Developments in Interpretable and Explainable AI/ML for PDFs 14 June 2024

or, can we understand what ML models are actually doing in the quest to quantify PDFs and their uncertainties...

T. J. Hobbs

Argonne HEP Division **Theory Group**

DALL-E: "A confused, despondent robot painted in the style of Matisse."

thanks to... Brandon Kriesten, Jon Gomprecht; **CTEQ** colleagues

(views are my own..)

HEP motive: PDFs are ubiquitous in precision theory

MANY measurements to test the SM involve colliding protons

- → protons scatter through parton-level interactions: quark-quark, quark-gluon, ...
- precision means accurate theory + parton distribution functions (PDFs) +

[inverse problem: extract from data...]

pheno needs high-precision -> (reproducible) reductions to PDF uncertainties

necessary to push theory accuracy; (N)NNLO QCD, NLO EW, ...

discovery reach closely tied to PDF precision

- cautionary e.g., CDF incl-jet E_T anomaly
 - → quark compositeness?
 - → ...**no**: mismodeling of gluon PDF

high theory accuracy; PDF precision; faithful uncertainties essential to BSM interpretations

SM baselines at colliders depend on PDFs

$$\sigma \sim f_a(x) \otimes \hat{\sigma}^{\mathrm{pQCD}} \otimes f_b(x)$$

PDF errors translate into phenomenological limitations

□ from PDF analysis, state-of-the-art predictions for fundamental LHC observables $\rightarrow e.g.$, total cross sections at 14 TeV

pervasive issue beyond LHC: neutrino cross sections similarly PDF-limited

...above, for v telescopes; analogous PDF uncertainties at low energies relevant for DUNE

interface with MC event generators, experimental interpretation

two types of modern PDF analysis approaches

Two powerful, complementary representations.

- Analytic parametrizations +
- Hessian PDF eigenvector sets (ABM, CTEQ, HERA, MMHT,...)

Neural network parameterizations + Monte Carlo PDF replicas (NNPDF)

Hessian PDFs can be converted into MC ones, and vice versa.

06-14-2024

T. Hobbs, INT24 --- QCD at the Femtoscale

reproducible, robust PDF uncertainties

community-wide interest in quantifying PDF uncertainties

→ quandaries in stat theory (e.g., MC sampling challenges); explore large model spaces

[see talk, Nadolsky]

neural network status and open questions

NNPDF, arXiv: 2109.02653

- various potential pitfalls exist
 - → systematics of inference and UQ can differ relative to traditional methods
 - dissect PDF uncertainties?
 aleatoric, epistemic, distributional, ...

more broadly: can ML tools be used to quantify correspondence among PDF parametrizations?

 \rightarrow might such models be used generatively, to produce PDFs?

 \rightarrow relation to previously studied PDF-lattice analyses? 1904.00022 [hep-ph]

question: can we 'stress test' ML models for PDFs?

specifically, ability to parametrize and interpolate..

arXiv:2312.02278

ANL-186490

Learning PDFs through Interpretable Latent Representations in Mellin Space

Brandon Kriesten and T. J. Hobbs

High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439 (Dated: December 6, 2023)

→ this work: **toy demonstration**;

 \rightarrow many unanswered questions to explore

 \rightarrow introduces numerical platform (PDFdecoder)

[public code available shortly]

learning likelihoods with NNs

• quantify agreement of theory/data through χ^2 :

$$\chi^{2}(\{a_{\ell}\},\{\lambda\}) = \sum_{k=1}^{N_{\text{pt}}} \frac{1}{s_{k}^{2}} \left(D_{k} - T_{k}(\{a_{\ell}\}) - \sum_{\alpha=1}^{N_{\lambda}} \beta_{k,\alpha} \lambda_{\alpha} \right)^{2} + \sum_{\alpha=1}^{N_{\lambda}} \lambda_{\alpha}^{2}$$

 \rightarrow train a feed-forward neural network (NN) on PDF replicas

Liu, Sun, and Gao; arXiv: 2201.06586

NNs effectively learn (PDF-SMEFT) likelihood function

generate 1.2x10⁴ replicas over PDFs, SM parameters, SMEFT coeffs.

 \rightarrow validate performance on 4x10³ test set

2211.01094 [hep-ph]

 \rightarrow strong, permille-level agreement achieved!

(NB: perfect agreement corresponds to $\chi^2_{NN}/\chi^2 = 1$)

allows *rapid* exploration of combined PDF-SMEFT uncertainties

(aside) NN parametrization allows fast PDF+BSM fits

jet data modestly sensitive to C₁ (4-fermion contact interaction)

- evidence of very weak correlations between EFT parameter, high-*x* gluon PDF
- fixing PDFs: slight underestimate of EFT (Wilson coeff.) uncertainty

${ m TeV^{-2}}$	nominal	CMS 8 dijet	CMS 8 jet	$CMS \ 13 \ jet$
PDF free	$-0.0015^{+0.0033}_{-0.0014}$	$-0.0022^{+0.0187}_{-0.0054}$	$-0.0009^{+0.0138}_{-0.0045}$	$-0.0013^{+0.0059}_{-0.0016}$
PDF fixed	$-0.0015^{+0.0024}_{-0.0014}$	$-0.0022^{+0.0180}_{-0.0051}$	$-0.0009^{+0.0131}_{-0.0049}$	$-0.0013^{+0.0026}_{-0.0015}$

previous learning task was associational

 \rightarrow *i.e.*, connecting parameter (or PDF) values to a target function, χ^2

 \rightarrow can then bypass challenging, expensive theory calculations

testbed to explore NN-based parametrizations of PDFs (?)

 \rightarrow instead of NN proceeding to a target, telescope back to original input

 \rightarrow this is a *reconstruction* task

 \rightarrow large class of ML models for this

→ simultaneously provide arena to explore systematics of training, etc. hyperparameter optimization, training procedures, network structure, activation function choices, $x_{k+1} = A_k (W_k x_k + b_k)$

(rough NN analogue of Hessian parametrization dependence)

T. Hobbs, INT24 --- QCD at the Femtoscale

PDF reconstruction: autoencoder

• basic structure: *encoder* takes input space, *x*, to latent vector, *z*

 \rightarrow corresponding *decoder* maps latent, z, to decoded output, x'

undercomplete network structure

 \rightarrow latent space of lesser dimensional size than input (dimensionality reduction)

(aside) autoencoders in HEP phenomenology

- ML dimensionality reduction --- applicable in 'big data' contexts
- anomaly detection
 - \rightarrow distinguish between in- vs out-of-distribution (ID vs OOD) behavior
 - \rightarrow e.g., train model on SM-only baseline events; BSM appears OOD

Farina, Nakai, Shih: 1808.08992

QCD analysis inverse problems

Almaeen, Alanazi, Sato, Melnitchouk, Li (2022)

base PDF reconstruction problem

- how might such an ML model encapsulate PDFs?
- generate a sizable training validation set for SU(2) toy problem

$$q(x) \pm \bar{q}(x) = \mathcal{N}_{q^{\pm}} x^{\alpha_{q^{\pm}}} (1-x)^{\beta_{q^{\pm}}} \mathcal{P}_{q^{\pm}}(x) \qquad q = u, d$$
$$\mathcal{P}_{q^{\pm}}(x) = 1 + \gamma_{q^{\pm}} \sqrt{x} + \delta_{q^{\pm}} x$$

sample this basic form to obtain 10,000 MC PDF replicas

... impose number sum rules, sample parameters over uniform distribution, ...

 \rightarrow evaluate each replica a 196 x-values per flavor/charge combination (784 total) $x \in [10^{-2}, 0.999]$

 \rightarrow the resulting set of *x*-dependent PDF values are the inputs to reconstruct split 10⁴-member set 70/15/15 for training, validation, testing

imposing physics logic on ML model

- could stop at previous slide, explore autoencoder PDF reconstruction
- but what about interpretability of the model?
 - \rightarrow typically requires imposing some structure, constraint on intermediate latent
 - \rightarrow <u>idea</u>: use PDFs' *x*-integrated Mellin moments to organize latent space,

$$\langle x^{2n} \rangle_{q^{-}} = \int_{0}^{1} dx x^{2n} \left[q(x) - \bar{q}(x) \right]$$

$$\langle x^{2n+1} \rangle_{q^{+}} = \int_{0}^{1} dx x^{2n+1} \left[q(x) + \bar{q}(x) \right]$$

 \rightarrow inspired by recent physics-informed (e.g., equivariant) NN development(s)

- \rightarrow in addition to (PDF) reconstruction loss, there is a moment reconstruction loss
- during training, build into network constrained behavior for: $\langle 1 \rangle_{u^-}, \langle x \rangle_{u^+}, \langle x^2 \rangle_{u^-}, \langle x^3 \rangle_{u^+}, \cdots$

many alternative network models possible

variations on encoder-decoder structure; different internal topologies

trained model performance: VAIM

exercise: compare ML model against pheno PDFs (i)

 given imposed tractability of the latent, amputate the VAIM: [moments] → [PDFs]

 \rightarrow predict pheno PDFs from their moments

T. Hobbs, INT24 --- QCD at the Femtoscale

exercise: compare ML model against pheno PDFs (ii)

• the resulting framework generally results in concordance at highest *x*

 \rightarrow can also be reimagined as an out-of-distribution detector

2.00 2.00 2.00 2.00 decoded decoded decoded decoded CT18 true CT18 true CT18 true 1.75 1.75 CT18 true 1.75 1.75 1.50 1.50 1.50 1.50 1.25 1.25 1.25 1.25 u⁺/u⁺_{true} /n^{__} 1.00 q^{+}/q^{+}_{true} ່ອ 1.00 0.75 0.75 0.75 0.75 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25 0.00¹10⁻² 0.00¹10⁻² 0.00 10-2 0.00 100 10-1 100 10^{-} 100 10^{-1} 10-100 x x x x 2.00 2.00 2.00 2.00 decoded decoded decoded decoded NNPDF40 true NNPDF40 true NNPDF40 true NNPDF40 true 1.75 1.75 1.75 1.75 1.50 1.50 1.50 1.50 1.25 1.25 1.25 1.25 u⁺/u⁺ d^{+}/d_{true}^{+} /d^{r_n} 1.00 1.00 5 0.75 0.75 0.75 0.75 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25 0.00 $0.00^{\perp}_{10^{-2}}$ 0.00 0.00 10^{-1} 10^{-1} 100 10^{-1} 100 10^{-1} 100 100 х X х X

(*i.e.*, quantify the parametric dissimilarity of NNPDF)

T. Hobbs, INT24 --- QCD at the Femtoscale

towards interpretable learning through correlations

 \rightarrow tractable latent allows cross-network MC correlations (*e.g.*, latent to decoded PDF)

• default VAIM: some expected pattern of correlations; also spurious effects $Corr[d^+(x), \langle x^n \rangle_{u^{\pm}, d^{\pm}}]$

T. Hobbs, INT24 --- QCD at the Femtoscale

more compressed latent space

- can demonstrate via more undercomplete network (8-dim latent)
- \rightarrow greater dimensionality reduction: tame spurious moment encodings of *x* dependence

(statistically nonzero correlations only with d^+ moments)

- variational AE, VAIM methods encapsulate 'realistic' PDF model
 - → illustrated in generalizable (toy) problem
 → can be improved and extended systematically

- as end-to-end framework, can incorporate more theory ingredients
- interpretability allows model, dimensionality to be optimized
- What about "explainability" --- discussed during Week 1?

XAI: connect assumed theory to fitted PDFs

(QCD/EW) theory settings have subtle downstream PDF implications

PDF fits	Factorization scale in DIS	ATLAS 7 TeV W/Z data included?	$\begin{array}{c} \textbf{CDHSW} \ F_2^{p,d} \\ \textbf{data included?} \end{array}$	Pole charm mass, GeV
CT18 NNLO	$\mu^2_{F,DIS}=Q^2$	No	Yes	1.3
CT18A NNLO	$\mu^2_{F,DIS}=Q^2$	Yes	Yes	1.3
CT18X NNLO	$\mu_{F,DIS}^2 = 0.8^2 \left(Q^2 + \frac{0.3 \text{ GeV}^2}{x_B^{0.3}} \right)$	No	Yes	1.3
CT18Z NNLO	$\mu_{F,DIS}^2 = 0.8^2 \left(Q^2 + rac{0.3 \text{ GeV}^2}{x_B^{0.3}} ight)$	Yes	No	1.4

 simultaneous variations of multiple theory/analysis settings influence
 PDFs and pheno in hard-todisentangle ways

[classical methods: L₂ sensitivity, 2306.03918]

→ might AI methods provide some useful (complementary) guidance?

identify salient features: guided backpropagation

Guided Backprop

appearing soon, with Kriesten, Gomprecht

$$\frac{\partial f^{\text{out}}}{\partial f_i^{\ell}} = \left(f_i^{\ell} > 0\right) \cdot \left(\frac{\partial f^{\text{out}}}{\partial f_i^{\ell+1}} > 0\right) \cdot \frac{\partial f^{\text{out}}}{\partial f_i^{\ell+1}}$$

train a ResNet-like model on MC PDF replicas; backpropagate classification scores to PDF shapes

theory classification: ~few-percent accuracy

evaluate a confusion matrix on test set of MC replicas (normalized PDF ratios)

GBP: local PDF *x* dependence \rightarrow classification score

classification score gradients relative to input PDF(s); highlight salient features

in line with CT18 main study

 \rightarrow high-, low-*x* gluon and strangeness provide most model discrimination

stay tuned: evidential learning & prior networks

(Dirichlet) Prior Networks, DPNs Malinin and Gales (2018)

factorize predictive posterior to model dependence on prior ensemble

$$P(\omega_c | \mathbf{x}^{\star}, \mathcal{D}) = \int d\mu d\theta \ p(\omega_c | \mu) \ p(\mu | \mathbf{x}^{\star}, \theta) \ p(\theta | \mathcal{D})$$
Aleatoric Distributional Epistemic

forward pass: map aleatoric, epistemic, and distributional errors on low-dimensional simplex

stay tuned: evidential learning & prior networks

06-14-2024

T. Hobbs, INT24 --- QCD at the Femtoscale

- *initial* studies on ML-model PDF realizations
 - \rightarrow encoder networks: flexibility with many possible variations
 - \rightarrow advantages to 'hardwiring' physics assumptions, symmetries

(introduces notion of tractability; use as generative model)

- calculations, toolset mesh with precision QCD PDF theory program
- various pitfalls, some familiar

 \rightarrow challenges in UQ (forthcoming analyses), <u>mode collapse</u>

- extensions: PDF interpolation, query pheno PDFs via OOD behavior
- early XAI/PDF methods show promise; complement classical approaches

 \rightarrow both offer mutual lever arm to intercompare PDF analysis methods