Quarkonium transport in weakly and strongly coupled plasmas

Heavy Ion Physics in the EIC Era August 6, 2024

Bruno Scheihing Hitschfeld based on 2107.03945, 2205.04477, 2304.03298, 2306.13127, 2310.09325, 2312.12307

Institute for Nuclear Theory, University of Washington

Quarkonium: charmonium and bottomonium

 $m(\psi(2S)) = 3.686 \,\text{GeV}$

The (vacuum) decay widths of these quarkonium states satisfy $\Gamma((Q\bar{Q})_b \to X) \ll \tau_{QGP}^{-1}.$

$m(\Upsilon(1S)) = 9.460 \,\text{GeV}$ $m(\Upsilon(2S)) = 10.023 \,\text{GeV}$ $m(\Upsilon(3S)) = 10.355 \,\text{GeV}$

Quarkonium in Heavy-Ion Collisions

- Heavy quarks (HQ) and quarkonia are amongst the most informative probes of QGP.
- They are produced in the initial hard scattering, and never fully thermalize due to their large masses.
- To interpret the full wealth of data stemming from *b* and *c* quarks in heavy-ion collisions, we need a precise theoretical understanding of heavy quarks in a thermal medium.

Note that the decay rate of states with a single b, c quark will be much smaller than $\tau_{\rm QGP}^{-1} \sim 20 \,{\rm MeV}$, as they proceed through electroweak interactions.

Quarkonium suppression results from the CMS collaboration (2303.17026)

Quarkonium suppression comparison to some models (2011.05758)

What are the energy scales of quarkonia?

M: heavy quark mass v: typical relative velocity

 $\Delta E \approx 500 \,\mathrm{MeV}$ $\sim M v^2$

 $Mv(c\bar{c}) \approx 1 \text{ GeV}$ $Mv(b\bar{b}) \approx 1.5 \text{ GeV}$ $M(c) \approx 1.5 \text{ GeV}$ $M(b) \approx 4.5 \text{ GeV}$

M: heavy quark mass *v*: typical relative velocity

 $T \sim 200 \,\mathrm{MeV}$ $T^{-1} \sim 1 \,\mathrm{fm}$

 $\Delta E \approx 500 \,\mathrm{MeV}$ $\sim M v^2$

 $Mv(c\bar{c}) \approx 1 \,\text{GeV}$ $Mv(b\bar{b}) \approx 1.5 \,\text{GeV}$

 $M(c) \approx 1.5 \,\mathrm{GeV}$ $M(b) \approx 4.5 \,\mathrm{GeV}$

5

 $Mv(c\bar{c}) \approx 1 \text{ GeV}$ $Mv(b\bar{b}) \approx 1.5 \text{ GeV}$ $M(c) \approx 1.5 \text{ GeV}$ $M(b) \approx 4.5 \text{ GeV}$ H

000

$T^{-1} \sim 1 \,\mathrm{fm}$ $T \sim 200 \,\mathrm{MeV}$

m

 $\Delta E \approx 500 \,\mathrm{MeV}$ $\sim M v^2$

 $Mv(c\bar{c}) \approx 1 \,\mathrm{GeV}$ $Mv(b\bar{b}) \approx 1.5 \,\mathrm{GeV}$ $M(c) \approx 1.5 \,\mathrm{GeV}$ $M(b) \approx 4.5 \,\mathrm{GeV}$ \implies For *bb*, there is a clear hierarchy of scales $M \gg Mv \gg T$

Let's write an EFT for this system

(The longer way to go through this would be QCD -> NRQCD -> pNRQCD)

N. Brambilla, A. Pineda, J. Soto, and A. Vairo, hep-ph/9707481, hep-ph/9907240, hep-ph/0410047

The zeroth order Lagrangian

• At zeroth order on $rT \sim T/(Mv)$, the Lagrangian density is

 $\mathscr{L}_{\text{pNROCD}}^{(0)}(\mathbf{x},t) = \mathscr{L}_{\text{li}}$

where

$$\mathscr{L}_{\text{light QCD}} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} + \sum_{I \in \{u,d,s\}} \bar{\psi}_I \left(i \not \!\!\! D - m_I \right) \psi_I ,$$

$$\mathscr{L}_{Q\bar{Q}} = \int d^3r \operatorname{Tr}_{c} \left[S^{\dagger}(i\partial_{0} - H_{s})S + O^{\dagger}(iD_{0} - H_{o})O \right].$$

singlet and octet QQ configurations, respectively.

$$\operatorname{ight}\operatorname{QCD}(\mathbf{X},t) + \mathscr{L}_{Q\bar{Q}}(\mathbf{X},t),$$

• The operators $S = S(\mathbf{x}, \mathbf{r}, t)$, $O = T^a O^a(\mathbf{x}, \mathbf{r}, t)$ are annihilation operators for

Interactions from a multipole expansion and the EFT that describes them (pNRQCD [*])

Analog situation transitions in Hydrogen

Interactions from a multipole expansion and the EFT that describes them (pNRQCD [*])

Interactions from a multipole expansion and the EFT that describes them (pNRQCD [*])

These interactions can (re)combine and dissociate quarkonium as it propagates in the QGP Crucial to predict final abundances in HICs! (one also needs $E_{nl}(T)$)

Time scales of quarkonia

Transitions between quarkonium energy levels (the system)

+ $V_A \left(O_{19}^{\dagger} \mathbf{r} \cdot g \mathbf{E} S + \mathbf{h.c.} \right) + \frac{V_B}{2} O^{\dagger} \left\{ \mathbf{r} \cdot g \mathbf{E}, O \right\} + \cdots$

X. Yao, hep-ph/2102.01736

Interaction with the QGP (the environment) environment $\frac{1}{\tau_I} \sim \frac{H_{\rm int}^2}{T} \sim T \frac{T^2}{(Mv)^2}$ - $\sim T$ au_E

Time scales of quarkonia

Transitions between quarkonium energy levels (the system)

X. Yao, hep-ph/2102.01736

Interaction with the QGP (the environment) environment $\frac{1}{\tau_I} \sim \frac{H_{\rm int}^2}{T} \sim T \frac{T^2}{(Mv)^2}$ $- \sim T$ au_E + $V_A \left(O_{20}^{\dagger} \mathbf{r} \cdot g \mathbf{E} S + \mathbf{h.c.} \right) + \frac{V_B}{2} O^{\dagger} \left\{ \mathbf{r} \cdot g \mathbf{E}, O \right\} + \cdots$

Time scales of quarkonia

Transitions between quarkonium energy levels (the system)

 $+V_A(O_{21}^{\dagger}\mathbf{r} \cdot g\mathbf{E}S + \mathbf{h.c.}) + \frac{V_B}{2}O^{\dagger}\{\mathbf{r} \cdot g\mathbf{E}, O\} + \cdots$

X. Yao, hep-ph/2102.01736

Interaction with the QGP (the environment) environment $\sim \frac{H_{\rm int}^2}{\sim} \sim T - \frac{T^2}{\sim}$ $(Mv)^2$ $- \sim T$ au_E

Time scales of quarkonia

Transitions between quarkonium energy levels (the system)

X. Yao, hep-ph/2102.01736

QGP Interaction with the (the environment) environment $\sim \frac{H_{\rm int}^2}{T} \sim T \frac{T^2}{(Mv)^2}$ $- \sim T$

$$i\partial_0 - H_s)S + O^{\dagger}(iD_0 - H_o)O$$

$$Y_A(O_{22}^{\dagger}\mathbf{r} \cdot g\mathbf{E}S + h.c.) + \frac{V_B}{2}O^{\dagger}\{\mathbf{r} \cdot g\mathbf{E}, O\} + \cdots$$

 au_E

Quarkonium as an open quantum system isolating the observables of interest

- Given an initial density matrix $\rho_{\rm tot}(t=0),$ quarkonium coupled with the QGP evolves as
 - $\rho_{\rm tot}(t) = U(t)$
- We will only be interested in describing the evolution of quarkonium and its final state abundances

$$\implies \rho_{Q\bar{Q}}(t) = \operatorname{Tr}_{QGP} \left[U(t)\rho_{\text{tot}}(t=0)U^{\dagger}(t) \right].$$

• Then, one derives an evolution equation for $\rho_{Q\bar{Q}}(t)$, assuming that at the initial time we have $\rho_{\rm tot}(t=0) = \rho_{Q\bar{Q}}(t=0) \otimes e^{-H_{\rm QGP}/T} / \mathscr{Z}_{\rm QGP}$.

$$t)\rho_{\rm tot}(t=0)U^{\dagger}(t).$$

What do we need to calculate?

What do we need to calculate from QFT? Non-perturbative generalization of Peskin-Bhanot process

The singlet-octet transitions are governed by two generalized gluon distributions (GGDs):

Dissociation:

 $[g_{adj}^{++}]^{>}(\omega)$

(Re)combination:

$$[g_{adj}^{--}]^{>}(\omega)$$

Generalized Gluon Distributions for quarkonia transport $[g_{adj}^{---}]_{i,i_1}^>(t_2, t_1, R_2, R_1) = \langle e_{adj}^- e_{adj$

 $[g_{\text{adj}}^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{26}^a \right\rangle_T$

Generalized Gluon Distributions for quarkonia transport

 $[g_{\text{adj}}^{++}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \mathscr{W}_{2} \right)^{a} \left(\mathscr{W}_{1} E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \right)_{7}^{a} \right\rangle_{T}$

X. Yao and T. Mehen, hep-ph/2009.02408

"bound" state: color singlet

Generalized Gluon Distributions for quarkonia transport

 $[g_{\text{adj}}^{++}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \mathscr{W}_{2} \right)^{a} \left(\mathscr{W}_{1} E_{i_{1}}(\mathbf{R}_{1}, t_{2}) \right)^{a} \right\rangle \left(\mathscr{W}_{1} E_{i_{1}}(\mathbf{R}_{1}, t_{2}) \right)^{a} \left(\mathscr{W}_{1} E_{i_{1}}(\mathbf{R}_{1}, t_{$

X. Yao and T. Mehen, hep-ph/2009.02408

$$, t_1) \Big)_{28}^a \Big\rangle_T$$

 $[g_{\text{adj}}^{++}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \mathscr{W}_{2} \right)^{a} \left(\mathscr{W}_{1} E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \right)_{a}^{a} \right\rangle_{T}$

 $[g_{\text{adj}}^{++}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \mathscr{W}_{2} \right)^{a} \left(\mathscr{W}_{1} E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \right)_{a}^{a} \right\rangle_{T}$

 $[g_{\text{adj}}^{++}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \mathscr{W}_{2} \right)^{a} \left(\mathscr{W}_{1} E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \right)_{a}^{a} \right\rangle_{T}$

X. Yao and T. Mehen, hep-ph/2009.02408

Generalized Gluon Distributions for quarkonia transport $[g_{adj}^{---}]_{i,i}^{>}(t_2, t_1, R_2, R_1) = \langle e_{adj}^{----} | f_{adj}^{>}(t_2, t_1, R_2, R_1) \rangle$

"unbound" state: color octet

the "unbound" state carries color charge and interacts with the medium

Generalized Gluon Distributions for quarkonia transport $[g_{adj}^{---}]_{i,i_1}^>(t_2, t_1, R_2, R_1) = \langle e_{adj}^- e_{adj$

medium-induced transition

"unbound" state: color octet

the "unbound" state carries color charge and interacts with the medium

Generalized Gluon Distributions for quarkonia transport $[g_{adj}^{---}]_{i,i}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \langle e_{adj}^{----} | f_{adj}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) \rangle$

"bound" state: color singlet

medium-induced transition

"unbound" state: color octet

the "unbound" state carries color charge and interacts with the medium

. ::

Generalized Gluon Distributions for quarkonia transport

"bound" state: color singlet

medium-induced transition

"unbound" state: color octet

the "unbound" state carries color charge and interacts with the medium

Generalized Gluon Distributions as they appear in transport equations

The GGDs that we will discuss from now on have $\mathbf{R}_1 = \mathbf{R}_2$:

$$[g_{adj}^{++}]^{>}(t) \equiv \frac{g^2 T_F}{3N_c} \langle E_i^a(t) W^{ab}(t,0) E_i^b(0) \rangle$$
$$[g_{adj}^{--}]^{>}(t) \equiv \frac{g^2 T_F}{3N_c} \langle W^{dc}(-i\beta - \infty, -\infty) \rangle$$

They encode *non-perturbative* information about how the thermal QGP environment mediates transitions between singlet and octet states.

(with X. Yao) 2306.13127

Thermal equilibrium **KMS** conditions and a spectral function

- The GGDs satisfy a Kubo-Martin-Schwinger relation $[g_{\rm adi}^{++}]^{>}(\omega) =$
- which means detailed balance (and thus thermalization) can be achieved between dissociation and (re)combination.
- This motivates the introduction of a spectral function

$$\rho_{\rm adj}^{++}(\omega) = \left(1 - e^{-\omega/T}\right) [g_{\rm adj}^{++}]^{>}(\omega) = [g_{\rm adj}^{++}]^{>}(\omega) - [g_{\rm adj}^{--}]^{>}(-\omega)$$

which encodes all of the information in the GGDs.

$$e^{\omega/T}[g_{adj}^{--}]^{>}(-\omega)$$

A comparison with heavy quark diffusion

Different physics with the same building blocks

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

heavy quark

Q

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

the heavy quark carries color charge and interacts with the medium

heavy quark

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

the heavy quark carries color charge and interacts with the medium

"kick" from the QGP: momentum transfer is effected

> the heavy quark carries color charge and interacts with the medium

heavy quark

The difference in pQCD operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

 $\Delta \rho(\omega) = \frac{g^4 N_c^2 C_F T_F}{4\pi} |\omega|^3$

BS and X. Yao, hep-ph/2205.04477 Phys. Rev. Lett. 130, 052302

The difference in pQCD operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).

BS and X. Yao, hep-ph/2205.04477 Phys. Rev. Lett. 130, 052302

The difference in pQCD operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).

BS and X. Yao, hep-ph/2205.04477 Phys. Rev. Lett. 130, 052302

How does this difference show up non-perturbatively?

The difference, qualitatively winding around the Schwinger-Keldysh contour

- The heavy quark is present at all times:
 - It is part of the construction of the thermal state of the QGP.
 - The Wilson line, which enforces the Gauss' law constraint due to the point charge, is also present on the Euclidean segment.

The difference, qualitatively winding around the Schwinger-Keldysh contour

- In this correlator, the heavy quark pair is present at all times, but it is only color-charged for a finite time:
 - It is *not* part of the construction of the thermal state of the QGP.
 - The adjoint Wilson line, representing the propagation of unbound quarkonium (in the adjoint representation), is only present on the real-time segment.

A Lattice QCD perspective heavy quark diffusion

 The heavy quark diffusion coefficient has been studied by evaluating the following correlation function (e.g., Altenkort et al. 2009.13553, 2302.08501; Leino et al. 2212.10941):

$$G_{\text{fund}}(\tau) = -\frac{1}{3} \frac{\left\langle \text{ReTr}_{c}[U(\beta,\tau) gE_{i}(\tau) U(\tau,0) gE_{i}(0)] \right\rangle}{\left\langle \text{ReTr}_{c}[U(\beta,0)] \right\rangle}$$

 The heavy quark diffusion coefficient is extracted by reconstructing the corresponding spectral function (Caron-Huot et al. 0901.1195):

$$G_{\text{fund}}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)} \rho_{\text{fund}}(\omega) , \quad \kappa_{\text{fund}} = \lim_{\omega \to 0} \frac{T}{\omega} \rho_{\text{fund}}(\omega)$$

A Lattice QCD perspective quarkonium transport (2306.13127)

The quarkonium correlator in imaginary time has received less attention:

$$G_{\rm adj}(\tau) = \frac{T_F g^2}{3N_c} \left\langle E_i^a(\tau) \mathcal{W}^{ab}(\tau, 0) E_i^b(0) \right\rangle_T$$

$$G_{\rm adj}(\tau) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{\exp\left(\omega(\frac{1}{2T} - \tau)\right)}{2\sinh\left(\frac{\omega}{2T}\right)} \rho_{\rm adj}^{++}(\omega) \,, \quad \kappa_{\rm adj} = \lim_{\omega \to 0} \frac{T}{2\omega} \left[\rho_{\rm adj}^{++}(\omega) - \rho_{\rm adj}^{++}(-\omega)\right]$$

- - $\omega \rightarrow -\omega$, because $G_{adj}(\tau)$ is not invariant under $\tau \rightarrow 1/T \tau$.

• The transport coefficients can also be extracted by spectral reconstruction:

- Main new ingredient: the spectral function $ho_{
m adj}^{++}(\omega)$ is not odd under

How does one use the GGDs?

Transport equations for quarkonia in the semiclassical limit (Mehen and Yao, 2009.02408)

$$\frac{dn_b(t, \mathbf{x})}{dt} = -\Gamma^{\text{diss}} n_b(t, \mathbf{x}) + \Gamma^{\text{form}}(t, \mathbf{x}) .$$

The transition rates are given by

$$\Gamma^{\text{diss}} = \int \frac{d^{3}\mathbf{p}_{\text{rel}}}{(2\pi)^{3}} |\langle \psi_{\mathscr{B}} | \mathbf{r} | \Psi_{\mathbf{p}_{\text{rel}}} \rangle|^{2} \frac{\rho_{\text{adj}}^{++} \left(- |E_{\mathscr{B}}| - \mathbf{p}_{\text{rel}}^{2}/M \right)}{1 - \exp\left[(|E_{\mathscr{B}}| + \mathbf{p}_{\text{rel}}^{2}/M)/T \right]},$$

$$\Gamma^{\text{form}}(t, \mathbf{x}) = \int \frac{d^{3}\mathbf{p}_{\text{cm}}}{(2\pi)^{3}} \frac{d^{3}\mathbf{p}_{\text{rel}}}{(2\pi)^{3}} |\langle \psi_{\mathscr{B}} | \mathbf{r} | \Psi_{\mathbf{p}_{\text{rel}}} \rangle|^{2} \frac{\rho_{\text{adj}}^{++} \left(- |E_{\mathscr{B}}| - \mathbf{p}_{\text{rel}}^{2}/M \right)}{\exp\left[- (|E_{\mathscr{B}}| + \mathbf{p}_{\text{rel}}^{2}/M)/T \right] - 1} f_{Q\bar{Q}}$$

One can derive a Boltzmann equation for the bound state density, namely

Transport equations for quarkonia in the Brownian motion limit (Brambilla et al. 2302.11826 and previous work)

- Quantum Brownian motion limit: M $\frac{d\rho_S(t)}{dt} = -i[H_S + \Delta H_S, \rho_S(t)] +$ where $\kappa_{adj} + i\gamma_{adj} = \frac{T_F g^2}{3N_c} \int_{-\infty}^{\infty} dt \langle \mathcal{T} E_i^a(t) \mathcal{W}_{[t,0]}^{ab} E_i^b(0) \rangle.$
- Note that

$$\frac{T_F g^2}{3N_c} \int_{-\infty}^{\infty} dt \, \langle \mathcal{T} E_i^a(t) \mathcal{W}_{[t,0]}^{ab} E_i^b(0) \rangle = 2 \int_0^{\infty} dt \, [g_{\rm adj}^{++}]^>(t) \, .$$

$$V \gg T \gg Mv^{2} + \kappa_{\rm adj} \Big(L_{\alpha i} \rho_{S}(t) L_{\alpha i}^{\dagger} - \frac{1}{2} \Big\{ L_{\alpha i}^{\dagger} L_{\alpha i}, \rho_{S}(t) \Big\}$$

Let's calculate!

• One finds, up to $\mathcal{O}(g^4)$

$$\rho_{\text{adj}}^{++}(\omega) = \frac{T_F g^2 (N_c^2 - 1)\omega^3}{3\pi N_c} \left\{ 1 + \frac{g^2}{(2\pi)^2} \left[\left(\frac{11N_c}{12} - \frac{N_f}{6} \right) \ln \left(\frac{\mu^2}{4\omega^2} \right) + N_c \left(\frac{149}{36} - \frac{\pi^2}{6} + \frac{\pi^2}{2} \text{sgn}(\omega) \right) - \frac{5N_f}{9} + F(\omega/T) \right] \right\}$$

• One finds, up to $\mathcal{O}(g^4)$

$$\rho_{\text{adj}}^{++}(\omega) = \frac{T_F g^2 (N_c^2 - 1)\omega^3}{3\pi N_c} \left\{ 1 + \frac{g^2}{(2\pi)^2} \left[\left(\frac{11N_c}{12} - \frac{N_f}{6} \right) \ln \left(\frac{\mu^2}{4\omega^2} \right) + N_c \left(\frac{149}{36} - \frac{\pi^2}{6} + \frac{\pi^2}{2} \text{sgn}(\omega) \right) - \frac{5N_f}{9} + F(\omega/T) \right] \right\}$$

• One finds, up to $\mathcal{O}(g^4)$

$$\rho_{\text{adj}}^{++}(\omega) = \frac{T_F g^2 (N_c^2 - 1)\omega^3}{3\pi N_c} \left\{ 1 + \frac{g^2}{(2\pi)^2} \left[\left(\frac{11N_c}{12} - \frac{N_f}{6} \right) \ln \left(\frac{\mu^2}{4\omega^2} \right) + N_c \left(\frac{149}{36} - \frac{\pi^2}{6} + \frac{\pi^2}{2} \text{sgn}(\omega) \right) - \frac{5N_f}{9} + F(\omega/T) \right] \right\}$$

• For comparison, the spectral function for heavy quark diffusion is: cf. 1006.0867 [hep-ph]

$$\rho_{\text{fund}}(\omega) = \frac{T_F g^2 (N_c^2 - 1)\omega^3}{3\pi N_c} \left\{ 1 + \frac{g^2}{(2\pi)^2} \left[\left(\frac{11N_c}{12} - \frac{N_f}{6} \right) \ln\left(\frac{\mu^2}{4\omega^2} \right) + N_c \left(\frac{149}{36} - \frac{\pi^2}{6} \right) - \frac{5N_f}{9} + F(\omega/T) \right] \right\}$$

• One finds, up to $\mathcal{O}(g^4)$

$$\rho_{\text{adj}}^{++}(\omega) = \frac{T_F g^2 (N_c^2 - 1)\omega^3}{3\pi N_c} \left\{ 1 + \frac{g^2}{(2\pi)^2} \left[\left(\frac{11N_c}{12} - \frac{N_f}{6} \right) \ln \left(\frac{\mu^2}{4\omega^2} \right) + N_c \left(\frac{149}{36} - \frac{\pi^2}{6} + \frac{\pi^2}{2} \text{sgn}(\omega) \right) - \frac{5N_f}{9} + F(\omega/T) \right] \right\}$$

• For comparison, the spectral function for heavy quark diffusion is:

$$\rho_{\text{fund}}(\omega) = \frac{T_F g^2 (N_c^2 - 1)\omega^3}{3\pi N_c} \left\{ 1 + \frac{g^2}{(2\pi)^2} \left[\left(\frac{11N_c}{12} - \frac{N_f}{6} \right) \ln\left(\frac{\mu^2}{4\omega^2}\right) + N_c \left(\frac{149}{36} - \frac{\pi^2}{6} \right) - \frac{5N_f}{9} + F(\omega/T) \right] \right\}$$

This difference has an effect in transport! difference between γ_{adj} and γ_{fund}

The γ transport coefficients

differ at $\mathcal{O}(g^4)$: (first pointed out by Eller, Ghiglieri and Moore in 1903.08064)

$$\Delta \gamma = \gamma_{\text{fund}} - \gamma_{\text{adj}} = \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{\pi |\omega|} n_B(|\omega|) \Delta \rho(\omega) = \frac{16\zeta(3)}{3} T_F C_F N_c \alpha_s^2 T^3$$

$$W^{ab}(t,0)E_i^b(0)\Big\rangle_T,$$

$\rho_{\rm adj}^{++}$ in perturbation theory varying the coupling

- Let's look at $\rho_{adj}^{++}(\omega)$ in the regime where we trust perturbation theory: $|\omega| \gg T(\sim \Lambda_{\rm QCD}).$
- We see that as we dial up the coupling from zero, an asymmetry develops between positive and negative frequencies.
- Why does this happen?

(with T. Binder, K. Mukaida and X. Yao) 2107.03945

$\rho_{\rm adj}^{++}$ in perturbation theory varying the coupling

- Let's look at $\rho_{adj}^{++}(\omega)$ in the regime where we trust perturbation theory: $|\omega| \gg T(\sim \Lambda_{\rm QCD}).$
- We see that as we dial up the coupling from zero, an asymmetry develops between positive and negative frequencies.
- Why does this happen?

(with T. Binder, K. Mukaida and X. Yao) 2107.03945

The spectral function $\rho_{\rm adi}^{++}$ a closer look

- Note that, contrary to usual thermal field theory correlators, $ho_{
m adi}^{++}(\omega)$ is not odd under $\omega \rightarrow -\omega$, because

 $[g_{adi}^{++}]^{>}(\omega)$

different than for (re)combination. Explicitly,

$$\rho_{\mathrm{adj}}^{++}(\omega) = \frac{g^2 T_F}{3N_c} \sum_{n,\tilde{n}} (2\pi)\delta(\omega + E_n - \tilde{E}_{\tilde{n}}) |\langle n | E_i^a(0) | \tilde{n}^a \rangle|^2 \left[e^{-\beta E_n} - e^{-\beta \tilde{E}_{\tilde{n}}} \right]$$

 $\{E_n, |n\rangle\}$ = eigenvalues/eigenstates of H_{OGP} $\{\tilde{E}_n, |\tilde{n}^a\rangle\} = \text{eigenvalues/eigenstates of } H_{\text{QGP}}\delta^{ab} - gA_0^c(0)[T_{\text{adj}}^c]^{ab}$

(with X. Yao) 2306.13127

$$\neq [g_{adj}^{--}]^{>}(\omega)$$

This is a reflection of the fact that the initial state in a dissociation process is

The spectral function $\rho_{\rm adi}^{++}$ a closer look

- Note that, contrary to usual thermal field theory correlators, $ho_{
m adi}^{++}(\omega)$ is not odd under $\omega \rightarrow -\omega$, because

 $[g_{adi}^{++}]^{>}(\omega)$

different than for (re)combination. Explicitly,

$$\rho_{\mathrm{adj}}^{++}(\omega) = \frac{g^2 T_F}{3N_c} \sum_{n,\tilde{n}} (2\pi)\delta(\omega + E_n - \tilde{E}_{\tilde{n}}) |\langle n | E_i^a(0) | \tilde{n}^a \rangle|^2 \left[e^{-\beta E_n} - e^{-\beta \tilde{E}_{\tilde{n}}} \right]$$

 $\{E_n, |n\rangle\}$ = eigenvalues/eigenstates of H_{OGP} $\{\tilde{E}_n, |\tilde{n}^a\rangle\} = \text{eigenvalues/eigenstates of } H_{\text{QGP}}\delta^{ab} - gA_0^c(0)[T_{\text{adj}}^c]^{ab}$

(with X. Yao) 2306.13127

$$\neq [g_{adj}^{--}]^{>}(\omega)$$

This is a reflection of the fact that the initial state in a dissociation process is

In the path integral

What should we expect for a strongly coupled plasma?

- To clearly see the asymmetry between positive and negative ω , we normalize the different curves for $\rho_{adj}^{++}(\omega)$ so that their $\omega \to \infty$ limit agrees.
- The $\mathcal{N} = 4$ result at large N_c and strong coupling $\lambda = N_c g^2$ is compatible with the behavior of the weakly coupled limit as g is increased.

- To clearly see the asymmetry between positive and negative ω , we normalize the different curves for $\rho_{adj}^{++}(\omega)$ so that their $\omega \to \infty$ limit agrees.
- The $\mathcal{N} = 4$ result at large N_c and strong coupling $\lambda = N_c g^2$ is compatible with the behavior of the weakly coupled limit as g is increased.

- To clearly see the asymmetry between positive and negative ω , we normalize the different curves for $\rho_{adj}^{++}(\omega)$ so that their $\omega \to \infty$ limit agrees.
- The $\mathcal{N} = 4$ result at large N_c and strong coupling $\lambda = N_c g^2$ is compatible with the behavior of the weakly coupled limit as g is increased(*).

- To clearly see the asymmetry between positive and negative ω , we normalize the different curves for $\rho_{adj}^{++}(\omega)$ so that their $\omega \to \infty$ limit agrees.
- The $\mathcal{N} = 4$ result at large N_c and strong coupling $\lambda = N_c g^2$ is compatible with the behavior of the weakly coupled limit as g is increased(*).

Consequences for transport at strong coupling

- A naive application of the quantum optical limit gives trivial dynamics in the strongly coupled $\mathcal{N} = 4$ SYM plasma:
- Reason behind this: this transport description and every other EFT description currently on the market make assumptions that are intrinsically tied to weak coupling approximations.
 - Concretely, memory effects are neglected: this makes sense if every scattering can be approximated as independent, but not if the correlations of the medium are strong.
 - ^o Since QGP at $T \sim 200 \,\mathrm{MeV}$ is strongly coupled, we can't assume these effects are not present. 73

 $\rho_{\rm adi}^{++}(-|\Delta E|) = 0$.

What to do then? for a strongly coupled plasma (ongoing work)

• Back to open quantum systems basics:

$$\rho_{Q\bar{Q}}(t) = \mathrm{Tr}_{\mathrm{QGP}} \left[U(t)\rho_{\mathrm{tot}}(t=0)U^{\dagger}(t) \right] \,.$$

 From here, expanding up to second order in the interaction, one can derive a formula for the occupancies of the $Q\bar{Q}$ states after a proper time $t_f - t_i$ going through the plasma: e.g., for an octet -> nl transition

$$\langle nl | \rho_{Q\bar{Q}}(t_f) | nl \rangle = \int_{t_i}^{t_f} dt_1 \int_{t_i}^{t_f} dt_2 [g_{adj}^{--}]^{>}(t_2, t_1) dt_2$$

- Still to do: re-sum the Dyson series in different limits (e.g., large N_c).
- $\langle nl | U_{[t_f,t_1]}^{\text{singlet}} r_i U_{[t_1,t_i]}^{\text{octet}} | \psi_0 \rangle (\langle nl | U_{[t_f,t_2]}^{\text{singlet}} r_i U_{[t_2,t_i]}^{\text{octet}} | \psi_0 \rangle)^{\dagger}$

(with G. Nijs and X. Yao) 2312.12307

We can now evolve a state of a heavy quark-antiquark pair, taking into account:

Their wavefunction evolution using a potential model, allowing for different initial separations σ_0 between the pair.

Their transition rates via the correlator we just discussed.

(with G. Nijs and X. Yao) 2312.12307

We can now evolve a state of a heavy quark-antiquark pair, taking into account:

M Their wavefunction evolution using a potential model, allowing for different initial separations σ_0 between the pair.

Their transition rates via the correlator we just discussed.

$T(\tau) = T_f \times (\tau_f / \tau)^{1/3}$ $T_f = 155 \,{\rm MeV}$ $\tau_i = 0.6 \,\mathrm{fm}/c$ $\tau_f = 10 \, \text{fm/}c$

0.25 -0.20 -Y(1S)) 0.15 - \overline{qq} 0.00 -0.0 0.1

We can also compare weakly and strongly coupled plasmas:

At weak coupling, it seems that the existence of quasiparticles increases the

In both cases, the relevant scale is the size of the bound state.

Regeneration probability Y(1S), Bjorken flow

$$\mathcal{N} = 4$$
 SYM, $g = 2.1$, $N_c = 3$
QCD, $g(\mu_0) = 0.1$, $N_c = 3$, $N_f = 2$
QCD, $g(\mu_0) = 0.6$, $N_c = 3$, $N_f = 2$
QCD, $g(\mu_0) = 1.0$, $N_c = 3$, $N_f = 2$
QCD, $g(\mu_0) = 2.1$, $N_c = 3$, $N_f = 2$

 $T(\tau) = T_f \times (\tau_f / \tau)^{1/3}$ $T_f = 155 \,\mathrm{MeV}$ $\tau_i = 0.6 \,\mathrm{fm}/c$ $\tau_f = 10 \, \text{fm/}c$

0.6

0.7

77

0.2

0.3

0.4

 σ_0 [fm]

0.5

Outlook the road ahead

- We have discussed how to calculate the generalized gluon distributions that govern quarkonium transport.
 - Interesting prospects for interpolating between weak & strong coupling, and describing non-perturbative QGP physics.
- Next steps:

QGP formed in heavy-ion collisions.

• Stay tuned!

- Develop a transport formalism accounting for QGP memory effects.
- Assess whether Markovian or non-Markovian effects are dominant in the

The Statigen sol Roald in

Extra Slides

Wilson loops in AdS/CFT setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion: Ο

 $\langle W | \mathscr{C} = \delta$

$$\partial \Sigma] \rangle_T = e^{i S_{\rm NG}[\Sigma]}$$

How do Wilson loops help? setup – pure gauge theory

 Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\frac{\delta}{\delta f^{\mu}(s_2)} \frac{\delta}{\delta f^{\nu}(s_1)} W[\mathscr{C}_f] \bigg|_{f=0} = (ig)^2 \operatorname{Tr}_{\operatorname{color}} \left[U_{f=0} \right]_{f=0}$$

 $U_{[1,s_2]}F_{\mu\rho}(\gamma(s_2))\dot{\gamma}^{\rho}(s_2)U_{[s_2,s_1]}F_{\nu\sigma}(\gamma(s_1))\dot{\gamma}^{\sigma}(s_1)U_{[s_1,0]}$

How do Wilson loops help? setup – pure gauge theory

• Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\frac{\delta}{\delta f^{\mu}(s_2)} \frac{\delta}{\delta f^{\nu}(s_1)} W[\mathscr{C}_f] \bigg|_{f=0} = (ig)^2 \operatorname{Tr}_{\operatorname{color}} \bigg[U_{[1,s_2]} F_{\mu\rho}(\gamma(s_2)) \dot{\gamma}^{\rho}(s_2) U_{[s_2,s_1]} F_{\nu\sigma}(\gamma(s_1)) \dot{\gamma}^{\sigma}(s_1) U_{[s_1,0]} \bigg]_{f=0}$$

Same as the lattice calculation of the heavy quark diffusion coefficient:

$$\hat{i} \qquad \hat{\tau} \qquad \hat{\tau} \qquad \hat{E}_i$$

Wilson loops in AdS/CFT setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion: Ο

Metric of interest for finite T calculations:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left[-f(z) dt^{2} + d\mathbf{x}^{2} + \frac{1}{f(z)} dz^{2} + z^{2} d\Omega_{5}^{2} \right]$$
$$f(z) = 1 - (\pi T z)^{4}$$

J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, hep-ph/1101.0618

Our task is to solve for the perturbed worldsheet for arbitrary (but small) changes in the loop ${\mathscr C}$

Boundary conditions Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal surface. No direct sensitivity to the imaginary time segment.

t = t

 $l \equiv l_i$

Boundary conditions Heavy quark correlator $\operatorname{Re}\{t\}$ Fluctuations are matched through the imaginary time segment solving the equations of motion \implies factors of $e^{\beta\omega}$, KMS relations \downarrow_{τ} t = E_i E_{i} $t = t_i - i\beta$ From here: $\kappa = \pi \sqrt{g^2 N_c T^3}$ 58

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\rm S}[\mathscr{C};\hat{n}] = \frac{1}{N_c} \operatorname{Tr}_{\rm color} \left[\mathscr{P} \exp\left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_\mu \, \dot{x}^\mu \, + \, \hat{n}(s) \cdot \, \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \, \right] \right) \right]$$

which is *not* the standard Wilson loop.

"

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\rm S}[\mathscr{C};\hat{n}] = \frac{1}{N_c} \operatorname{Tr}_{\rm color} \left[\mathscr{P} \exp\left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_\mu \, \dot{x}^\mu \, + \, \hat{n}(s) \cdot \, \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \, \right] \right) \right]$$

which is *not* the standard Wilson loop.

• $\mathcal{N} = 4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through

a direction $\hat{n} \in S_5$. Also, its dual gravitational description is $AdS_5 \times S_5$.

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\rm S}[\mathscr{C};\hat{n}] = \frac{1}{N_c} \operatorname{Tr}_{\rm color} \left[\mathscr{P} \exp\left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_\mu \, \dot{x}^\mu \, + \, \hat{n}(s) \cdot \, \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \, \right] \right) \right]$$

which is *not* the standard Wilson loop.

- $\mathcal{N} = 4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through

a direction $\hat{n} \in S_5$. Also, its dual gravitational description is $AdS_5 \times S_5$.

• What to do with this extra parameter? For a single heavy quark, just set $\hat{n} = \hat{n}_0$.

Choosing \hat{n} what is the best proxy for an adjoint Wilson line?

A key property of the adjoint Wilson line is

$$\mathscr{W}_{[t_2,t_1]}^{ab} = \frac{1}{T_F} \operatorname{Tr} \left[\mathscr{T} \{ T^a U_{[t_2,t_1]} T^b U_{[t_2,t_1]}^{\dagger} \} \right],$$

- which means that we can obtain the correlator we want by studying deformations of a Wilson loop of the form $W = \frac{1}{N_c} \text{Tr}[UU^{\dagger}] = 1.$
- This leads us to consider the following loop: $\hat{n} = \hat{n}_0$

$$\hat{n} = -\hat{n}_0$$

Another angle at the \hat{n} configuration the Neumann prescription for the pure gauge Wilson loop

for \hat{n} . This is can be achieved by writing [‡]:

$$\langle W[\mathscr{C}] \rangle = N[\mathscr{C}] \int D\hat{n} \langle W_{S}[\mathscr{C}; \hat{n}] \rangle$$

- If the path \mathscr{C} is timelike and backtracks over itself, one can show that antipodal positions on the S_5 .

• There exists a prescription to evaluate the pure gauge Wilson loop [†]. On the gravity side of the duality, it amounts to taking Neumann boundary conditions

 $|\langle W_{S}[\mathscr{C};\hat{n}]\rangle| \leq 1$, and moreover, that this bound is saturated when \hat{n} takes

• Therefore, when $\sqrt{\lambda} \to \infty$, configurations where $\hat{n}(s) = \pm \hat{n}_0$ dominate.