.
 [also discussed in Gargalionis, Herrero-Garcia, Schmidt, 2401.04768] See also talk by Svjetlana Fajfer about BNV loops!

- E.g. add Dirac fermion (3,3,2/3) and vector LQ (3,3,-1/3).
 - Only generates BNV operator QQdeHH (d=8, B=L=1).
 - Could be dominant but *not* protected by symmetry.
 - Gives genuine loop realization of d=6 BNV operator.
 [also discussed in Gargalionis, Herrero-Garcia, Schmidt, 2401.04768] See also talk by Svjetlana Fajfer about BNV loops!

Protected operators

- d > 6 operators could dominate either because we impose a B/L symmetry à la Weinberg or due to UV structure.
- Can make any d=7 or d=8 operator dominant through UV:

 $\mathsf{HHddQL}, \bar{\mathsf{H}\bar{\mathsf{H}}}\mathsf{uuQL}, \mathsf{H\bar{\mathsf{H}}}\mathsf{duQL}, \mathsf{H\bar{\mathsf{H}}}\mathsf{duue}, \mathsf{HHdQQe}, \mathsf{H\bar{\mathsf{H}}}\mathsf{QQQL}, \mathsf{H\bar{\mathsf{H}}}\mathsf{uQQe}$

- Can make most d=9 operators (23/26), e.g.
 ddddde, dddeee, ddueLL, dduuQL, HHHddQe, ...
- Can make *all* 54 d=10 operators, *all* 60 d=11 operators, ...
- More abundant than symmetry-protected operators!
- These either have accidental B/L symmetry or give loop realization of lower-dim operators.

[JH, D. Sokhashvili, Thapa, to appear]

Protected operators

...so many operators, many with multi-particle BNV final states. Can we test all of them?

Full BNV coverage possible?

- Cannot to go through all $\Delta B > 0$ decays:
 - 38 two-body ΔB = 1 modes: N → AB. 36 limits.
 - 76 three-body Δ B = 1 modes: N → ABC. 33 limits.
 - 300 four-body ΔB = 1 modes: N → ABCD. 0 limits.
 - 118 two-body ΔB = 2 modes: NN → AB. 18 limits.
 - 500 three-body ΔB = 2 modes: NN → ABC. 0 limits.
- *Exclusive* searches can reach $t \sim 10^{34}$ yr in Super-K.

Inclusive searches to the rescue!

. . .

Inclusive searches

Current limits from PDG:

 $\Gamma^{-1}(N \rightarrow e + anything) > 0.6 \times 10^{30} \text{ yr}, \text{ [Learned, Reines, Soni, '79]}$ $\Gamma^{-1}(N \rightarrow \mu + \text{anything}) > 12 \times 10^{30} \text{ yr.}$ [Cherry, Deakyne, Lande, Lee,

- 45 years old, improve with new tech!
- Steinberg, Cleveland, '81]
- $p \rightarrow e^+$ + anything in SK could reach 10³² yr, judging by

 $\Gamma^{-1}(p \to e^+ \nu \nu) > 1.7 \times 10^{32} \text{ yr.}$ [Super-K, PRL '14]

- Do inclusive searches for $N \rightarrow \ell/\text{meson} + \text{anything}$.
- Also probes $\Delta B > 1$, light new physics, and dark matter!

Invisible neutron decay

• Special case of inclusive searches:

$$\begin{split} & \Gamma^{-1}(n \rightarrow neutrinos) > 0.58 \times 10^{30} \, \text{yr}, \\ & \Gamma^{-1}(nn \rightarrow neutrinos) > 1.4 \times 10^{30} \, \text{yr}, \\ & \Gamma^{-1}(nnn \rightarrow neutrinos) > 1.8 \times 10^{23} \, \text{yr}, \\ & \Gamma^{-1}(nnnn \rightarrow neutrinos) > 1.4 \times 10^{23} \, \text{yr}. \end{split}$$
 [KamLAND, PRL '06; see also SNO+, PRD '19] (Hazama, Ejiri, Fushimi, Ohsumi, PRC '94]

- Only signature is de-excitation of daughter nucleus. [Ejiri, '93]
- Every $\Delta B = k$ operator gives rise to k neutrons \rightarrow neutrinos.
- Neutrinos carry away arbitrary lepton number & flavor!
- Also probes light new physics and dark matter.
- JUNO can improve KamLAND limit. [JUNO, 2405.17792]
 See also talk by Cailian Jiang!
 [JH & Takhistov, PRD '20]

INT '25

Summary

- BNV nuclear decays probe
 - high scales (10¹⁵ GeV) or
 - high multiplicities (N \rightarrow 15 particles) or
 - high operator dimensions (d~15)! <

- SK/HK,
 DUNE,
 JUNO,
 0vββ exp.?
- Nearly every d≥6 BNV operator could be the starting point, either because of $B/L/L_{\alpha}$ symmetry or UV completion!
- Embarrassment of riches, BNV landscape much more difficult to map than e.g. $\Delta L = 2$ operators.
 - Inclusive searches + few theory-motivated exclusives?
- Still more: light new physics, dark matter induced $\Delta B...$

Time to cast a wider net!

Backup

$p \rightarrow \mu^+ \mu^+ e^-$

- Minimal leptoquark example: $\phi_1 \sim ({f 3}, {f 3}, -2/3), \, \phi_2 \sim ({f 3}, {f 2}, 7/3).$
- $L_{\mu}+2L_{e}-3L_{\tau}$ ensures simple structure $y_{j}\overline{L}_{\mu}\phi_{1}Q_{j}^{c}+f_{j}\overline{u}_{j}\phi_{2}L_{e}+\lambda\phi_{1}^{2}\phi_{2}H$.
- Final $\Delta B=1$ operator: $\frac{1}{\Lambda^6}QQuL_{\mu}L_{\mu}\overline{L}_{e}H$.
- Lattice QCD input: $\langle 0|uud|p \rangle$.

$$\Gamma(\mathbf{p}
ightarrow \mu^+ \mu^+ \mathbf{e}^-) \simeq rac{\langle \mathbf{H}
angle^2 eta^2 \mathbf{m}_{\mathbf{p}}^5}{6144 \pi^3 \Lambda^{12}} \simeq rac{(100 \mathrm{TeV}/\Lambda)^{12}}{10^{33} \mathrm{yr}}$$

[Hambye, **JH**, PRL '18]

Two-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$			
$p \rightarrow e^+ + \gamma$	0	41000 72	$n \to e^- + \pi^+$	2	65 79 (5300* 73)
$p \rightarrow e^+ + \pi^0$	0	16000 24	$n \to e^- + \rho^+$	2	62 79 $(217^*$ 65)
$p \to e^+ + \eta$	0	10000 73	$n \to e^- + K^+$	2	32 <u>62</u>
$p \to e^+ + \rho^0$	0	720 73	$n \to e^- + K^{*,+}$	2	
$p \rightarrow e^+ + \omega$	0	1600 73	$n \to e^+ + \pi^-$	0	5300 <mark>73</mark>
$p \to e^+ + K^0$	0	1000 74	$n \to e^+ + \rho^-$	0	217 <u>65</u>
$p \to e^+ + K^{*,0}$	0	84 65	$n \to e^+ + K^-$	0	17 <u>65</u>
$p \to \mu^+ + \gamma$	0	21000 72	$n \to e^+ + K^{*,-}$	0	
$p \to \mu^+ + \pi^0$	0	7700 24	$n \to \mu^- + \pi^+$	2	49 79 (3500^* 73)
$p \to \mu^+ + \eta$	0	4700 73	$n \to \mu^- + \rho^+$	2	$7 \ \underline{79} \ (228^* \ \underline{65})$
$p o \mu^+ + \rho^0$	0	570 <mark>73</mark>	$n \to \mu^- + K^+$	2	57 <u>62</u>
$p \to \mu^+ + \omega$	0	2800 73	$n \to \mu^+ + \pi^-$	0	3500 <mark>73</mark>
$p \to \mu^+ + K^0$	0	1600 75	$n \to \mu^+ + \rho^-$	0	228 <u>65</u>
$p \rightarrow \nu + \pi^+$	0,2	390 76	$n \to \mu^+ + K^-$	0	26 <u>65</u>
$p \rightarrow \nu + \rho^+$	0,2	162 <mark>65</mark>	$n \rightarrow \nu + \gamma$	0,2	550 <u>28</u>
$p \rightarrow \nu + K^+$	0,2	5900 77	$n \rightarrow \nu + \pi^0$	0,2	1100 <u>76</u>
$p \rightarrow \nu + K^{*,+}$	0,2	130 78	$n \rightarrow \nu + \eta$	0,2	158 <u>65</u>
			$n \rightarrow \nu + \rho^0$	0,2	19 <mark>79</mark>
			$n \rightarrow \nu + \omega$	0,2	108 <u>65</u>
			$n \rightarrow \nu + K^0$	0,2	130 74
[11] Takhio	toy DDD '20	1	$n \rightarrow \nu + K^{*,0}$	0,2	78 65

[JH, Takhistov, PRD '20]

Three-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$p \rightarrow e^- + e^+ + e^+$	0	793 65
$p \rightarrow e^- + e^+ + \mu^+$	0	529 <mark>65</mark>
$p \rightarrow e^+ + e^+ + \mu^-$	0	529 [*] 65
$p \rightarrow e^- + \mu^+ + \mu^+$	0	6 <u>64</u> (359 [*] <u>65</u>)
$p \rightarrow e^+ + \mu^- + \mu^+$	0	359 <mark>65</mark>
$p \rightarrow \mu^- + \mu^+ + \mu^+$	0	675 <mark>65</mark>
$p \rightarrow e^+ + 2\nu$	0,2	170 81
$p \rightarrow \mu^+ + 2\nu$	0,2	220 81
$p \rightarrow e^- + 2\pi^+$	2	30 62 (82* 65)
$p \rightarrow e^- + \pi^+ + \rho^+$	2	
$p \rightarrow e^- + K^+ + \pi^+$	2	75 65
$p \rightarrow e^+ + 2\gamma$	0	100 82 (793* 65)
$p \rightarrow e^+ + \pi^- + \pi^+$	0	82 65
$p \rightarrow e^+ + \rho^- + \pi^+$	0	
$p \rightarrow e^+ + K^- + \pi^+$	0	75 [*] 65
$p \rightarrow e^+ + \pi^- + \rho^+$	0	
$p \rightarrow e^+ + \pi^- + K^+$	0	75 [*] 65
$p \rightarrow e^+ + 2\pi^0$	0	147 65
$p \rightarrow e^+ + \pi^0 + \eta$	0	
$p \rightarrow e^+ + \pi^0 + \rho^0$	0	
$p \rightarrow e^+ + \pi^0 + \omega$	0	
$p \rightarrow e^+ + \pi^0 + K^0$	0	
$p \rightarrow \mu^- + 2\pi^+$	2	17 <u>62</u> (133 [*] <u>65</u>)
$p \rightarrow \mu^- + K^+ + \pi^+$	2	245 <mark>65</mark>
$p \rightarrow \mu^+ + 2\gamma$	0	529 [*] 65
$p \rightarrow \mu^+ + \pi^- + \pi^+$	0	133 65
$p \rightarrow \mu^+ + K^- + \pi^+$	0	245 [*] 65
$p \rightarrow \mu^+ + \pi^- + K^+$	0	245 [*] 65
$p \rightarrow \mu^+ + 2\pi^0$	0	101 65
$p \rightarrow \mu^+ + \pi^0 + \eta$	0	
$p \rightarrow \mu^+ + \pi^0 + K^0$	0	
$p \rightarrow \nu + \pi^+ + \pi^0$	0,2	
$p \rightarrow \nu + \pi^+ + \eta$	0,2	
$p \rightarrow \nu + \pi^+ + \rho^0$	0,2	
$p \rightarrow \nu + \pi^+ + \omega$	0,2	
$p \rightarrow \nu + \pi^+ + K^0$	0,2	
$p \rightarrow \nu + \rho^+ + \pi^0$	0,2	
$p \rightarrow \nu + K^+ + \pi^0$	0.2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$n \rightarrow \nu + e^- + e^+$	0,2	257 <u>65</u>
$n \rightarrow \nu + e^- + \mu^+$	0,2	83 <mark>65</mark>
$n \rightarrow \nu + e^+ + \mu^-$	0,2	83* <mark>65</mark>
$n \rightarrow \nu + \mu^- + \mu^+$	0,2	79 <mark>65</mark>
$n \rightarrow 3\nu$	0,2,4	0.58 83
$n \rightarrow e^- + \pi^+ + \pi^0$	2	29 62 (52^* 65)
$n \to e^- + \pi^+ + \eta$	2	
$n \rightarrow e^- + \pi^+ + \rho^0$	2	
$n \to e^- + \pi^+ + \omega$	2	
$n \rightarrow e^- + \pi^+ + K^0$	2	
$n \rightarrow e^- + \rho^+ + \pi^0$	2	
$n \rightarrow e^- + K^+ + \pi^0$	2	
$n \rightarrow e^+ + \pi^- + \pi^0$	0	52 <u>65</u>
$n \rightarrow e^+ + \pi^- + \eta$	0	
$n \rightarrow e^+ + \pi^- + \rho^0$	0	
$n \rightarrow e^+ + \pi^- + \omega$	0	
$n \rightarrow e^+ + \pi^- + K^0$	0	18 82
$n \rightarrow e^+ + \rho^- + \pi^0$	0	
$n \rightarrow e^+ + K^- + \pi^0$	0	
$n \to \mu^- + \pi^+ + \pi^0$	2	34 62 $(74^*$ 65)
$n \rightarrow \mu^- + \pi^+ + \eta$	2	
$n \rightarrow \mu^- + \pi^+ + K^0$	2	
$n \rightarrow \mu^- + K^+ + \pi^0$	2	
$n \rightarrow \mu^+ + \pi^- + \pi^0$	0	74 <u>65</u>
$n \rightarrow \mu^+ + \pi^- + \eta$	0	
$n \rightarrow \mu^+ + \pi^- + K^0$	0	
$n \rightarrow \mu^+ + K^- + \pi^0$	0	
$n \rightarrow \nu + 2\gamma$	0,2	219 <u>65</u>
$n \rightarrow \nu + \pi^- + \pi^+$	0,2	
$n \rightarrow \nu + \rho^- + \pi^+$	0,2	
$n \rightarrow \nu + K^- + \pi^+$	0,2	
$n \rightarrow \nu + \pi^- + \rho^+$	0,2	
$n \rightarrow \nu + \pi^- + K^+$	0,2	
$n \rightarrow \nu + 2\pi^0$	0,2	
$n \rightarrow \nu + \pi^0 + \eta$	0,2	
$n \rightarrow \nu + \pi^0 + \rho^0$	0,2	
$n \rightarrow \nu + \pi^0 + \omega$	0,2	
$n \rightarrow \nu + \pi^0 + K^0$	0,2	

[JH, Takhistov, PRD '20] Does not include SK's 2020 limits on $p \rightarrow \ell \ell \ell$.

Two-body di-nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pp \rightarrow e^+ + e^+$	0	4200 72
$pp \to \mu^+ + \mu^+$	0	4400 72
$pp \to e^+ + \mu^+$	0	4400 72
$pp \rightarrow e^+ + \tau^+$	0	
$pp \to \pi^+ + \pi^+$	2	72 115
$pp \rightarrow \pi^+ + \rho^+$	2	
$pp \to \pi^+ + K^+$	2	
$pp \to \pi^+ + K^{*,+}$	2	
$pp \rightarrow \rho^+ + \rho^+$	2	
$pp \rightarrow \rho^+ + K^+$	2	
$pp \rightarrow \rho^+ + K^{*,+}$	2	
$pp \to K^+ + K^+$	2	170 116
$pp \rightarrow K^+ + K^{*,+}$	2	
$pp \to K^{*,+} + K^{*,+}$	2	

$nn \rightarrow e^+ + e^-$	2	4200 72
$nn \rightarrow e^+ + \mu^-$	2	4400 72
$nn \rightarrow \mu^+ + e^-$	2	4400 72
$nn \rightarrow \mu^+ + \mu^-$	2	4400 72
$nn \rightarrow e^+ + \tau^-$	2	
$nn \rightarrow \tau^+ + e^-$	2	
$nn \to 2\nu$	0,2,4	1.4 83
$nn \rightarrow 2\gamma$	2	4100 72
$nn \to \gamma + \pi^0$	2	
$nn \to \gamma + \eta$	2	
$nn \to \gamma + \rho^0$	2	
$nn \to \gamma + \omega$	2	
$nn \to \gamma + \eta'$	2	
$nn \to \gamma + K^0$	2	
$nn \to \gamma + K^{*,0}$	2	
$nn \to \gamma + D^0$	2	
$nn \to \gamma + \phi$	2	
$nn \to \pi^- + \pi^+$	2	$0.7 \ \boxed{62} \ (72^* \ \boxed{115})$
$nn \rightarrow \pi^+ + \rho^-$	2	
$nn \rightarrow K^- + \pi^+$	2	
$nn \to K^{*,-} + \pi^+$	2	
$nn \rightarrow \pi^- + \rho^+$	2	
$nn \rightarrow K^+ + \pi^-$	2	
$nn \to K^{*,+} + \pi^-$	2	
$nn \rightarrow 2\pi^0$	2	404 115
$nn \rightarrow \eta + \pi^0$	2	
$nn \rightarrow \pi^0 + \rho^0$	2	
$nn \rightarrow \pi^0 + \omega$	2	
$nn \to \eta' + \pi^0$	2	
$nn \to K^0 + \pi^0$	2	
$nn \to K^{*,0} + \pi^0$	2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$nn \rightarrow \pi^0 + \phi$	2	
$nn \rightarrow 2\eta$	2	
$nn \rightarrow \eta + \rho^0$	2	
$nn \to \eta + \omega$	2	
$nn \to \eta + \eta'$	2	
$nn \rightarrow \eta + K^0$	2	
$nn \to \eta + K^{*,0}$	2	
$nn \to \eta + \phi$	2	
$nn \rightarrow 2\rho^0$	2	
$nn ightarrow ho^0 + \omega$	2	
$nn \to \eta' + \rho^0$	2	
$nn \rightarrow K^0 + \rho^0$	2	
$nn \rightarrow K^{*,0} + \rho^0$	2	
$nn \rightarrow \rho^0 + \phi$	2	
$nn \rightarrow \rho^- + \rho^+$	2	
$nn \rightarrow K^+ + \rho^-$	2	
$nn \rightarrow K^{*,+} + \rho^-$	2	
$nn \rightarrow K^- + \rho^+$	2	
$nn \rightarrow K^{*,-} + \rho^+$	2	
$nn \rightarrow 2\omega$	2	
$nn \to \eta' + \omega$	2	
$nn \rightarrow K^0 + \omega$	2	
$nn \rightarrow K^{*,0} + \omega$	2	
$nn \to \omega + \phi$	2	
$nn \to \eta' + K^0$	2	
$nn \to \eta' + K^{*,0}$	2	
$nn \to K^- + K^+$	2	170^{*} 116
$nn \to K^+ + K^{*,-}$	2	
$nn \to K^- + K^{*,+}$	2	
$nn \rightarrow 2K^0$	2	
$nn \to K^{*,0} + K^0$	2	
$nn \to K^0 + \phi$	2	
$nn \to 2K^{*,0}$	2	
$nn \to K^{*,-} + K^{*,+}$	2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pn \rightarrow e^+ + \nu$	0,2	260 28
$pn \rightarrow \mu^+ + \nu$	0,2	200 28
$pn \rightarrow \tau^+ + \nu$	0,2	29 28
$pn \rightarrow \gamma + \pi^+$	2	
$pn \rightarrow \gamma + \rho^+$	2	
$pn \to \gamma + K^+$	2	
$pn \to \gamma + K^{*,+}$	2	
$pn \rightarrow \gamma + D^+$	2	
$pn \to \pi^+ + \pi^0$	2	170 115
$pn \rightarrow \eta + \pi^+$	2	
$pn \rightarrow \pi^+ + \rho^0$	2	
$pn \to \pi^+ + \omega$	2	
$pn \rightarrow \eta' + \pi^+$	2	
$pn \rightarrow K^0 + \pi^+$	2	
$pn \rightarrow K^{*,0} + \pi^+$	2	
$pn \rightarrow \pi^+ + \phi$	2	
$pn \rightarrow \pi^0 + \rho^+$	2	
$pn \rightarrow K^+ + \pi^0$	2	
$pn \rightarrow K^{*,+} + \pi^0$	2	
$pn \rightarrow \eta + \rho^+$	2	
$pn \rightarrow \eta + K^+$	2	
$pn \rightarrow \eta + K^{*,+}$	2	
$pn \rightarrow \rho^+ + \rho^0$	2	
$pn \rightarrow K^+ + \rho^0$	2	
$pn \to K^{*,+} + \rho^0$	2	
$pn \rightarrow \rho^+ + \omega$	2	
$pn \to \eta' + \rho^+$	2	
$pn \rightarrow K^0 + \rho^+$	2	
$pn \to K^{*,0} + \rho^+$	2	
$pn \rightarrow \rho^+ + \phi$	2	
$pn \to K^+ + \omega$	2	
$pn \to K^{*,+} + \omega$	2	
$pn \to \eta' + K^+$	2	
$pn \to \eta' + K^{*,+}$	2	
$pn \to K^+ + K^0$	2	
$pn \to K^+ + K^{*,0}$	2	
$pn \to K^+ + \phi$	2	
$pn \to K^{*,+} + K^0$	2	
$pn \rightarrow K^{*,+} + K^{*,0}$	2	

[JH, Takhistov, PRD '20]

INT '25

$ppp \ \rightarrow \ e^{+}\pi^{+}\pi^{+}$

 e^{c} ν^{c} u^{c} d^{c} l Q H Symmetry Z_6 3 6 5 5 1 2 1 $\mathbb{Z}_6 \subset \mathsf{U}(1)_{2\mathsf{Y}-\mathsf{B}+3\mathsf{L}}$ [Babu, Gogoladze, Wang, '03] allows for d = 15 $\Delta B = 3\Delta L = 3$ operators $\frac{1}{\Lambda^{11}}Q^5d^4\ell, \ldots$ • ppp $\rightarrow e^+\pi^+\pi^+$, ppn $\rightarrow e^+\pi^+$, pnn $\rightarrow e^+\pi^0$, nn $\rightarrow \overline{n}\overline{\nu}, \ldots$ ⁷⁶Ge • $\tau(\text{pnn} \rightarrow \text{e}^+\pi^0) \simeq 3 \times 10^{33} \text{ yr } \left(\frac{\Lambda}{100 \text{ GeV}}\right)^{22}$. • Limits: 2pn $\tau(^{73}\text{Ge}(\text{pnn}) \rightarrow ^{70}\text{Gae}^+\pi^0) > 7 \times 10^{23} \text{ yr},$ 2np τ (⁷⁶Ge(ppn) \rightarrow ⁷³Zn e⁺ π ⁺) > 5 × 10²⁵ yr, $\tau(^{76}\text{Ge}(\text{ppp}) \rightarrow ^{73}\text{Cue}^+\pi^+\pi^+) > 5 \times 10^{25} \text{ yr}, \dots$ Q. 4290 [Majorana Demonstrator, PRD '19; see also EXO-200, '18] 0.499 s 1/2- 4 66

SK, JUNO, DUNE, HK?

 $\begin{aligned} \mathcal{O}_{7,(1,-1)}^1 &\equiv \bar{H}ddQ\bar{e} \,, \\ \mathcal{O}_{7,(1,-1)}^2 &\equiv \bar{H}dQQ\bar{L} \,, \\ \mathcal{O}_{7,(1,-1)}^3 &\equiv \bar{H}ddu\bar{L} \,, \\ \mathcal{O}_{7,(1,-1)}^4 &\equiv Hddd\bar{L} \end{aligned}$

 $\mathcal{O}_{8,(1,1)}^{1} \equiv HHddQL \,,$ $\mathcal{O}^2_{8,\,(1,1)} \equiv HHdQQe\,,$ $\mathcal{O}_{8,(1,1)}^3 \equiv \bar{H}\bar{H}uuQL\,,$ $\mathcal{O}_{8,(1,1)}^4 \equiv H\bar{H}QQQL\,,$ $\mathcal{O}_{8,\,(1,1)}^5 \equiv H\bar{H}duQL\,,$ $\mathcal{O}_{8,\,(1,1)}^6 \equiv H\bar{H}uQQe\,,$ $\mathcal{O}^7_{8,\,(1,1)} \equiv H\bar{H}duue\,,$

INT '25

 $\mathcal{O}_{9,(1,-1)}^1 \equiv dddd\bar{d}\bar{e}\,,$ $\mathcal{O}^2_{9,\,(1,-1)} \equiv ddde\bar{e}\bar{e}\,,$ $\mathcal{O}^3_{9,\,(1,-1)} \equiv dddQ\bar{Q}\bar{e}\,,$ $\mathcal{O}_{9,\,(1,-1)}^4 \equiv dd\bar{u}QQ\bar{e}\,,$ $\mathcal{O}_{9,\,(1,-1)}^5 \equiv dddu\bar{u}\bar{e}\,,$ $\mathcal{O}_{9,\,(1,-1)}^6 \equiv ddd\bar{d}Q\bar{L}\,,$ $\mathcal{O}^7_{9,\,(1,-1)} \equiv ddd\bar{e}L\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^8 \equiv ddQ e\bar{e}\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^9 \equiv ddQL\bar{L}\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^{10} \equiv dQ Q e \bar{L} \bar{L} \,,$ $\mathcal{O}_{9,(1,-1)}^{11} \equiv ddue\bar{L}\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^{12} \equiv ddQQ\bar{Q}\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^{13} \equiv dddu \bar{Q} \bar{L} \,,$ $\mathcal{O}_{9,(1,-1)}^{14} \equiv d\bar{u}QQQ\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^{15} \equiv ddu\bar{u}Q\bar{L}\,,$

 $\mathcal{O}_{9,(1,-1)}^{39} \equiv H\bar{H}\bar{H}ddQ\bar{e}\,,$ $\mathcal{O}_{9,(1,-1)}^{40} \equiv H\bar{H}\bar{H}dQQ\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^{41} \equiv H\bar{H}\bar{H}ddu\bar{L}\,,$ $\mathcal{O}_{9,(1,-1)}^{42} \equiv HH\bar{H}ddd\bar{L}\,,$ $\mathcal{O}^{43}_{9,\,(1,-1)} \equiv \bar{H}\bar{H}\bar{H}QQQ\bar{e}\,,$ $\mathcal{O}_{9,(1,-1)}^{44} \equiv \bar{H}\bar{H}\bar{H}uQQ\bar{L}\,,$ $\mathcal{O}_{9,(1,3)}^1 \equiv uuQLLL\,,$ $\mathcal{O}_{9,\,(1,3)}^2 \equiv uuueLL\,,$ $\mathcal{O}_{9,(2,0)}^1 \equiv ddQQQQQ\,,$ $\mathcal{O}_{9,(2,0)}^2 \equiv ddduQQ\,,$ $\mathcal{O}^3_{9,(2,0)} \equiv dddduu$

$$\begin{aligned} &\mathcal{O}_{10,(1,1)}^{1} \equiv Hdd\bar{d}QQL \,, \quad \mathcal{O}_{10,(1,1)}^{16} \equiv \bar{H}duQ\bar{e}LL \,, \quad \mathcal{O}_{10,(1,1)}^{31} \equiv HdQQLL\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{46} \equiv Hdu\bar{u}QQ \,, \\ &\mathcal{O}_{10,(1,1)}^{2} \equiv Hd\bar{d}QQQe \,, \quad \mathcal{O}_{10,(1,1)}^{17} \equiv \bar{H}uQQe\bar{e}L \,, \quad \mathcal{O}_{10,(1,1)}^{32} \equiv HQQQeL\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{93} \equiv HHH\bar{H}ddQL \,, \\ &\mathcal{O}_{10,(1,1)}^{3} \equiv Hdd\bar{d}uL \,, \quad \mathcal{O}_{10,(1,1)}^{18} \equiv \bar{H}duue\bar{e}L \,, \quad \mathcal{O}_{10,(1,1)}^{33} \equiv HduLL\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{95} \equiv HHH\bar{H}\bar{H}dQQe \,, \\ &\mathcal{O}_{10,(1,1)}^{40} \equiv Hdd\bar{d}uQe \,, \quad \mathcal{O}_{10,(1,1)}^{19} \equiv \bar{H}uuQee\bar{e} \,, \quad \mathcal{O}_{10,(1,1)}^{31} \equiv HduQeL\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{95} \equiv H\bar{H}\bar{H}\bar{H}\bar{H}uuQL \,, \\ &\mathcal{O}_{10,(1,1)}^{5} \equiv HddQ\bar{e}LL \,, \quad \mathcal{O}_{10,(1,1)}^{21} \equiv \bar{H}uuQeL\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{36} \equiv HduQQ\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{97} \equiv HH\bar{H}\bar{H}\bar{H}duQL \,, \\ &\mathcal{O}_{10,(1,1)}^{7} \equiv HdQQe\bar{e}L \,, \quad \mathcal{O}_{10,(1,1)}^{21} \equiv \bar{H}uuQeL\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{37} \equiv HdQQQ\bar{Q}L \,, \quad \mathcal{O}_{10,(1,1)}^{99} \equiv HH\bar{H}\bar{H}\bar{H}uQQe \,, \\ &\mathcal{O}_{10,(1,1)}^{7} \equiv Hdue\bar{e}L \,, \quad \mathcal{O}_{10,(1,1)}^{221} \equiv \bar{H}uuQeL\bar{L} \,, \quad \mathcal{O}_{10,(1,1)}^{37} \equiv HdQQQ\bar{Q}\bar{Q} \,, \quad \mathcal{O}_{10,(1,1)}^{99} \equiv HH\bar{H}\bar{H}\bar{H}uQQe \,, \\ &\mathcal{O}_{10,(1,1)}^{91} \equiv Hdue\bar{e}L \,, \quad \mathcal{O}_{10,(1,1)}^{221} \equiv \bar{H}uuQQ\bar{Q}\bar{Q} \,, \quad \mathcal{O}_{10,(1,1)}^{31} \equiv Hd\bar{Q}\bar{Q}\bar{Q}\bar{Q} \,, \\ &\mathcal{O}_{10,(1,1)}^{91} \equiv Hdue\bar{e}L \,, \quad \mathcal{O}_{10,(1,1)}^{221} \equiv \bar{H}uQQ\bar{Q}\bar{Q}L \,, \quad \mathcal{O}_{10,(1,1)}^{31} \equiv H\bar{H}\bar{H}\bar{H}\bar{d}uue \,, \\ &\mathcal{O}_{10,(1,1)}^{91} \equiv H\bar{d}\bar{Q}\bar{Q}\bar{Q}\bar{Q}L \,, \quad \mathcal{O}_{10,(1,1)}^{321} \equiv \bar{H}\bar{d}\bar{Q}\bar{Q}\bar{Q}\bar{Q} \,, \quad \mathcal{O}_{10,(1,1)}^{31} \equiv \bar{H}\bar{d}\bar{d}\bar{Q}\bar{Q}\bar{Q} \,, \\ &\mathcal{O}_{10,(1,1)}^{11} \equiv \bar{H}\bar{d}\bar{d}\bar{Q}\bar{Q}\bar{Q}L \,, \quad \mathcal{O}_{10,(1,1)}^{261} \equiv \bar{H}\bar{d}\bar{Q}\bar{Q}\bar{Q}\bar{Q} \,, \quad \mathcal{O}_{10,(1,1)}^{31} \equiv \bar{H}\bar{d}\bar{d}\bar{Q}\bar{Q}\bar{Q} \,, \\ &\mathcal{O}_{10,(1,1)}^{11} \equiv \bar{H}\bar{d}\bar{d}\bar{Q}\bar{Q}\bar{Q} \,, \quad \mathcal{O}_{10,(1,1)}^{321} \equiv \bar{H}\bar{d}\bar{Q}\bar{Q}\bar{Q}\bar{Q} \,, \\ &\mathcal{O}_{10,(1,1)}^{11} \equiv \bar{H}\bar{d}\bar{d}\bar{Q}\bar{Q}\bar{Q} \,, \quad \mathcal{O}_{10,(1,1)}^{321} \equiv \bar{H}\bar{d}\bar{Q}\bar{Q}\bar{Q} \,, \\ &\mathcal{O}_{10,(1,1)}^{11} \equiv \bar{H}\bar{d}\bar{d}\bar{Q}\bar{Q}\bar{Q} \,, \quad \mathcal{O}_{10,(1,1)}^{31} \equiv \bar{H}\bar{d}\bar{Q$$

INT '25