
Three fluids for BES and
resonance widths for LHC

Pasi Huovinen

Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids

University of Wroc law

Heavy Ion Physics in the EIC Era

July 30, 2024, Institute for Nuclear Theory

work done by Jakub Cimerman, Iurii Karpenko, Boris Tomasik,
Clemens Werthmann, Bithika Karmakar,

Pok Man Lo and Micha l Marczenko



P. Huovinen @ INT July 30, 2024 1/37



Challenges

1. lower multiplicity =⇒ smaller system
=⇒ larger deviations from equilibrium?
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Challenges

1. lower multiplicity =⇒ smaller system
=⇒ larger deviations from equilibrium?

2. model for primary processes?
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Solutions

• “Sandwich hybrid”

– cascade until the nuclei have passed each other
– fluid until hadronisation
– cascade until freeze out

Charged hadrons, b = 8.2 - 9.4 fm
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• at
√
sNN < 10 GeV not much

happens during the hydro
stage

• sensitivity to EoS?
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Solutions

• Dynamical initialisation

– each primary collision a source term for fluid
– ∂µT

µν = Jν

– ∂µN
µ
B = ρB
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• no interaction between
incoming nucleons and
produced particles
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3-fluid dynamics

0 = ∂µT
µν

= ∂µT
µν
t + ∂µT

µν
p + ∂µT

µν
fb

Tµν
t = target fluid

Tµν
p = projectile fluid

Tµν
fb = fireball fluid
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3-fluid dynamics

0 = ∂µT
µν

= ∂µT
µν
t + ∂µT

µν
p + ∂µT

µν
fb

Tµν
t = target fluid

Tµν
p = projectile fluid

Tµν
fb = fireball fluid

• target and projectile represent colliding nucleons
• fireball (loosely) represents produced particles
• three fluids, each with temperature and flow velocity of its own
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3-fluid dynamics
• distributions in momentum space

one fluid
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3-fluid dynamics
• distributions in momentum space

one fluid 2 fluids 3 fluids

anisotropic hydro
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3-fluid dynamics
• distributions in momentum space

one fluid 2 fluids 3 fluids

anisotropic hydro somewhat realistic distribution
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3-fluid dynamics

∂µT
µν
t (x) = −F ν

t (x) + F ν
ft(x)

∂µT
µν
p (x) = −F ν

p (x) + F ν
fp(x)

∂µT
µν
fb (x) = F ν

p (x) + F ν
t (x)− F ν

fp(x)− F ν
ft(x)

• interaction between target and projectile:
• friction terms −F ν

t (x) and −F ν
p (x)

• interaction between fireball and target/projectile:
• friction terms F ν

fp(x) and F ν
ft(x)
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Friction from kinetic theory

Boltzmann equation for three fluids

pµ∂µfi = Ci[fp, ft, ff ] =
∑
j,k

Cjk
i [fj, fk], i, j, k ∈ {p, t, f}

Cjk
i : change in distribution/fluid i due to interactions of particles in j and k

for given Cjk
i , friction obtained as

∂µT
µν
i =

∫
d3p

p0
pνCi = F ν

i , ∂µJ
µ
B,i = Bi

∫
d3p

p0
Ci = RB,i
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Friction from kinetic theory

collision integrals in terms of scattering cross sections

Cij
i [fi, fj](pi) =

∫
d3pj p

0
i

[
−fi(pi)fj(pj)vrelσij→X︸ ︷︷ ︸

loss

+

∫
d3qifi(qi)fj(pj)vrel

dσij→iX

d3pi︸ ︷︷ ︸
gain

]

from these, approximative friction formulae are derived

problems:
• cross sections may not be fully measured in experiment
• what stays in a fluid, what’s moved to another?
• d.o.f. change in deconfinement transition
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Csernai approach
Csernai, Lovas, Maruhn, Rosenhauer, Zimányi, Greiner PRC 26, 149 (1982)

• all that scatters goes to the fireball

• projectile and target stay cold

• no baryon transparency!

Note:

• dynamical initialization is analogous to this approach!

• finite formation time & spatial distribution ⇒ baryon transparency
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Satarov/Ivanov approach
Ivanov, Russkikh, Toneev PRC 73, 044904 (2006)

• N+N scattering: N strongly peaked at
ingoing rapidities, π at midrapidity
⇒ in p-t friction: N stay in p/t,
π go to f

• π +N mostly resonance formation
⇒ all outgoing particles from
p-f friction go to p

• uncertainty in deconfined phase:
densities multiplied with

√
s-dependent

prefactor

pros: only need total crosssections.
can describe the double peak in baryon
distributions!
cons: µB = 0 in fireball
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modified Satarov/Ivanov approach

• for our purposes:
need high µB also in fireball!

• idea: divide outgoing N from N+N
into 3 regions
⇒ modified p+t friction moves B
to fireball

but: need doubly differential cross
sections! (y,E)
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Evolution of energy density

• Au+Au collision at
√
sNN = 7.7 GeV
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Evolution of energy density
• Au+Au collision at

√
sNN = 7.7 GeV
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Results: (pseudo)rapidity distributions
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Results: transverse momentum distributions
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Results: elliptic flow
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Dissipation

Tµν
i = ϵiu

µ
i u

ν
i + Pi∆

µν
i + πµν

i , i ∈ {t, p, f}

∂µT
µν
i = ∂µ(ϵiu

µ
i u

ν
i ) + ∂µ(Pi∆

µν
i ) + ∂µπ

µν
i = F ν

i

where πµν
i obeys

uα∂απ
µν
i = − 1

τπ

(
πµν
i − 2η∇⟨µu

ν⟩
i

)
+ · · ·

independent of Fµ
i ?

=⇒ corrections to the evolution equations needed
• rederive DMNR—work in progress
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End of part I

• 3-fluid approach to collisions at BES energies

– projectile, target, produced particles described as separate fluids

• rough reproduction of rapidity and pT distributions

• overshoots anisotropies—no viscosity

• work in progress—stay tuned!
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Effects of resonance widths on
EoS and particle distributions
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Pion pT spectrum at LHC (Pb+Pb at
√
sNN = 2.76TeV)
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• viscous hydro
• initial state:
pQCD+saturation
• τ0 ≈ 0.2fm/c

PCE150:
fit to π, K, p yields
no fit to spectrum
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Pion pT spectrum at LHC (Pb+Pb at
√
sNN = 2.76TeV)
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• viscous hydro
• initial state:
pQCD+saturation
• τ0 ≈ 0.2fm/c

PCE150:
fit to π, K, p yields
no fit to spectrum

PCE175:
no fit to yields
fits the spectrum
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• need more resonances

• yield proportional to Boltzmann factor

N ∝ exp
(
−m

T

)

• resonance mass?
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• need more resonances

• yield proportional to Boltzmann factor

N ∝ exp
(
−m

T

)
• resonance mass?

• usually no width, i.e. resonances have their pole mass
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Dashen-Ma-Bernstein:

If interactions mediated by narrow resonances, properties of interacting
hadron gas are those of noninteracting hadron-resonance gas

⇒ Hadron resonance gas model
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Dashen-Ma-Bernstein:

If interactions mediated by narrow resonances, properties of interacting
hadron gas are those of noninteracting hadron-resonance gas

⇒ Hadron resonance gas model

Dashen-Ma-Berstein: S-matrix formulation of statistical mechanics:

⇒ Second virial coefficient can be evaluated in terms of scattering phase
shift (as far as interaction is manifested in elastic scattering)

⇒ relativistic Beth-Uhlenbeck form
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S-matrix
• effects of interactions expressed in terms of scattering phase shifts

n =

∫
d3p

∫
dm

dρ

dm
f(p,m) with

dρ

dm
=

1

π

dδ

dm

• ππ scattering, P-wave, i.e. ρ resonance
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ρ-density
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Pions from ρ decays
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Thermal pions + pions from ρ decays
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Thermal pions + pions from ρ decays
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blast-wave parametrisation

• boost invariant & cylindrically symmetric

• decoupling at constant τ , i.e. volume emission

• transverse velocity v = v(r)

E
dN

dp3
=

gτmT

2π2

∫ R

0

r dr

∫ ∞

mth

dm
dρ

dm

∞∑
n=1

(∓1)n+1I0

(
n
pTγr(r)vr(r)

T

)
K1

(
n
mTγr(r)

T

)

τ = 13.7 fm, R = 10 fm, vmax = 0.78
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Pions from blast wave
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caveats

• so far only rho mesons
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caveats

• so far only rho mesons

• Beth-Uhlenbeck applicable to elastic scatterings only!

• ρ, K∗(892), f0(980), ∆(1232), K∗
0(1430)

– data exists

• Λ(1405), Ξ(1530) applicable

– no data

• and everything else?
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P33 πN scattering, a.k.a. ∆
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P33 πN scattering, a.k.a. ∆
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Pions from blast wave, T = 150 MeV
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Pions from blast wave, T = 120, Tchem = 150 MeV
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v2 of pions from blast wave, T = 120, Tchem = 150 MeV
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π,K,N ,ρ,f0(980),K∗,K0(1430),∆
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the whole zoo
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Summary of part II

• Resonance widths change the low-pT distribution of pions
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Summary of part II

• Resonance widths change the low-pT distribution of pions

– Fortunately v2(pT ) is not affected

• Effect on EoS uncertain

• Better treatment of resonances needed

This talk consisted of 100% recycled electrons
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