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How do we get from a 
state with two atomic 

nuclei to a hydrodynamic 
quark-gluon plasma 

within a time of ?1 fm/c

?
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How is the memory of the initial 
condition lost?
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A bit of history
understanding hydrodynamization in HICs

• In the early 2000’s, it was realized that data from the Relativistic Heavy Ion 
Collider (RHIC) on hadron spectra and elliptic flow could be described by 
hydrodynamics starting at  after the collision.


• The first calculations based on a microscopic theory that explained why this 
could happen so rapidly were done in strongly coupled  
supersymmetric Yang-Mills theory via the AdS/CFT correspondence.


• In the last decade it was shown that rapid hydrodynamization in HICs could 
be described within the Effective Kinetic Theory of weakly coupled QCD.

τ = 0.6 fm/c

𝒩 = 4

Ulrich W. Heinz, Peter F. Kolb, “Early thermalization at RHIC,” Nucl. Phys. A 702 (2002) 269-280

Paul M. Chesler, Laurence G. Yaffe, “Horizon formation and far-from-equilibrium isotropization in supersymmetric 
Yang-Mills plasma,” Phys. Rev. Lett. 102 (2009) 211601

Aleksi Kurkela, Yan Zhu, “Isotropization and hydrodynamization in weakly coupled heavy-ion collisions,” Phys. Rev. 
Lett. 115 (2015) 18, 182301 5



Out of equilibrium attractors
emergence of universal behavior — loss of memory

• Many theories describing the pre-hydrodynamic stage exhibit so-called 
“attractor” solutions. These solutions have been sought, found, and 
intensively studied over the past decade.


• The nature of the attractors can be different in different models:
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How do we write such a theory?

• For today, let me focus on kinetic theories:




 is the particle number per unit density per unit momentum.


Describes interacting quantum many-body theories with weakly-coupled 
quasiparticles. Interactions are described by the collision kernel .


Allows for nontrivial initial states & provides a description of thermalization.


• Challenges for the future: strongly coupled theories.

∂t f = − C[ f ]
f = f(x, p, t)

C[ f ]
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How do we identify long-lived modes?
How do we identify attractors?

• A kinetic equation  is first-order in time derivatives, just like a 
Schrödinger equation:


 

• The parallel becomes clear if we are able to write the kinetic equation as


 ,

because then we can study  as a generator of time evolution.


• To make the discussion more familiar, take .

∂t f = − C[ f ]

∂tψ = − iℋψ

∂t f = − H[ f ] f
H[ f ]

H[ f ] ⟶ H(τ)
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Adiabatic hydrodynamization 
(AH)
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Adiabatic hydrodynamization
as proposed by Brewer, Yan, and Yin

• Idea: the essential feature of an attractor is a reduction in the number of 
quantities needed to describe the system.


• Brewer, Yan and Yin conjectured that this is due to an emergent timescale 
 after which a set of “pre-hydrodynamic” slow modes (that 

gradually evolve into hydrodynamic modes) govern the system.


• Their proposal: try to understand the emergence of  (at which only slow 
modes remain) using the machinery of the adiabatic approximation in 
quantum mechanics.

τRedu ≪ τHydro

τRedu

J. Brewer, L. Yan, Y. Yin “Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma” Phys. Lett. B 816, 136189 (2021)
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Adiabatic hydrodynamization
adiabatic theorem and the notion of adiabaticity

• Consider a system whose evolution is given by 


,


where  has eigenstates/eigenvalues :


.


• Then, one may write the system’s evolution as


.

∂τ |ψ⟩ = − H(τ) |ψ⟩

H(τ) { |n(τ)⟩, En(τ)}∞
n=0

H(τ) |n(τ)⟩ = En(τ) |n(τ)⟩

|ψ⟩ =
∞

∑
n=0

an(τ)e− ∫τ En(τ′ )dτ′ |n(τ)⟩
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• Adiabaticity is the degree to which transitions between different instantaneous 
eigenstates are suppressed:


Adiabaticity for the -th eigenstate , for .


• When this is the case, provided there is an “energy” gap between the ground 
state and the excited states, one has


 


that is to say, the dynamics of the system collapses onto a single form.


 Reduction in the number of variables needed to describe the system.

n ⟺
·an

an
≪ |En − Em | n ≠ m

|ψ⟩ =
∞

∑
n=0

an(τ)e− ∫τ En(τ′ )dτ′ |n(τ)⟩

≈ a0 e− ∫τ E0(τ′ )dτ′ |0(τ)⟩ ,

⟹
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Adiabatic hydrodynamization
Brewer, Yan, and Yin’s RTA analysis

• The first exploration of this 
hypothesis was made by 
studying an RTA kinetic 
theory in a Bjorken-
expanding plasma:



∂τ f(p, τ) −
pz

τ
∂pz

f(p, τ)

= −
f(p, τ) − feq(p; T(τ))

τC

g(τ) = ∂ln τ ln ϵ(τ)

J. Brewer, L. Yan, Y. Yin “Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma” Phys. Lett. B 816, 136189 (2021)
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‘Bottom-up’ thermalization

14

R. Baier, A. H. Mueller, D. Schiff, D. T. Son, “‘Bottom-up’ thermalization in heavy ion collisions” Phys. Lett. B 502, 51-58 (2001) 



‘Bottom-up’ thermalization
as formulated by Baier, Mueller, Schiff, and Son

In the BMSS scenario (in weakly-coupled QCD), thermalization proceeds as


1. Over-occupied hard gluons  at very early times 


2. Hard gluons become under-occupied , when 


3. Thermalization of the soft sector after 


Specifically, stage 1. predicts that


 ,   .

fg ≫ 1 1 ≪ Qsτ ≪ α−3/2
s

fg ≪ 1 α−3/2
s ≪ Qsτ ≪ α−5/2

s

α−5/2
s ≪ Qsτ

γ ≡ −
1
2

∂ln τ⟨p2
z ⟩

⟨p2
z ⟩

=
1
3

β ≡ −
1
2

∂ln τ⟨p2
⊥⟩

⟨p2
⊥⟩

= 0

R. Baier, A. H. Mueller, D. Schiff, D. T. Son, “‘Bottom-up’ thermalization in heavy ion collisions” Phys. Lett. B 502, 51-58 (2001) 
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The gluon collision kernel
in the elastic small-angle scattering approximation

• During the earliest stages of the hydrodynamization process of a weakly 
coupled gluon gas, it is appropriate to work in the small-angle scattering 
approximation:


,


where


 ,    ,   


∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ][Ia[ f ]∇2
p f + Ib[ f ]∇p ⋅ ( ̂p(1 + f )f)]

Ia[ f ] = ∫p
(1 + f )f Ib[ f ] = ∫p

2
p

f =
m2

D

2Ncg2
s

lCb[ f ] = ln ( pUV

pIR ) ≈
1
2

ln ( ⟨p2
⊥⟩

m2
D )

A.H. Mueller, “The Boltzmann equation for gluons at early times after a heavy ion collision,” Phys. Lett. B 475, 220 (2000)
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• Furthermore, for the first stage of the bottom-up scenario we can consider the 
approximations:


 ,     ,


with which the kinetic equation simplifies to


 .

⟨p2
z ⟩

⟨p2
⊥⟩

≪ 1 f ≫ 1

∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ]Ia[ f ]∇2
p f

J. Brewer, B. Scheihing-Hitschfeld, Y. Yin “Scaling and adiabaticity in a rapidly expanding gluon plasma” JHEP 05 (2022) 145
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How does adiabaticity come into play?

Before that: what is ? What is ?|ψ⟩ |0(τ)⟩

|ψ⟩ =
∞

∑
n=0

an(τ)e− ∫τ En(τ′ )dτ′ |n(τ)⟩

≈ a0 e− ∫τ E0(τ′ )dτ′ |0(τ)⟩ .
?
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Scaling and adiabaticity

21



τI τS τFP

ground state dominance

C(τS)

C(τ)

τ

Fixed Point: const.γ =

C(τ) γ = − d log C
d log τ

time-dependent scaling

universal scaling

f(pz; τ)

pz

τ

Typical time evolution of the gluon occupation number in a weakly-coupled Bjorken-expanding plasma

= τRedu τHydro
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The adiabatic frame
connecting scaling and adiabaticity

We have an equation of the form  . Two options:


1. Find the instantaneous eigenstates of  and see if the adiabatic criterion 
is satisfied, or


2. Introduce a new “frame” that optimizes adiabaticity:





with a new distribution function  and rescaled coordinates 
, , . Then, we have a new Hamiltonian :


.

∂τ f = − H(τ) f

H(τ)

f(p⊥, pz, τ) = A(τ) w(p⊥/B(τ), pz/C(τ); y(τ))
w(ζ, ξ; y)

ζ = p⊥/B(τ) ξ = pz/C(τ) y = ln(τ/τI) ℋ

∂yw = − ℋ(y)w
23



What is the advantage of this?


• Because  are a choice of coordinates (a “gauge” choice to describe 
the system), we can choose them to simplify the time dependence of . 


• Then, we [1] find that at early times it is possible to write


,


which is a separable Hamiltonian of the form


,


where the Hamiltonians  are constant and can be “diagonalized” 
simultaneously. In this situation, the adiabatic approximation is exact.

A, B, C
ℋ

ℋ = α − (1 − γ)[∂2
ξ + ξ ∂ξ] + β [∂2

ζ +
1
ζ

∂ζ + ζ ∂ζ]
ℋ = f0(y) H0 + f1(y) Hξ + f2(y) Hζ

H0, Hξ, Hζ




α =
∂yA
A

β = −
∂yB
B

γ = −
∂yC
C

[1] J. Brewer, B. Scheihing-Hitschfeld, Y. Yin “Scaling and adiabaticity in a rapidly expanding gluon plasma” JHEP 05 (2022) 145
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α =
∂yA
A

β = −
∂yB
B

γ = −
∂yC
C
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• Then, we [1] find that at early times it is possible to write


,


which is a separable Hamiltonian of the form


,


where the Hamiltonians  are constant and can be “diagonalized” 
simultaneously. In this situation, the adiabatic approximation is exact.


• The eigenvalues of  are 

A, B, C
ℋ

ℋ = α − (1 − γ)[∂2
ξ + ξ ∂ξ] + β [∂2

ζ +
1
ζ

∂ζ + ζ ∂ζ]
ℋ = f0(y) H0 + f1(y) Hξ + f2(y) Hζ

H0, Hξ, Hζ

ℋ ℰn,m = 2n(1 − γ) − 2mβ , n, m = 0, 1, 2, …
[1] J. Brewer, B. Scheihing-Hitschfeld, Y. Yin “Scaling and adiabaticity in a rapidly expanding gluon plasma” JHEP 05 (2022) 145
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C
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α =
∂yA
A

β = −
∂yB
B

γ = −
∂yC
C

Gapped energy levels! 
 Ground state will 

dominate after a 
transient time 

Also: no need for  
to have reached their 

asymptotic values

⟹

γ, β

27



That is to say, 

 the beginning of the hydrodynamization 
process in a (weakly coupled) HIC proceeds 

through the dominance of low-energy state(s).

⟹

|ψ⟩ =
∞

∑
n=0

an(τ)e− ∫τ En(τ′ )dτ′ |n(τ)⟩

→ a0 e− ∫τ E0(τ′ )dτ′ |0(τ)⟩ .

28



What about the dynamics of the 
“frame” variables?


∂yA = αA , ∂yB = − βB , ∂yC = − γC

29



Flow of  under time evolutionγ, β
Open circles: fixed points with  , Filled circles: fixed points with ·lCb = 0 ·lCb = 0.4

over − occupied (A ≫ 1 ⟺ ′ ′ f ≫ 1′ ′ ) : dilute (A ≪ 1 ⟺ ′ ′ f ≪ 1′ ′ ) :

∂yβ = (γ + 4β − 1 + ·lCb) β ,

∂yγ = (3γ + 2β − 1 + ·lCb)(γ − 1) .

∂yβ = (2β + ·lCb) β ,

∂yγ = (2γ + ·lCb)(γ − 1) .

q = 4πα2
s N2

c lCb[ f ]Ia[ f ]τ

30



Flow of  under time evolutionγ, β
Open circles: fixed points with  , Filled circles: fixed points with ·lCb = 0 ·lCb = 0.4
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q = 4πα2
s N2

c lCb[ f ]Ia[ f ]τ
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comparison with QCD EKT
• We compare our results with 

those of [6], using the same initial 
condition:


.


• In our description, for this initial 
condition we predict a deviation 
from the BMSS scaling 
exponents given by:


f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s )

δγ ≡ γ −
1
3

= −
1

3 ln ( 4πτ
NcτIσ0 )

Scaling exponents

α(τ) β(τ) γ(τ)

evo EKT

1 5 10 50 100
-1.5

-1.0

-0.5

0.0

0.5

1.0

τ

gs=10-3, σ0=0.1

1/3

1/4

-2/3

-3/4

Flow equations [1] (solid) versus QCD EKT [6] (dashed)

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)

see also [7] A. N. Mikheev, A. Mazeliauskas, J. Berges, “Stability analysis of nonthermal fixed points in longitudinally expanding kinetic theory” Phys. Rev. D 105, 116025 (2022)
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Flow equations [5] (solid) versus QCD EKT [6] (dashed)

comparison with QCD EKT
• We compare our results with 

those of [6], using the same initial 
condition:


.


• In our description, for this initial 
condition we predict a deviation 
from the BMSS scaling 
exponents given by:
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[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)

see also [7] A. N. Mikheev, A. Mazeliauskas, J. Berges, “Stability analysis of nonthermal fixed points in longitudinally expanding kinetic theory” Phys. Rev. D 105, 116025 (2022)

Given this initial 
condition, our analytic 

result agrees with 
numeric QCD EKT that 

 at the fixed 
point!

γ ≈ 0.29

33



τI τS τFP

ground state dominance

C(τS)

C(τ)

τ

Fixed Point: const.γ =

C(τ) γ = − d log C
d log τ

time-dependent scaling

universal scaling

f(pz; τ)

pz

τ

Typical time evolution of the gluon occupation number in a weakly-coupled Bjorken-expanding plasma

= τRedu τHydro
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Approach to Hydrodynamics
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Recapitulation: Results of the previous section
low-lying energy states

• Recall that the eigenvalues of  
in the early time regime are

, for 
.


• But,  on the BMSS fixed 
point (late times on the plot on 
the right).


 No substantial memory loss 
for the  dependence of .

ℋ

ℰn,m = 2n(1 − γ) − 2mβ
n, m = 0, 1, 2, …

β → 0

⟹
p⊥ f

α(τ) β(τ) γ(τ)

evo EKT

1 5 10 50 100
-1.5
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-0.5

0.0

0.5

1.0

τ

gs=10-3, σ0=0.1
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1/4

-2/3

-3/4
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Breakdown of the scaling regime
a necessary stage in the hydrodynamization process
• In the previous discussion, we showed that a distribution function  of the form





is the instantaneous ground state that explains an initial stage of memory loss.


• However, hydrodynamics corresponds to





where the different values of  correspond to fermions, classical particles, and 
bosons, respectively.

f

f = A(y) w( p⊥

B(y)
,

pz

C(y) ) , with w(ζ, ξ) = exp[ − (ζ2 + ξ2)/2]

f = w( p
T(y) ) , with w(χ) = [exp(χ) − s]−1 , s ∈ {−1,0,1} ,

s
37



Breaking the scaling regime
restoring terms in the collision kernel

• To make the approach to hydrodynamics possible, we need to restore the terms 
we dropped:








• We will neglect the explicit Bose enhancement in the last term in what 
follows. The equilibrium distribution will thus be Boltzmann instead of Bose-
Einstein.

∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ]Ia[ f ]∇2
p f

∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ][Ia[ f ]∇2
p f + Ib[ f ]∇p ⋅ ( ̂p(1 + f )f)]

38
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∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ]Ia[ f ]∇2
p f

∂τ f −
pz

τ
∂pz

f = 4π α2
s N2

c lCb[ f ][Ia[ f ]∇2
p f + Ib[ f ]∇p ⋅ ( ̂p(1 + f )f)]
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Adiabaticity beyond scaling
how to choose a frame with adiabatic ground state evolution
• The description in the previous discussion may be cast as an expansion


,


where  is a polynomial of degree  in  and  in . This, by construction, is 
well-adapted to describe the ground state at early times.


• To accommodate the transition to a hydrodynamic state, we write


,


where we introduced a new time-dependent variable  and .

f(ζB(y), ξC(y), y) = ∑
i,j

cij(y) Pij(ζ, ξ) exp{−(ξ2 + ζ2)/2}

Pij i ζ j ξ

f(χD(y), u, y) = ∑
n,l

cnl(y) Pnl(χ, u; r(y)) exp{−(u2r2(y)/2 + χ)}

r(y) u ≡ pz/p = cos θ
40



Scaling exponents in the new basis
• We plot





from the solution to the kinetic 
equation, and also from the first basis 
state .


• At early times (up to ) 
we see the dilute fixed point.


• At late times, hydrodynamics.

βp2
T

= − (1/2)∂y log⟨p2
⊥⟩ ,

γp2
z

= − (1/2)∂y log⟨p2
z ⟩ ,

αnCons = γp2
z

+ 2βp2
T

− 1 ,

βbasis, γbasis, αbasis

log(τ/τI) ∼ 10

βpT2 γpz2 αnCons

βbasis γbasis αbasis

0 5 10 15 20 25
-1.5

-1.0

-0.5

0.0

0.5

1.0

Log(τ/τI)

gs = 1
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Energy levels
from early times to late times

• We see that up until
, the 

ground state is 
approximately 
degenerate.


• When the system 
approaches 
hydrodynamics, a 
gap opens and a 
unique ground state 
remains. 

log(τ/τI) ∼ 10

0 5 10 15 20

0

1

10

100

Log(τ/τI)

R
e[
ϵ i]

σ0=1, gs=1.

f(p, τ = τI) =
σ0

g2
s

e− 2p/Qse−r2
i u2/2Q0(u; r)
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Eigenstate coefficients
from early times to late times

• We see that up until
, the 

ground state is 
approximately 
degenerate.


• When the system 
approaches 
hydrodynamics, a 
gap opens and a 
unique ground state 
remains. 

log(τ/τI) ∼ 10

f(p, τ = τI) =
σ0

g2
s

e− 2p/Qse−r2
i u2/2Q0(u; r)
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Conclusions from this study
new insights into the process of hydrodynamization

• We have shown, in a simplified version of QCD kinetic theory, that:

Memory of the initial condition is lost sequentially due to the opening of 
energy gaps that make the information in excited states decay quickly.

In each scaling regime, the ground state(s) evolve adiabatically, either by 
themselves or as a set, and high-energy modes effectively decouple from the 
dynamics.


• Future work:


Include  processes in the collision kernel, so as to be able to apply the 
AH framework in a setting where hydrodynamization is rapid, as in HICs.

Include a nontrivial profile in position space, emulating the fireball formed in a 
HIC.

1 ↔ 2
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Extra slides



‘Optimizing’ adiabaticity
rescaling the degrees of freedom

• From the previous discussion, we see that scaling plays a crucial role in this 
problem.


• This gives us a very useful tool to ‘optimize’ adiabaticity. For instance, if we 
have a distribution function evolving as


,


then we can look for the choice of  that maximize the degree to which 
the dynamics of  is adiabatic.


• We take .

f(p⊥, pz, τ) = A(τ) w(p⊥/B(τ), pz/C(τ); τ)
A, B, C

w

|ψ⟩ ↔ w(ζ, ξ; τ)
ES 1



‘Optimizing’ adiabaticity
in practice

• The original kinetic equation has the form


 .


• This is a linear equation of motion, except for the non-linear dependence 
through .


• Nothing prevents us from making the replacement , solve the 
equation for an arbitrary , and in the end replace the resulting distribution 

 in the definition of  and solve self-consistently:


.

τ∂τ f − pz∂pz
f = q[ f; τ]∇2

p f

q[ f; τ]

q[ f; τ] → q(τ)
q(τ)

f[q(τ)] q

q(τ) = q[ f[q(τ)]; τ]

q[ f; τ] = 4πα2
s N2

c lCb[ f ]Ia[ f ]τ

ES 2



‘Optimizing’ adiabaticity
in practice

• One can then write the kinetic equation for  as


 ,


with  .


For brevity, we have denoted

w

∂yw = − ℋw

ℋ = α − (1 − γ)[q̃ ∂2
ξ + ξ ∂ξ] + β [q̃B (∂2

ζ +
1
ζ

∂ζ) + ζ ∂ζ]
q̃ =

q
C2(1 − γ)

, q̃B ≡ −
q

B2β
.

ES 3



What is the advantage of this?


• Because  are a choice of coordinates (a “gauge” choice to describe 
the system), we can choose them such that . 


• Then, we get


,


which is a separable Hamiltonian of the form


,


where the Hamiltonians  are constant and can be “diagonalized” 
simultaneously. In this situation, the adiabatic approximation is exact.

A, B, C
q̃ = q̃B = 1

ℋ = α − (1 − γ)[∂2
ξ + ξ ∂ξ] + β [∂2

ζ +
1
ζ

∂ζ + ζ ∂ζ]
ℋ = f0(y) H0 + f1(y) Hξ + f2(y) Hζ

H0, Hξ, Hζ

How? 


Note that


  ,


 we can choose  by “fixing the gauge” and choosing .


 corresponds to fixing  by solving:  . Same for  and .

q̃(τ) =
q(τ)

C2(τ)(1 − γ(τ))
⟹ γ(τ) = −

τ∂τC
C

= 1 −
q(τ)

q̃(τ)C2

⟹ q̃ C(τ)

q̃ = 1 C(τ) −
τ∂τC

C
= 1 −

q(τ)
C2

β q̃B

Differential equation for C(τ)

ES 4



Results
low-lying energy states

• We can choose  such that  to set the ground state energy .


• The eigenvalues of  are 


• The left and right eigenstates are:


,


A α = γ + 2β − 1 ℰ0,0 = 0

ℋ ℰn,m = 2n(1 − γ) − 2mβ , n, m = 0, 1, 2, …

ϕL
n,m = He2n(ξ) 1F1(−2m,1,

ζ2

2 )
ϕR

n,m =
1

2π (2n)!
He2n(ξ) 1F1(−2m,1,

ζ2

2 ) exp (−
ξ2

2
−

ζ2

2 )
ES 5



Results
low-lying energy states

• We can choose  such that  to set the ground state energy .


• The eigenvalues of  are 


• The left and right eigenstates are:


,


A α = γ + 2β − 1 ℰ0,0 = 0

ℋ ℰn,m = 2n(1 − γ) − 2mβ , n, m = 0, 1, 2, …

ϕL
n,m = He2n(ξ) 1F1(−2m,1,

ζ2

2 )
ϕR

n,m =
1

2π (2n)!
He2n(ξ) 1F1(−2m,1,

ζ2

2 ) exp (−
ξ2

2
−

ζ2

2 )

Gapped energy levels! 
 Ground state will 

dominate after a 
transient time

⟹

ES 5



Results
low-lying energy states

• We can choose  such that  to set the ground state energy .


• The eigenvalues of  are 


• The left and right eigenstates are:


,


A α = γ + 2β − 1 ℰ0,0 = 0

ℋ ℰn,m = 2n(1 − γ) − 2mβ , n, m = 0, 1, 2, …

ϕL
n,m = He2n(ξ) 1F1(−2m,1,

ζ2

2 )
ϕR

n,m =
1

2π (2n)!
He2n(ξ) 1F1(−2m,1,

ζ2

2 ) exp (−
ξ2

2
−

ζ2

2 )

Left and right 
eigenstates differ 
because  is not 
hermitian

ℋ

ES 5



Evolution of the exponents for different coupling strengths

σ0 = 0.1ES 5



Evolution of the exponents for different coupling strengths

σ0 = 0.6ES 6



Evidence for AH in QCD effective kinetic theory
by A. Mazeliauskas, J. Berges [6]

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019)
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• After a transient time, [6] observed that  took a time-dependent scaling form 

.

fg
f(p⊥, pz, τ) = e ∫τα(τ′ ) dln τ′ fS(e ∫τβ(τ′ ) dln τ′ p⊥, e ∫τγ(τ′ ) dln τ′ pz)

; , , f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s ) ξ = 2 QsτI = 70 gs = 10−3

ES 7
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In the plots, the exponents were obtained by 
taking moments of the distribution function:


,


and using that, if scaling takes place,


nm,n(τ) = ∫p
pm

⊥ |pz |n f(p⊥, pz; τ)

∂τ ln nm,n

∂ ln τ
= α(τ) − (m + 2) β(τ) − (n + 1) γ(τ)

; , , f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s ) ξ = 2 QsτI = 70 gs = 10−3

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019) ES 8
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Then, one can use triads of moments to obtain 
. For example, if we use ,





If every triad of moments gives the same , 
then the distribution has the above scaling form.

Curves in the figure  different triad choices.

α, β, γ n0,0, n1,0, n0,1

α = 4∂ln τln n0,0 − 2∂ln τln n1,0 − ∂ln τln n0,1 ,
β = ∂ln τln n0,0 − ∂ln τln n1,0 ,
γ = ∂ln τln n0,0 − ∂ln τln n0,1 .

α, β, γ

⟺

; , , f(τI) =
σ0

g2
s

exp (−
p2

⊥ + ξ2p2
z

Q2
s ) ξ = 2 QsτI = 70 gs = 10−3

[6] A. Mazeliauskas, J. Berges, “Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma” Phys. Rev. Lett. 122, 122301 (2019) ES 9
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BMSS 
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exponents

Particle number 
conservation 

⟺ α = γ + 2β − 1
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Reduction in the 
number of quantities 
needed to describe 
the system! All we 
need is: 
•  
•

fS
α, β, γ
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