Relevance of the Kohn-Luttinger Effect for Superfluidity in Neutron Stars

Mia Lavender Kumamoto Pronouns: she/her

IReNA-INT workshop 12/10/24

Based on Phys. Rev. C 110, 025804 [arXiv:2405.12243] (MK, Reddy 2024)

INSTITUTE for NUCLEAR THEORY

What is the Kohn-Luttinger effect?

- Medium effects overscreen any generic potential, leading to a singularity near q=2k_F (the "Kohn anomaly")
- Singular contributions lead to attraction in large odd partial waves. (Kohn + Luttinger Phys. Rev. Lett. 15, 524)

Non-singular: $\propto e^{-L}$ Singular: $\propto (-1)^L L^{-4}$

 While generically true only for large L, this effect persists for many potentials for L=1.

If you don't think about this often...

- In the BCS approximation, the superfluid gap comes from summing over the "ladder" diagrams.
- Any contribution to the *irreducible* vertex will contribute in the BCS approximation and should be included.
- Generic nuclear potentials will have contributions from multiple partial waves at tree level which the Kohn-Luttinger (one loop) potential must compete with.

 $\boxed{\qquad} = \swarrow \lor + KL + \ldots$

When might the Kohn-Luttinger effect matter?

- Short range, Lorentz invariant, non-derivative couplings (e.g. NJL models) can't generate any ³P₂ potential at tree level.
- > The one loop calculation might be important!
- > Typical nuclear potentials will have bare p-wave contributions which do not rely on the Kohn anomaly to contribute and are less suppressed.
- TAKEAWAY: The one loop interaction can be important and naive power counting with momentum may get the relative importance of different contributions wrong.

When might the Kohn-Luttinger effect matter?

Short range, Lorentz invariant, non-derivative
 couplings (e.g. NJL models) can't generate any ³P₂
 Order by order ³P₂ potential

A	р Г		Is it important to ${}^{3}P_{2}$?	Is it the Kohn- Luttinger effect?	are p-wave
•	Л С	Bare s-wave, one loop	Probably not	Yes	Only bare s-wave
4	a]	Bare p-wave, one loop	Probably yes	It's semantics	(k_F^3) (k_F^5)
	mc dif	momentum may get the relative importance of different contributions wrong.		$\mathcal{L}_{ ext{int}} = -rac{G_V}{2} (ar{n}\gamma)$	$(\mu n)^2$ 3.0