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Quarkonium: charmonium and bottomonium

m(J/w(1S)) = 3.097 GeV m(Y(1S)) = 9.460 GeV

mw(2S)) = 3.686 GeV m(Y(2S)) = 10.023 GeV
m(Y(3S)) = 10.355 GeV

The (vacuum) decay widths of these quarkonium states satisfy
I'QQ), - X) < TQGP
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* Heavy quarks (HQ) and quarkonia are b
amongst the most informative probes of QGP. Xb(lp) J
 They are produced in the initial hal_rd
fﬁ:ittle;;gg,riggsges\./er fully thermalize dueto 5, 41y, T/y(1S) ] )
» To interpret the full wealth of data stemming 200 MeV % (1P) J )

from b and ¢ quarks in heavy-ion collisions,
we need a precise theoretical understanding (
of heavy quarks in a thermal medium.

Note that the decay rate of states with a single b, ¢ quark will be much smaller

than Téép ~ 20MeV, as they proce5ed through electroweak interactions.



Quarkonium suppression
results from the CMS collaboration (2303.17026)
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Quarkonium suppression

comparison to some models (2011.05758)
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What are the energy scales of
quarkonia?




M: heavy quark mass
v: typical relative velocity

—
AFE ~ 500 MeV

~ Mv?

Mv(cc) ~ 1 GeV
Myv(bb) ~ 1.5 GeV

—
M(c) ~ 1.5GeV




M: heavy quark mass T ~ 200 MeV

v: typical relative velocity T—l ~ | tm

—
AFE ~ 500 MeV

~ Mv?

Mv(cc) ~ 1 GeV
Myv(bb) ~ 1.5 GeV

—
M(c) ~ 1.5GeV




—_—

T-!' ~1fm e
T ~ 200 MeV AE =~ 500 MeV
~ Mv?

< Mv(cc) ~ 1 GeV
N\ Myv(bb) ~ 1.5 GeV

— —

i M(c) ~ 1.5GeV
M(b) ~ 4.5 GeV
=]




—

77! ~1fm —
T ~ 200 MeV. AE ~ 500 MeV
~ Mv?
@ Mv(cc) ~ 1 GeV
= Myv(bb) ~ 1.5 GeV
|—|

M(c) ~ 1.5GeV
M(b) ~ 4.5 GeV

—> For bl_9, there Is a clear hiergrchy of scales
M>Mv>T



Let’s write an EFT for this system

(The longer way to go through this would be QCD —> NRQCD —> pNRQCD)

N. Brambilla, A. Pineda, J. Soto, and A. Vairo, hep-ph/9707481, hep-ph/9907240, hep-ph/0410047
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The zeroth order Lagrangian
» At zeroth order on rT' ~ T/(Mv), the Lagrangian density is

O —
Z E)l\)IRQCD(X’ 1) = Lyighiqep(Xs ) + ZLpp(X, 1)

where

1 _ .
Zlight QCD = — ZF,Z/F”W T Z Vi (lﬁ — m,) Yr
Ie{u,d,s}

Lop = [d3rTrC [S%(i0, — H,)S + O7(iD, — H,)0)].

» The operators § = S(X, r, 1), O = T?O“(X, r, t) are annihilation operators for
singlet and octet Q) configurations, respectively.
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[*] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047

Interactions from a multipole expansion
and the EFT that describes them (pNRQCD [*])

k /
color singlet; g @ color octet;
“b d” stat “‘unb d” stat
ound” state v ‘ ’ v unbound” state

(Q0), + g «— (QQ), = H, = S'rgE‘O"+h.c.




Analog situation

transitions in Hydrogen
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[*] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047

Interactions from a multipole expansion
and the EFT that describes them (pNRQCD [*])

k /
color singlet; g @ color octet;
“b d” stat “‘unb d” stat
ound” state v ‘ ’ v unbound” state

(Q0), + g «— (QQ), = H, = S'rgE‘O"+h.c.




[*] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047

Interactions from a multipole expansion
and the EFT that describes them (pNRQCD [*])

/

C These mteractlons can
| (re)combine and
dissociate quarkonium as |
it propagates in the QGP |

> Crucial to predict final
& | abundances in HICs!
— W ' (one also needs £ l(T)) ‘

(Q0), + g — (Q0), = H —ST gE“0“+h C.

18




["] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047 X. Yao, hep-ph/2102.01736

Time scales of quarkonia

Transitions between

. Interaction with the QGP
quarkonium energy levels . .
(the system) environment (the environment)
unbound
25 2 .
1S L B o L
1 17 A (Mv)?
— ~ AE ~ Mv?

Tg

gPNRQCD — 3light QCD T Jd3rTrcolor [ST(iaO o HS)S T OT(iDO o HO)O

+V,(O'r - gES+h.c. ) ZBOT{r . gE, O} + -
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Time scales of quarkonia

Transitions between

. Interaction with the QGP
quarkonium energy levels . .
environment (the environment)
(the system)
unbound
2S
1S
1 2
— ~ AL ~ My

gPNRQCD — 3light QCD T Jd3rTrcolor [ST(iaO - HS)S T OT(;QQE _fmg?a

+V,(Q'r-gES+h.c.

e T = - - L s e e s ——
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Time scales of quarkonia

Transitions between
quarkonium energy levels
(the system)

Interaction with the QGP
environment (the environment)

unbound




Quarkonium as an open quantum system

Isolating the observables of interest

» Given an initial density matrix p,,(f = 0), quarkonium coupled with the QGP
evolves as

Prot() = U(0)po(t = 0) UT(I).

 We will only be interested in describing the evolution of quarkonium and its
final state abundances

= poo(1) = Trogp |U@p(t = OUT (1)

« Then, one derives an evolution equation for pQQ(t), assuming that at the initial
time we have p,(f = 0) = pyp(t = 0) ® e Hacr'l | F OGP -

23



What do we need to calculate?



What do we need to calculate from QFT?

Non-perturbative generalization of Peskin-Bhanot process

The singlet-octet transitions
are governed by two . >

generalized gluon
distributions (GGDs):

* Dissociation:
- %

(8 17 (@)

* (Re)combination: g
[g&ij_]>(a)) % ( /




See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions

for quarkonia transport (837 123 (1 11, Ry, R)) = (W 1B, (R, 1)) (B, Ry, )W) )
(Ri,+00)  (Ra,+00) !
< > R
¢ E; (R1,11)
A ®
Eig (R27 t2)
[
Eig (R27 tQ)
@
Eil (R17 tl)
- R

a a R 4— R '_
[g‘;i;r - (0, 1, Ry, Ry) = <(Ei2(R29 W) (WlEil(Rl,tl))G >T (R1,—00)  (Rz,—00)



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions

for quarkonia transport

(Rla _|_OO) (RQa _I_OO)

>

Eig (R27 tQ)

[
Eil (Rl . tl)

“bound” state:
color singlet

> R
(517 (0, 11, Ry, Ry) = ((E, Ry, )W) (W1 E; (R, 1))



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions

for quarkonia transport

(R1,+00)  (R2,+00)
< g l.

A
{
A g “unbound” state:
g color octet
medium-induced
® transition
Eig (R27 tQ)
® @ “bound” state:

E;, (Ri,t1) g color singlet

1 > R

(517 (0, 11, Ry, Ry) = ((E, Ry, )W) (W1 E; (R, 1))



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

the “unbound”

Generalized Gluon Dlstrlbutlons ,
for quarkonia transport §§K@§D\ ifjf,er 2?};?32
m and interacts

(R1, +00) (Rs, +00) with the

- — f m medium

<

>

E g “unbound” state:
L ©

color octet

m medium-induced
transition
o “bound” state:
Eil (R17 tl) gg '

color singlet
-1 > 7

(2517 (0, 11, Ry, Ry) = ((E, Ry, )W) (W1 E; (R, 1))

Eig (R27 tQ)




See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Dlstrlbutlons

the “unbound”
state carries

for quarkonla transport ;;fcﬁm\ color charge
| - i im and interacts
(R Summlng the one- gluon msertlons along the ¥ with the
" octet QQ path generates a Wilson line: iim medium
" t2 db .; i E
4 ab  _ P - C ! “unbound” state:
X A
%[tz tl] C p ng' dt (t) ad] ! g@ COlOr octet
t
Tm medium-induced
® transition
Eig (R27 tQ)
® “bound” state:
E;, (Ri,t1) gg color singlet
1 > R

(841 17 (1, 11, Ry, Ry) = <(Ei2(R2’ fz)Wz)a(WlEil(Rla tl))oa>T



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Dlstrlbutlons

the “unbound”
state carries

for quarkonla transport ggm color charge
' X and interacts
(R Summlng the one- gluon msertlons along the } § §m with the
| octet OQ path generates a Wilson line: iim medium
ab 1 ¥
t b %
¢ ab  _ - C Tf : “unbound” state:
%[tz 6] = P €Xp 34 J't th (t) adj \‘i g@ color octet
1
m medium-induced
" (;{ ) transition
19 29 U2
® “bound” state:
E;, (Ri,t1) gg color singlet
-1 > R
A g R,.R)=((E.(R,,t, )W) (W E: (R
(817 (1, 11, Ry, Ry) ((E,(Ry, 1) ) (7 \E ( 1af1)) >



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

the “unbound”

Generalized Gluon Dlstrlbutlons ,
for quarkonia transport ggrcmn\ ifjf,er 2?};?32
m and interacts

(R1, +00) (Rs, +00) with the

. } [ m medium

yy > A
y the correlation X
A functlop associated : a “unbound” state:
to this process g color octet
?(m medium-induced
b transition
Eig (R27 t2)
® g “bound” state:
E;, (Ri,t1) g color singlet
-1 > R

(841 17 (1, 11, Ry, Ry) = <(Ei2(R2’ tZ)W2>a(W1Ei1(R19 tl))2a>T



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions

for quarkonia transport (837 123 (1 11, Ry, R)) = (W 1B, (R, 1)) (B, Ry, )W) )
!
- R
/ Eil (R17 tl)
A ®
Eig (R27 t2)
[

“unbound” state:
color octet

the “unbound” ;
state carries OB
color charge X
and interacts 5 m . <
with the (D (R1,—00)  (R2,—00)

medium 33




See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions

for quarkonia transport (837 123 (1 11, Ry, R)) = (W 1B, (R, 1)) (B, Ry, )W) )
t
1 > R
l' Eil (R17 tl)
A ®

medium-induced
transition

t(m Fi, (1:{2, to)

“unbound” state:
color octet

the “unbound” ;
state carries OB
color charge X
and interacts 5 m . Y
with the (D (R1,—00)  (R2,—00)

medium X 34




See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions

for quarkonia transport [8ay 123, (0 1. R R)) = ( (72 E, (R, 1)) (E; Ry )W) )
v
“bound” state:
color singlet g@ f g
l' Eil (R17 tl)
A o

medium-induced
transition

tm By (R o)
P
“unbound” state: @

color octet

the “unbound” ;
state carries OB
color charge X
and interacts 5 m . Y
with the (D (R1,—00)  (R2,—00)

medium X 35




See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions

for quarkonia transport [8ay 123, (0 1. R R)) = ( (72 E, (R, 1)) (E; Ry )W) )
v
“bound” state:
color singlet g@ f g
l' Eil (R17 tl)
A o

medium-induced
transition

t@@ Fu i
[
“unbound” state: e
color octet g: v
the “unbound” ¥
state carries m the correlation

color charge | function associated
and interacts ! m to this process . —

with the fCH&D\ (R1,—00)  (Rg,—00)

medium 36




(84 17(D)

Generalized Gluon Distributions e,
as they appear in transport equations

N PO
The GGDs that we will discuss from now on have R, = R,: H

gZT ii - Eb(t)
F a me b '

E' t t,() E O - e

3Nc < l() ( ) l( )>T ‘Eb(ﬁ) 3

T ii
827 17(0) = SoE (WA= = 00, = 00) W= 00, DEXDEAO)W(0, = o0)) |

They encode non-perturbative information about how the thermal QGP Ea(o)‘éé

environment mediates transitions between singlet and octet states. ¥ ;;W[cb ]
. —OO,t

(8,417 (D) =

Wil i
,—oo]i i
(with X. Yao) 2306.13127 ¥

dc Lo
37 W[—oo—zﬂ,—oo] B



(with X. Yao) 2306.13127

Thermal equilibrium

KMS conditions and a spectral function

 The GGDs satisfy a Kubo-Martin-Schwinger relation

[gadJ () = e’ [gadj 7 (—w)

which means detailed balance (and thus thermalization) can be achieved
between dissociation and (re)combination.

* This motivates the introduction of a spectral function

adJ (a)) — (1 — e—a)/T) [gadJ >(a)) = [gadJ >(a)) — [gadJ ]>( )

which encodes all of the information in the GGDs.
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A comparison with heavy quark
diffusion

Different physics with the same building blocks



Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

L,

 The heavy quark diffusion
coefficient Is also defined from a
correlation of chromoelectric fields:

<TI‘ [(U[oo,t]Ei(t) U[t,—oo])df
X (Ujoo,01EA(O)U [(),—oo])] )

* |t reflects the typical momentum

transfer (p?) received from
*kicks” from the medium.

heavy quark

40



Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion
coefficient Is also defined from a
correlation of chromoelectric fields:

(TI‘ [( U[oo,t]Ei(t) U[t,—oo]yf
X (Ujoo,01EA(O)U [0,—001)] )

* |t reflects the typical momentum

transfer (p?) received from
*kicks” from the medium.

41

L,

the heavy
quark carries
color charge
and interacts
with the
medium

heavy quark



Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion
coefficient Is also defined from a

correlation of chromoelectric fields:

<TI‘ [( U[oo,t]Ei(t) U[t,—oo]yf
X (Ujoo,01EA(O)U [0,—001)] )

* |t reflects the typical momentum

transfer (p?) received from
*kicks” from the medium.

L,

D

1

1

1

1
42 9

“kick” from the
QGP: momentum
transfer Is effected

the heavy
quark carries
color charge
and interacts
with the
medium

heavy quark



Heavy quark diffusion : R

an analogous picture r, (@D quark carries

- color charge

and interacts
with the
medium

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion
coefficient Is also defined from a
correlation of chromoelectric fields:

(Tr|(Ugoo nEOUj; _o))'

“kick” from the
QGP: momentum
transfer Is effected

the heavy

X (U[oo,O]Ei(O) U[O,—oo])] > quark carries

5 color charge

* |t reflects the typical momentum m and _itnhtet[]acts
transfer (p?) received from m edium

“kicks” from the medium.

heavy quark
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see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

The difference in pQCD

operator ordering is crucial!

1 00 Perturbatively, one

can isolate the
difference between
the correlators to
these diagrams.

() ‘N2C,.T
S A Ap(@) = ==L o]
Y @, :

I O g
: C

O

AL

44

BS and X. Yao, hep-ph/2205.04477
Phys. Rev. Lett. 130, 052302




see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

The difference in pQCD

operator ordering is crucial!

[ —

Perturbatively, one
can Isolate the
difference between
the correlators to
these diagrams.
g4N§CFTF ‘3

Ap(w) = ym | @

The difference is due
to different operator
orderings (different

possible gluon
insertions).

45

BS and X. Yao, hep-ph/2205.04477
Phys. Rev. Lett. 130, 052302




see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064 BS and X. Yao, hep-ph/2205.04477

The difference in pQCD

operator ordering is crucial!

'y QQ Perturbatively, one 0,

can isolate the
difference between
the correlators to
¥ these diagrams.
” 4a72
E ". ‘ Ap(w) = 8 Nl | w ‘3
¥ ® : 4T
f (O ¥ The difference is due
to different operator
orderings (different : :
( possible gluon ’ v

! = The dynamics of the color state is crucial! |



How does this difference show
up non-perturbatively?




The difference, qualitatively

winding around the Schwinger-Keldysh contour

' %0 t=1.—if
DI=1—1p l
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The difference, qualitatively

winding around the Schwinger-Keldysh contour

 The heavy quark Is present at all —
times: -

o |t is part of the construction of

the thermal state of the QGP. RN

o The Wilson line, which enforces i U
the Gauss’ law constraint due to E
the point charge, is also present
on the Euclidean segment.
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t=1;—if

The difference, qualitatively

winding around the Schwinger-Keldysh contour
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Re{r}

* |n this correlator, the heavy quark
pair is present at all times, but it is
only color-charged for a finite time:

O [t is not part of the construction
of the thermal state of the QGP.

o The adjoint Wilson line,
representing the propagation of
unbound quarkonium (in the
adjoint representation), is only
present on the real-time segment.



A Lattice QCD perspective

heavy quark diffusion

 The heavy quark diffusion coefficient has been studied by evaluating the
following correlation function (e.g., Altenkort et al. 2009.13553, 2302.08501;
Leino et al. 2212.10941):

1 (ReTr [U(B, 1) gE(7) U(z,0) gEA0)] )
3 (ReTr [U(B,0)]) |

 The heavy quark diffusion coefficient is extracted by reconstructing the
corresponding spectral function (Caron-Huot et al. 0901.1195):

Gfund(T) — =

too 1., cosh(a)(f —— )

Gung(7) = J _.—a)ZTpfund(a)) , Kfgng = 1M —pp (@) .
0 AT smh(ﬁ) w—0
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A Lattice QCD perspective
quarkonium transport (2306.13127)

* [he quarkonium correlator in Iimaginary time has received less attention:

I8 :
3N.

* The transport coefficients can also be extracted by spectral reconstruction:

Gadj (7) = <E,-a(T YW “(z ,O)Eib(()) > -

T
P @) gy = lim —— | k(@) - plif(~w)]|.

G.i(0) rm do (057 = 7)) |
" o 27 2sinh(2)

. Main new ingredient: the spectral function patl;“(a)) is not odd under
@w — — , because G,4;(7) is not invariant under 7 — 1/7 — 7.
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How does one use the GGDs?



Transport equations for quarkonia
in the semiclassical limit (Mehen and Yao, 2009.02408)

* One can derive a Boltzmann equation for the bound state density, namely
dn,(t, X)
dt

* The transition rates are given by

= — T4y (1, X) + TOM(¢, x) .

Patﬁr( — |Egl| — P%el/M)
I —exp|(|Eg| + p2/M)IT|

] d°p
diss . rel 2
s = | 2Ly 1, )

&p... &°p,. pait (= | Eg| — pra/M)
rom ) = | g |1, ) P

(2m)° (2r)

for.
exp| — (| Eg| + p2y/M)IT| — 1<



Transport equations for quarkonia

in the Brownian motion limit (Brambilla et al. 2302.11826 and previous work)

 Quantum Brownian motion limit: My > T > My~

dpy(t 1
p;t( ) = i[H + Ay py(0)] + K (LapsOL]; = S{Li L5} )

I8 -
3N,

where K,gi + Yagi = J dt (T Ef’(t)%?fo]Eib (0)).

e Note that
I8 -
3N,

o0

[ dt (T EXOW ff()]Eib(O» — 2[ dt [g;ﬁ“ > (1) .
P 0
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| et’s calculate!




What is the result of an NLO calculation?
2107.03945, 2306.13127

+ One finds, up to O(g*)

T-9%(N? — D> 2 1IN. N 2
pri(w) = pg (N — Do 42 c_ )L
ady 37N, (27)2 12 6 Y.

149  7* 7#° SN,
+N., —— 4+ —sgn(w) | —— + F(w/T)
36 6 2 9




What is the result of an NLO calculation?
2107.03945, 2306.13127

+ One finds, up to O(g*)

149 7Z'2+7Z'2 (@) 5Nf+F( )
—— +—sgn(w) | —— 0
‘\ 36 6  2° 9
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What is the result of an NLO calculation?
2107.03945, 2306.13127

+ One finds, up to O(g*)

LN, 149 = = () 5Nf+F( /T)
— + —sgn(w) | —— 0,
36 6 | 200 9

 For comparison, the spectral function for heavy quark diffusion IS: < 1006.0867 fhep-phi

Teg*(N; — D’ 2 [ 1IN, N : 149 7*\ >SN
Prand(@) = pg Ne — Do {1 | S - ! )i [ £— + N, ~ ! ] F(o/T) }
3zN.. (27)? 12 6 4w? 36 6 9
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What is the result of an NLO calculation?
2107.03945, 2306.13127

+ One finds, up to O(g*)

LN, 149 = = () 5Nf+F( /T)
— + —sgn(w) | —— 0,
36 6 | 200 9

 For comparison, the spectral function for heavy quark diffusion IS: < 1006.0867 fhep-phi

Teg*(N; — D’ 2 [ 1IN, N : 149 7*\ >SN
Prand(@) = pg Ne — Do {1 | S - ! )i [ £— + N, ~ ! ] F(o/T) }
3zN.. (27)? 12 6 4w? 36 6 9
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This difference has an effect in transport!

difference between y,; and ¥y,

The y transport coefficients

fiund = f—;clmj 4 (TrdU(= o0, DEMUGOEOUO, = o)1) .
8 2TF -
Vadi = N, ImJ ds <9E14(t)W“b(t,O)Elb(O)>T,
differ at @(g4): (first pcicr)\ted out by Eller, Ghiglieri and Moore in 1903.08064)

* dw 16£(3)

AY = Ytund — Yad =[ Tlo ng(|w|)Ap(w) = 3
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(with T. Binder, K. Mukaida and X. Yao) 2107.03945

P adj T in perturbation theory

varying the coupling 6 7T P;gi(w)
g T2 w Crk
. Let’s look at p;a;“(a)) in the L0000 -
regime where we trust 8000 -
perturbation theory: _ — 9(to) = 2.0
jw | > T(~ Agcp)- o000 — 9(to) = 1.0
 We see that as we dial up the 4000 9(ko) =
coupling from zero, an 5000
asymmetry develops between :
positive and negative 0
frequencies. ‘

-100 -50 O 50 100

e Why d this h ?
y does this happen T
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(with T. Binder, K. Mukaida and X. Yao) 2107.03945

P adj T in perturbation theory
varying the coupling

. 1
. Let’s look at p;a;“(a)) in the 0O%0
regime where we trust 8000 -
perturbation theory:

» We see that as we dial up the 4000¢
coupling from zero, an
asymmetry develops between _
positive and negative 0
frequencies. ‘

2000 -

 Why does this happen?
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(with X. Yao) 2306.13127

The spectral function p;aj

a closer look
« Note that, contrary to usual thermal field theory correlators, p;:ﬁ“(a)) IS not

odd under ® — — @, because

[gadJ >(G)) 75 [gadJ ]>(a))

 This is a reflection of the fact that the initial state in a dissociation process is
different than for (re)combination. Explicitly,

g2
T 3
ot (@) = 3NFZ<2n>5<w+E - )| {n| EXO) | ) |* e — e |
{E,, |n)} = eigenvalues/eigenstates of Hygp

(E ,|7A%)} = eigenvalues/eigenstates of Hgp 5% — gA,(0)[ adj]“b



(with X. Yao) 2306.13127

The spectral function p;aj

a closer look
« Note that, contrary to usual thermal field theory correlators, p;:ﬁ“(a)) IS not

odd under ® — — @, because

[gadJ >(G)) 75 [gadJ ]>(a))

 This is a reflection of the fact that the initial state in a dissociation process is
different than for (re)combination. Explicitly,

g2
I
(@) = 3N” D, 2md(@ + E, = Ep | (n | E{(0) | ) e e e‘fi] |
{E ,|n)} = eigenvalues/eigenstates of HQGP

(E ,|7A%)} = eigenvalues/eigenstates of Hgp 5% — gA,(0)[ adj]“b



In the path integral

winding around the Schwinger-Keldysh contour

t=1—1p
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What should we expect for a
strongly coupled plasma?



(with G. Nijs and X. Yao) 2310.09325

P adj T in perturbation theory

compared to ./ = 4 SYM result
at large V. and strong coupling

10000
* [o clearly see the asymmetry -

between positive and negative 8000 -

@, we normalize the different :
L | 6000 -

curves for p- i (w) so that their

@ — oo limit agrees. 40007

+ The /' = 4 result at large N, 200,

and strong coupling A = N g o
compatible with the behavior of

the weakly coupled Iimit as g Is
Increased.
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(with G. Nijs and X. Yao) 2310.09325

p;a;“ in perturbation theory

compared to ./ = 4 SYM result

at large V. and strong coupling
10000,

* o clearly see the asymmetry

between positive and negative 8000 -

@, we normalize the different :
L | 6000 -

curves for p- i (w) so that their

@ — oo limit agrees. 40007

o The /' = 4 result at large N, “09.

and strong coupling 4 = Ncg2 S o
compatible with the behavior of

the weakly coupled Iimit as g Is
Increased.
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(with G. Nijs and X. Yao) 2310.09325

p;a;“ in perturbation theory

compared to ./ = 4 SYM result

at large V. and strong coupling
10000,

* o clearly see the asymmetry

between positive and negative 8000 -

@, we normalize the different :
L | 6000 -

curves for p- i (w) so that their

@ — oo limit agrees. 40007

o The /' = 4 result at large N, “09.

and strong coupling 4 = Ncg2 S o
compatible with the behavior of

the weakly coupled Iimit as g Is
increased(”).
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P adj T in perturbation theory

compared to ./ = 4 SYM result
at large V. and strong coupling

* o clearly see the asymmetry
between positive and negative

@, we normalize the different
curves for p;a;“(a)) so that their

@ — o0 limit agrees.

» The /' = 4 result at large N,

and strong coupling A = N g
compatible with the behavior of

the weakly coupled Iimit as g Is
increased(”).

0.01
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(with G. Nijs and X. Yao) 2310.09325

6 IT pQCD
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— QCD, g(1g) = 1.0
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4 717 ,oN=4
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Consequences for transport

at strong coupling
* A naive application of the quantum optical limit gives trivial dynamics in the
strongly coupled ./ = 4 SYM plasma:

Pag (—1AE])=0.

 Reason behind this: this transport description and every other EFT description
currently on the market make assumptions that are intrinsically tied to weak

coupling approximations.

o Concretely, memory effects are neglected: this makes sense if every
scattering can be approximated as independent, but not if the correlations

of the medium are strong.

O Since QGP at T ~ 200 MeV is strongly coupled, we can’t assume these
effects are not present. .



What to do then?

for a strongly coupled plasma (ongoing work)

 Back to open quantum systems basics:

Poo(t) = Trogp |U@po(t = OUT ()]

 From here, expanding up to second o[der INn the Interaction, one can derive a
formula for the occupancies of the Q(Q states after a proper time lr— 1 going

through the plasma: e.qg., for an octet —> nl transition

N
—— 1n 1n T
<n”pQQ(tf) | nl) = Jdt1 [dtz [8adJ 17(ty, 1)) (nl| US gletFlUﬁftf]t | '/f())((n” US glet’”lU[(;;tte]t | ’/f()>)

; ;

l l

» Still to do: re-sum the Dyson series in different limits (e.g., large /V,).
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(with G. Nijs and X. Yao) 2312.12307
Regeneration probability Y(1S), Bjorken flow

0.10
We can now evolve a

state of a heavy
quark-antiquark pair,

taking into account: 0.08 -
I(r) = 1, X (Tf/T)l/ >

7} = 155 MeV

T = 10fm/c

M Their wavefunction
evolution using a
potential model,
allowing for different

Initial separations o,
between the pair.

0.06 -

0.04 - Using the correlator from holography !

P(octet, bb — Y(1S5))

M Their transition
rates via the
correlator we just
discussed.

0.02 -

0.00 | | | | | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

75 Oo [fm]



(with G. Nijs and X. Yao) 2312.12307

We can now evolve a
state of a heavy
quark-antiquark pair,
taking into account:

T(r) = T, X (z,/7)'°
I Their wavefunction (7) = Ty X (7;/7)

evolution using a Iy=155MeV
potential model, .= 0.6fm/c
allowing for different 7= 10fm/c

Initial separations o,
between the pair.

Regemneaeratiom probabiility Y r(1lsSs), Bjorkenmn flowvw

O._ O3 =

O._ O0OS —

M Their transition
rates via the
correlator we just ©-o= -
discussed. o oo

O._O4a -

Doctet b= 19
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Regeneration probability Y(1S), Bjorken flow

We can also compare

0.25 - ——- N=4SYM,g=2.1,N.=3
Kl d st | |
weakly ana strongly QCD, g(ug) = 0.1, Ne = 3, Ny=2
coupled plasmas: QCD, g(ug) = 0.6, N = 3, Ny =2
0.20 - — QCD, g(up) =1.0, Nc. =3, Ng=2

&€ At weak coupling, it

—  QCD, g(ug)=2.1, No=3, Ny =2
seems that the ¥ f

A
existence of = 015 - T(2) = T, x (z,/7)"
quasiparticles 1
increases the 2 Iy=155MeV
quarkonium transition ¢ . 7, = 0.6fm/c
rates relative to the 3 7= 10fm/c
strongly coupled case.~ o)

/
0.05 - \
€ In both cases, the /' \

relevant scale is the /S N —_—
size of the bound 000" ettt gy e —

state.




Outlook

the road ahead

 We have discussed how to calculate the generalized gluon distributions that
govern quarkonium transport.

O |nteresting prospects for interpolating between weak & strong coupling, and
describing non-perturbative QGP physics.

 Next steps:

. Develop a transport formalism accounting for QGP memory effects.

" Assess whether Markovian or non-Markovian effects are dominant in the
QGP formed in heavy-ion collisions.

e Stay tuned!
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Extra Slides




[**] J. Maldacena, hep-th/9711200

Wilson loops in AdS/CFT

setup

* The holographic duality provides a way to formulate the calculation of
analogous correlators in strongly coupled theories. [**]

o Wilson loops can be evaluated by solving classical equations of motion;

(W[E = 0Z]), = e™Ncl™

3 J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal
49 and U. A. Wiedemann, hep-ph/1101.0618



How do Wilson loops help?

setup — pure gauge theory

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6

W€
5f(s,) Of¥(s;) ey

f=

0

= (ig)"Tr color lU (1.5,]L Mp(?’(sz))f’p (s))U (55510 w(YSD)7 ()Y [51,0]]
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How do Wilson loops help?

setup — pure gauge theory

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6

WIE| = (8 Tregior| Ut Fop (o750 Uy Foor ()0 Uy )
=0
 Same as the lattice calculation of the heavy quark diffusion coefficient:

A T
(/

L,T_J ;J 1 _—,l_,_‘)

51 figure credit: L. Altenkort

oft(s,) of¥(s1)




[**] J. Maldacena, hep-th/9711200

Wilson loops in AdS/CFT

setup

* The holographic duality provides a way to formulate the calculation of
analogous correlators in strongly coupled theories. [**]

o Wilson loops can be evaluated by solving classical equations of motion;

(W[E = 0Z]), = e"nal*

Metric of interest for finite 1 calculations:

R? 1
ds? = = |- f(2) dt* + dx* + @ dz* + 7°dQz

_ 4
f(Z) — 1 T (ﬂTZ) J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal
50 and U. A. Wiedemann, hep-ph/1101.0618
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¢ Our task is to solve for |

f the perturbed
worldsheet for

arbitrary (but small)
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Boundary conditions

Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal
surface. No direct sensitivity to the imaginary time segment.

Vo

fl=—n0
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c.f. K. Skenderis and B. van Rees 0812.2909 [hep-th]

Boundary conditions

Heavy quark correlator Re{r}

Fluctuations are matched through the imaginary time segment
solving the equations of motion = factors of eﬁ“), KMS relations




Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

| —>
W€ n] = VTrCOlor [@ exp (ig ﬂg% ds T [A/jl x* + n(s) - gb“\@ ] )] ,

C

which Is not the standard Wilson loop.
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Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

W@ il =——tr. | dexp (e aste (a0 + ics)- FVE
S[ ’n]_ﬁ Leolor CXP | 18 _ 5 ,ux T n(S) ¢ X ;

C

which Is not the standard Wilson loop.

» /N =4 SYM has 6 scalar fields 5", which enter the above Wilson loop through
a direction 71 € Ss. Also, its dual gravitational description is AdSs X Ss.
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Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

W@ il =—1v | dexp (e asTe (a0 + ice)- FVE
S[ ’n]_ﬁ Leolor CXP | 18 . S /,tx + n(S) §b X ,

C

which Is not the standard Wilson loop.

» /N =4 SYM has 6 scalar fields E‘l, which enter the above Wilson loop through
a direction 71 € Ss. Also, its dual gravitational description is AdSs X Ss.

» What to do with this extra parameter? For a single heavy quark, just set n = n,
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Choosing 7

what is the best proxy for an adjoint Wilson line?

* A key property of the adjoint Wilson line is

WP = LTr [97{T“U T°U" }]
[52»t1] ,

[6,5] :
2.1 T+ [15,1]
which means that we can obtain the correlator w? want by studying
deformations of a Wilson loop of the form W = VTI‘[UUT] = 1.
C
* This leads us to consider the following loop:
., n =1 .,



[T] Alday and Maldacena, 2007
[¥] Polchinski and Sully, 2011

Another angle at the n configuration

the Neumann prescription for the pure gauge Wilson loop

* There exists a prescription to evaluate the pure gauge Wilson loop [T]. On the
gravity side of the duality, it amounts to taking Neumann boundary conditions

for 1. This is can be achieved by writing [{]:
(WG = NIB) | Di (Wy(: )

o If the path € is timelike and backtracks over itself, one can show that
| (W [€;7])| < 1, and moreover, that this bound is saturated when 7 takes
antipodal positions on the Ss.

« Therefore, when \/Z — 00, configurations where 71(s) = =% 71, dominate.
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