Superheavy Elements in Kilonovae

Erika M. Holmbeck[†]

J. Barnes, K.A. Lund, T.M. Sprouse, G.C. McLaughlin, M.R. Mumpower ApJL, 951, L13 (2023)

Institute for Nuclear Theory | 31 July 2023 [†]NHFP Hubble Fellow | eholmbeck.github.io

Fellowship Proaram

The rapid neutron-capture process visualized

(Sprouse & Mumpower)

P

Neutron star mergers are a confirmed *r*-process site t=0 ms

S. Rosswog

GW170817 and its associated "kilonova"

At least lanthanides (*r*-process elements) were made

Villar + (2017)

Merger event

Nuclear Physics Merger event TUUKVV Deame . ru energy for ²³⁸U ar energies for lighter ions Direct/prompt Observables Apparent. 26 ed

Merger event

. 100kW Deams .10 energy for ²³⁸U ₂r energies for lighter ions

Nuclear Physics

Apparent.

26

Direct/prompt Observables

Using observations to say something about nuclear physics, compact object mergers, etc.

Merger event

and energy for ²³⁸U ar energies for lighter ions **Nuclear Physics**

A complete theory of heavy-element origin must be consistent with observation and theory spanning \gtrsim 35 orders of magnitude

Delayed Observables

Metal-poor ([Fe/H] < -2) stars with *r*-process elements are considered some of the first descendents of ancient events

Their patterns are strikingly similar

...or are they?

Different elements can be created within the same NSM

Price & Rosswog (2006)

Elemental variations can be explained by differences in NSM ejecta

Elemental variations can be explained by differences in NSM ejecta

Ejecta masses depend on the *neutron star* masses and radii (EOS)

$$\frac{m_{\rm dyn}}{10^{-3}M_{\odot}} = \begin{bmatrix} a \\ C_1 \end{bmatrix} + b \left(\frac{M_2}{M_1} \right)^2 + cC_1 \end{bmatrix} M_1 + [1 \leftrightarrow 2]$$

$\log_{10}(m_{\rm disk})$

$$= \max\left\{-3, a\left(1 + b \tanh\left[\frac{c - M_{\text{tot}}/M_{\text{thr}}}{d}\right]\right)\right\}$$

Can we find the EOS that bridges a **theoretical** neutron-star population with **observed** stellar abundances?

$f(M_{1,2}, \text{EOS})$

FOS

MIS

Metal-poor *r*-rich stars Can we find the EOS that bridges a **theoretical** neutron-star population with **observed** stellar abundances?

EMH+ (2022)

Neutron star mass-radius relationship derived from *r*-process patterns of **metal-poor stars**

Neutron star mass-radius relationship derived from *r*-process patterns of **metal-poor stars**

CER ž LIGO/Virgo data (2022)EMH+

At least lanthanides (*r*-process elements) were made

Can the *superheavy* elements be made naturally?

	ab only		Āc	Th	Pa		Np	Pu	-11	Cm	BK	Cf -7	Es	Fm	Md	No	Lr
			57 La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	63 Eu 95	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	69 Tm 101	⁷⁰ Yb	71 Lu 103
⁸⁷ Fr	⁸⁸ Ra		¹⁰⁴ Rf	¹⁰⁵ Db	Sg	Bh	Hs	¹⁰⁹ Mt	Ds	Rg	Cn	¹¹³ Nh	¹¹⁴ Fl	Mc	¹¹⁶ Lv	Ts	¹¹⁸ Og
⁵⁵ Cs	Ba		⁷² Hf	Та	74 W	Re	⁷⁶ Os	77 Ir	78 Pt	Au	Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	85 At	⁸⁶ Rn
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53	⁵⁴ Xe
¹⁹ K	Ca	²¹ Sc	Ti	23 V	Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	Ga	Ge	³³ As	³⁴ Se	Br	³⁶ Kr
Na	¹² Mg											13 Al	¹⁴ Si	15 P	¹⁶ S	CI	¹⁸ Ar
³ Li	Be											⁵ B	⁶ C	7 N	⁸ O	9 F	Ne
H																	He

Can the *superheavy* elements be made naturally?

			89 Ac	90 Th	91 Pa.	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf .	99 Es	Fm	Md	¹⁰² No	103 Lr
			89 Ac	90 Th	⁹¹ Pa.	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	° ⁹⁸ Cf	99 Es	100 Fm	Md	¹⁰² No	¹⁰³ Lr
			57 La	Ce	⁵⁹ Pr	Nd	Pm	sz Sm	Eu	64 Gd	65 Tb	66 Dy	Ho	⁶⁸ Er	Tm	Yb	71 Lu
⁸⁷ Fr	⁸⁸ Ra		104 Rf	105 Db	¹⁰⁶ Sg_	¹⁰⁷ Bh	108 Hs_	109 Mt_	110 Ds_	111 Rg_	112 Cn_	113 Nh	114 FI	115 Mc_	116 LV_	117 Ts_	118 Og
SS CS	Ba		⁷² Hf	Та	74 W	75 Re	OS OS	" Ir	Pt.	⁷⁹ Au	ao Hg	TI	^{B2} Pb	⁸³ Bi	Po	as At	⁸⁶ Rn
Rb	Sr	39 Y	Zr	Nb	Mo.	Тс	Ru	Rh	Pd	Ag	Cd	⁴⁹ In	₅₀ Sn	Sb	Te	53 	Xe
19 K	Ca	Sc	Ti	23 V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	36 Kr
Na	Mg											AI	Si	P	S	CI	Ar
Li	Be											В	° C .	N	0	F	Ne

The **observable** *r*-process

Do the superheavies leave a unique signature like we saw with the actinides?

Do the superheavies leave a unique signature like we saw with the actinides?

Do the superheavies leave a unique signature like we saw with the actinides?

A superheavy-unique feature is present at 7.5 hours post-merger!

A superheavy-unique feature is present at 7.5 hours post-merger!

Superheavy elements *can* leave an impression *if* they are made

The nuclear physics behind superheavy creation in the *r*-process

The nuclear physics behind superheavy creation in the *r*-process

The nuclear physics behind superheavy creation in the *r*-process

Superheavy elements *can* leave an impression *if* they are made

Merger event

and energy for ²³⁸U ar energies for lighter ions **Nuclear Physics**

A complete theory of heavy-element origin must be consistent with observation and theory spanning \gtrsim 35 orders of magnitude

Delayed Observables

In Summary

A comprehensive understanding of NSMs and heavy-element production should explain *r*-process enrichments of *metal-poor stars*, which are themselves information-rich sources of data

We have an exciting opportunity to observe the in-situ production of the heaviest elements, but beware of *degeneracies* and *uncertainties* from nuclear physics

Light curves can tell us about the extent of heavy-element production in mergers, providing information for both *astrophysics* and *nuclear physics*

Using all our observations (stars, kilonovae, GWs) together is essential

Thank you!

